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Abstract

Introduction The innate immune response to trauma
hemorrhage involves inflammatory mediators, thus promoting
cellular dysfunction as well as cell death in diverse tissues.
These effects ultimately bear the risk of post-traumatic
complications such as organ dysfunction, multiple organ failure,
or adult respiratory distress syndrome. In this study, a murine
model of resuscitated hemorrhagic shock (HS) was used to
determine the apoptosis in spleen as a marker of cellular injury
and reduced immune functions.

Methods Male C57BL-6 mice were subjected to sham
operation or resuscitated HS. At t = 0 hours, t = 24 hours, and
t = 72 hours, mice were euthanized and the spleens were
removed and evaluated for apoptotic changes via DNA
fragmentation, caspase activities, and activation of both extrinsic
and intrinsic apoptotic pathways. Spleens from untreated mice
were used as control samples.

Results HS was associated with distinct lymphocytopenia as
early as t = 0 hours after hemorrhage without regaining baseline

levels within the consecutive 72 hours when compared with
sham and control groups. A rapid activation of splenic apoptosis
in HS mice was observed at t = 0 hours and t = 72 hours after
hemorrhage and predominantly confirmed by increased DNA
fragmentation, elevated caspase-3/7, caspase-8, and caspase-
9 activities, and enhanced expression of intrinsic mitochondrial
proteins. Accordingly, mitochondrial pro-apoptotic Bax and anti-
apoptotic Bcl-2 proteins were inversely expressed within the 72-
hour observation period, thereby supporting significant pro-
apoptotic changes. Solely at t =24 hours, expression of the anti-
apoptotic Mcl-1 protein shows a significant increase when
compared with sham-operated and control animals.
Furthermore, expression of extrinsic death receptors were only
slightly increased.

Conclusion Our data suggest that HS induces apoptotic
changes in spleen through a biphasic caspase-dependent
mechanism and imply a detrimental imbalance of pro- and anti-
apoptotic mitochondrial proteins Bax, Bcl-2, and Mcl-1, thereby
promoting post-traumatic immunosuppression.

Introduction

Hemorrhagic shock (HS) is a commonly encountered compli-
cation within a blunt traumatic or surgical injury. The consecu-
tive immune response induces a variety of immune
dysfunctions, which promote increased susceptibility to infec-
tions and post-traumatic complications like multiple organ dys-
function syndrome, multiple organ failure, or adult respiratory

distress syndrome [1-4]. Moreover, it has been reported that
trauma hemorrhage or ischemia/reperfusion injury is associ-
ated with cell-mediated and parenchymal dysfunctions char-
acterized by the imbalanced production of pro-inflammatory
and anti-inflammatory cytokines, reactive oxygen species, and
arachidonic acid metabolites [5-12]. There is increasing evi-
dence that HS reduces the proliferative capacity of spleno-
cytes and lymphokine release [13], attenuates macrophage

DTT = dithiothreitol; HS = hemorrhagic shock; PBS = phosphate-buffered saline; PCR = polymerase chain reaction; TNFR = tumor necrosis factor
receptor; TUNEL = terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling.
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antigen presentation and cytokine release [14], and consecu-
tively impairs humoral immunity [15]. In this regard, recent data
evaluating trauma-induced organ dysfunctions have sug-
gested that programmed cell death (apoptosis) plays a critical
role in the promotion of post-traumatic complications [16-18].
Therefore, it might be hypothesized that the magnitude of cel-
lular or parenchymal injury after trauma hemorrhage may be
attributed, in part, to the rate of apoptosis induced by the
respective event. To date, only a few studies following trauma
hemorrhage have focused on functional and immunological
alterations of the spleen as being one of the most powerful
secondary immunological organs [19-22]. Thus, further inves-
tigation focusing on splenic immune alteration induced by
trauma hemorrhage might help to elucidate the impact of the
spleen in  the  development of  post-traumatic
immunosuppression.

In physiological states, apoptosis plays an important role in
normal development as well as in tissue proliferation. It
requires a precise regulation while maintaining the cellular
homeostasis [23]. The best-investigated downstream signal-
ling pathways of apoptosis have been described as being pre-
dominantly caspase-dependent, following either the extrinsic
receptor-mediated activation of caspase-3/7 via binding to
members of the tumor necrosis factor receptor (TNFR) super-
family (for example, Fas receptor [CD95] and TNFR-|
[CD120q]) or intrinsic mitochondria-induced release of cyto-
chrome c with subsequent activation of caspase-9 and cas-
pase-3, respectively [24]. As the intrinsic pathway is
controlled by members of the mitochondrial membrane-bound
Bcl-2 family, previous studies on patients with sepsis and
shock have demonstrated an essential role of the anti-apop-
totic Bcl-2 protein for cell survival [25]. The following murine
study focuses on the time-dependent activation of splenic
apoptosis via DNA fragmentation, the activation of receptor-
mediated extrinsic pathway via the death receptors CD120a
and CD95, and the intrinsic mitochondria-related apoptotic
pathway by the differential expression of mitochondrial Bax,
Bcl-2, and Mcl-1 proteins in regard to the HS-induced risk for
post-traumatic immunosuppression.

Materials and methods

This study was approved by the Institutional Animal Care and
Use Committee (LAGetSi, Berlin, Germany). All research was
conducted in compliance with the Animal Welfare Act and
other federal statues and regulations relating to animals and
experiments involving animals.

Animal preparation and experimental groups

Male C57BL/6 mice between 8 and 12 weeks of age (25 to
30 g) were used in this study. Mice were maintained on a
standard 12-hour light cycle and provided with standard
rodent chow and water ad libitum. Mice were randomly
assigned to three groups with six male mice each: control
group, sham group, and HS group. HS mice underwent the
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surgical procedures mentioned below. Sham mice were sub-
jected to the same surgical operations except withdrawing
blood and resuscitation. Control mice did not undergo any sur-
gical procedure. All surgical procedures were performed
under initial anesthesia with the use of intraperitoneal injection
of 120 mg/kg ketamine 10% (WDT, Garbsen, Germany) and
6 mg/kg xylacine (Rompun 2%; Bayer AG, Leverkusen, Ger-
many). An adequate plane of anesthesia was assumed when
the animals were unable to right themselves after being placed
on their backs as well as when they were unable to respond to
toe pinch.

Hemorrhagic shock model

Animals were anesthetized and placed in a supine position.
Groins of both femoral arteries were aseptically cannulated
using a microcatheter (Fine Science Tools, Heidelberg, Ger-
many). One catheter was connected to a blood pressure ana-
lyzer (Micro-Med, Inc., Louisville, KY, USA) for constant
recording of heart rate and mean systolic and diastolic arterial
blood pressures. The contralateral catheter was used for with-
drawing blood and fluid resuscitation. HS animals were rapidly
bled to a mean blood pressure of 35 £ 5 mm Hg (mean blood
volume 532 + 43 pL), which was maintained for 60 minutes.
At the end of this period, animals were resuscitated with isot-
onic 0.9% NaCl solution (3% of the shed blood withdrawn)
using a perfusor (B. Braun Medical AG, Sempach, Switzer-
land) over 30 minutes, following catheter removal, vessel liga-
tion, and closing of the incisions. Hemorrhaged and
resuscitated animals were sacrificed on defined time points
(immediately after resuscitation [t = 0 hours] as well as at t =
24 hours and t = 72 hours thereafter) by cervical decapitation.
The spleen was aseptically removed and administrated for fur-
ther analysis.

Cell counting

Lymphocyte cell counting was performed by withdrawing 20
pL of peripheral blood from the caudal tail vein. Cell counts
were analyzed in an ABC Animal Blood Counter (scil animal
care company, Viernheim, Germany).

Splenocyte isolation

Spleens were carefully removed in an aseptic manner, washed
in Petri dishes containing phosphate-buffered saline (PBS),
and placed onto 40-um nylon-mesh cell strainers (Becton
Dickinson, Heidelberg, Germany). A small syringe plunger was
used to homogenize spleen tissue through the cell strainer.
The remaining cell suspension was washed and resuspended
in PBS following cell staining, caspase activity assays, real-
time polymerase chain reaction (PCR), and Western blot as
described below. Splenic cell suspension was centrifuged at
300 g for 5 minutes and washed in buffer containing PBS, 2%
fetal calf serum, and Polymyxin B. Cells (0.5 x 108) were
resuspended in staining buffer (containing PBS w/o Mg2+/
Ca?*, 1% albumin fraction V, and 0.01% NaNj) for further flu-
orescence activated cell sorting analysis. Additionally, splenic



cell suspension was resuspended in RNAlater (Qiagen,
Hilden, Germany) for further RNA isolation or in lysis buffer
(containing 25 mM HEPES [4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid] [pH 7.5], 0,1% Triton x 100, 5 mM
MgCl,, 2 mM dithiothreitol [DTT], 1 mM EGTA [ethylene gly-
col-bis (2-aminoethylether)-N,N,N,N-tetra acetic acid]) con-
taining protein inhibitors (Complete Mini; Roche Diagnostics,
Mannheim, Germany) for further Western blot analysis and
caspase activity assays, respectively.

Flow cytometry

Freshly isolated mouse splenocytes were analyzed by direct
labeling procedures using primary antibodies anti-mouse CD3
(Invitrogen, Karlsruhe, Germany), anti-mouse CD120q. (BioLe-
gend, San Diego, CA, USA), and anti-mouse CD95 (BD
Pharmingen, Heidelberg, Germany) and their respective iso-
type controls. Data acquisition was performed using a FACS-
Calibur flow cytometer and Cell Quest software (Becton
Dickinson). Further data analysis was performed using FlowJo
software for PC (TreeStar Inc., Ashland, OR, USA).

Caspase activity assay

Apoptotic cell death-inducing caspase-3/7, caspase-8, and
caspase-9 activity was determined in protein lysates from
murine splenocytes. Equal volumes containing 30 pg of pro-
tein were applied to the caspase-3/7 activity and caspase-8/-
9 activity assays using the Apo-ONE Homogeneous and Cas-
paseGlo systems (Promega, Mannheim, Germany), respec-
tively. Caspase-3/7 activity was determined via emission
intensity of fluorescence (excitation wavelength 490 nm and
emission wavelength 535 nm), and caspase-8/-9 activity via
emission of luminescence, using a GeniusSpectra Fluorplus
fluorescence spectrometer (Tecan Deutschland GmbH,
Crailsheim, Germany).

RNA isolation, cDNA synthesis, and real-time
polymerase chain reaction

Total T-cell RNA of murine splenocytes was isolated using an
RNeasy Mini Kit (Qiagen) according to the manufacturer's
instructions. RNA quantity and quality were evaluated with the
RNA 6000 Nano Assay from Agilent Technologies (Wald-
bronn, Germany). From total RNA, 1 ug was denatured at
75°C for 10 minutes in the presence of oligo-primers
(pd(T)12-18) (Amersham Buchler, now part of GE Health-
care, Little Chalfont, Buckinghamshire, UK) and reversely tran-
scribed into cDNA using Molony mouse leukemia virus
(Invitrogen) in the presence of frozen storage buffer (Invitro-
gen), 250 uM dNTPs, 0.01 M DTT, 4 U DNase, and 20 U RNa-
sin (Promega) at 37°C for 30 minutes, followed by heating at
75°C for 5 minutes for DNase activation. After cooling at 4°C,
cDNA synthesis was performed at 42°C for 60 minutes. Alig-
uots (1 uL) of the resulting cDNA were amplified by real-time
PCR using a QuanTitect Probe PCR Kit (Qiagen). Primer pairs
for Bax and Bcl-2 detection were obtained from the QuanTi-
tect Gene Expression Assay (Qiagen). The primer pair for the
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B-actin housekeeping gene was used as a reference control
(QuanTitect Primers; Qiagen). All assays were performed in an
Opticon | Real-Time Cycler from MJ Research (Bio-Rad Labo-
ratories, Inc., Munich, Germany) as follows: primary step of 2
minutes at 50°C, 15 minutes at 95°C, 46 cycles of 15 sec-
onds at 94°C, 30 seconds at 56°C, and 30 seconds at 76°C,
according to the manufacturer's protocol.

DNA fragmentation

The DeadEnd Fluorometric TUNEL (terminal deoxynucleotidyl
transferase-mediated dUTP-biotin nick end-labeling) System
Kit (Promega Corporation, Madison, WI, USA) on splenic fro-
zen sections was used to detect in situ DNA fragmentation.
For this purpose, splenic tissues were embedded in Tissue
Tec (Sakura, Zoeterwoude, The Netherlands) immediately
after removal and frozen in liquid nitrogen. Tissue sections
were obtained by cutting 6-um blocks on a microtome (model
RM 2155; Leica, Wetzlar, Germany). Each section was
mounted onto a microscope slide and underwent standard-
ized TUNEL staining. The resulting stained sections were
examined for apoptotic cells by a fluorescence microscope
(Axioskop 40; Carl Zeiss, Jena, Germany) followed by visuali-
zation with a C-4000 camera (Olympus, Hamburg, Germany).
Quantificational TUNEL analyses were performed by counting
the rate of TUNEL-positive cells within a total number of 200
cells using the Alpha Digidoc software (Alpha Innotech,
Grodig/Salzburg, Austria).

Western blot

Protein lysates from isolated splenocytes were thawed on ice.
Equal amounts of protein (60 ug) were boiled and denatured
in sample buffer at 95°C for 5 minutes and then separated by
12% Tris-glycine SDS-PAGE. Afterward, proteins were trans-
ferred to a nitrocellulose membrane by wet blotting. Equal pro-
tein loading was examined by Ponceau S staining. Afterward,
the membrane was blocked and incubated overnight at 4°C
with primary host species rabbit anti-mouse Bax, mouse anti-
mouse Bcl-2 (Santa Cruz Biotechnology, Inc., Heidelberg,
Germany) (1:300 diluted in PBS, 0.05% Tween 20, and 5%
skim milk powder) and rabbit anti-mouse Mcl-1 (BioLegend)
(diluted 1:500 in PBS, 0.05% Tween 20, and 3% bovine
serum albumin) polyclonal antibodies. Finally, membranes
were washed and incubated with the secondary goat anti-rab-
bit (1:2,500) or goat anti-mouse IgG (1:5,000) horseradish
peroxidase-conjugated antibodies (DakoCytomation, Ham-
burg, Germany) for 2 hours. After washing, detection was per-
formed by non-radioactive chemiluminescence using
RotiLumin (Carl Roth, Karlsruhe, Germany) and an LAS 3000
Image Reader (Fujifilm, Diisseldorf, Germany). Antibody
against the cytosolic marker B-actin (1:2,500 for 45 minutes)
(Sigma-Aldrich, Munich, Germany) was used to re-examine
equal sample loading and detection of contamination. Quanti-
ficational Western blot analyses were performed using the
Alpha Digidoc software.
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Presentation of data and statistics

Results are presented as the mean (£ standard error of the
mean). Differences between experimental groups were con-
sidered significant at a p value of less than 0.05 as determined
by the analysis of variance (Bonferroni/Dunn) test and the
Mann-Whitney test.

Results

A total of 42 mice were subject to HS or sham operation or
were healthy controls. HS treatment led to a rapid decrease of
the mean arterial pressure after blood withdrawal from initial
values of 97.7 £ 10.3 mm Hg to 35 £ 5 mm Hg (data not
shown). The average volume of blood withdrawn comprised
532 * 43 pulL. In sham-operated mice, no significant changes
in blood pressure compared with control animals were
observed (data not shown).

Lymphocyte cell counts

Peripheral whole blood from control mice was directly
obtained by puncture of the caudal vein and immediately proc-
essed for further analyses. Blood from animals subjected to
HS was obtained and processed in an analogous manner after
resuscitation and vessel ligation at t = 0 hours and at t = 24
hours and t = 72 hours after resuscitated hemorrhage. Blood
from sham-operated mice was obtained and processed in an
analogous manner after removal of the catheter and vessel
ligation. Total lymphocyte cell counts revealed a significant
lymphocytopenia in mice undergoing HS compared with those
of the sham group and control animals (Figure 1). Absolute
lymphocyte decrease was observed from time point t = 0
hours onward without regaining baseline levels within the con-
secutive 72-hour observation period. However, mainly for two
reasons, peripheral blood lymphocyte cell counts may not
accurately reflect the total number of lymphocytes. First,
peripheral blood lymphocytes represent only a small fraction of
the total body lymphocytes whereas the majority of lym-
phocytes are found in lymphoid tissues like lymph nodes,
Payer's patch, or spleen. Second, a potential dilutional effect
provoked by the resuscitation must be considered.

Hemorrhagic shock-induced lymphocyte apoptosis and
caspase activity

Apoptotic lymphocytes in spleen were detected by their fluo-
rescent signal after labelling DNA strand breaks with fluores-
cein-conjugated nucleotides. Figure 2 shows a representative
TUNEL stain (a) and quantificational analysis (b) of freshly iso-
lated and frozen sectioned splenocytes of at least three exper-
iments. In control and sham-operated mice, no or only insular
apoptotic cells were observed within the entire observation
period (Figure 2a). In resuscitated HS animals, the number of
splenocytes showing apoptotic DNA fragmentation was
increased at t = O hours and t = 72 hours after hemorrhage
(Figure 2a). In contrast, 24 hours after HS, most of the splen-
ocytes showed fluorescence signals comparable to those in
sham-operated or control mice, demonstrating no observable
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Total lymphocytes after hemorrhagic shock (HS). HS-induced risk for
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animals was obtained as described in Materials and methods and ana-
lyzed by differential hemogram. *P < 0.05 as determined by analysis of
variance (with post hoc Bonferroni/Dunn) test and Mann-Whitney test.

apoptotic activity (Figure 2a). Accordingly, quantificational
analysis of apoptotic DNA fragmentation revealed a significant
increase at t = 0 hours and t = 72 hours after hemorrhage,
whereas no changes at t = 24 hours occurred, when com-
pared with control and sham animals (Figure 2b). Subse-
quently, comparative analyses of both receptor- and non-
receptor-mediated caspase-3/7 activity in addition to activity
of caspase-8 as well as mitochondria-related caspase-9 activ-
ity in control, sham-operated, and resuscitated HS mice were
performed. Thereby, HS animals demonstrated significantly
increased caspase-3/7, caspase-8, and caspase-9 activities
at t = 0 hours and t = 72 hours in splenic tissue when com-
pared with the appropriate sham-operated or control animals
(Figure 2c). On the other hand, at t = 24 hours after hemor-
rhage, baseline levels of caspase activities were monitored
(Figure 2c).

Hemorrhagic shock-induced death receptor expression

Splenic death receptor CD95 and CD120a protein expres-
sion in control, sham-operated, and HS animals was examined
by flow cytometry. Previous studies have shown that CD95 is
expressed by the majority of immature T cells in the normal
mouse thymus, but to a lower extent in normal splenic lym-
phocytes [26-28]. In this study, splenic CD95 protein expres-
sion of control animals did not differ significantly within the
entire observation period when compared with sham- and HS-
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Figure 2
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Hemorrhagic shock (HS)-induced apoptosis of murine spleen. (a) DNA fragmentation as shown by TUNEL staining. Splenocytes were isolated from
HS and sham animals at t = 0 hours, t = 24 hours, and t = 72 hours after hemorrhage as well as from control animals. Results are representative of
at least three animals per group and controls. (b) Quantificational analysis of DNA fragmentation. Results are representative of at least three animals
per group and controls. (c) Activity of death-receptor-mediated effector caspase-3/7 and caspase-8 as well as mitochondria-related caspase-9
activity within the entire observation period. *P < 0.05 as determined by analysis of variance (with post hoc Bonferroni/Dunn) test and Mann-Whitney
test. Co, control; RFU, relative fluorescent units; RLU, relative light units; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick

end-labeling.

operated mice (Figure 3ab). In contrast, CD1200 was
upregulated at t = 0 hours and t = 72 hours in HS animals (Fig-
ure 3a,b). Twenty-four hours after hemorrhage, the level of
CD120a expression was rather comparable to those of sham-
operated mice and control animals. However, CD120a
expression was consistent with appropriate results of cas-
pase-3/7 and caspase-8 activities at t = 0 hours, t = 24 hours,
and t = 72 hours after hemorrhage (Figure 2c). Therefore, a
contribution of the CD120a-mediated pathway to splenic
apoptosis cannot be excluded but might play a minor role.

Hemorrhagic shock-induced mitochondria related pro-
and anti-apoptotic proteins

To prove the involvement of mitochondria-related proteins in
the downstream apoptotic signalling cascade in spleen after
HS, we investigated the protein expression of pro-apoptotic
Bax as well as anti-apoptotic Bcl-2 and Mcl-1 by semi-quanti-
tative Western blot analysis. Figure 4 demonstrates a repre-
sentative Western blot of Bax, Bcl-2, and Mcl-1 proteins of at
least three experiments. In regard to Bax protein expression,
weak expression signals were detected in sham animals within
the observed time point whereas control animals showed a
higher expression level (Figure 44, left). Protein expression lev-
els of Bcl-2 in both control animals and animals that underwent
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a sham procedure did not show any significant differences
throughout the entire observation period (Figure 4a, middle).
In bright contrast, splenocytes of HS mice showed remarkably
divergent values in their Bax and Bcl-2 protein expression lev-
els at t =0 hours, t = 24 hours, and t = 72 hours after hemor-
rhage (Figure 4b, left and middle). Moreover, the expression
levels of both proteins appeared to be inversely expressed.
Throughout the three observation time points, Bcl-2 expres-
sion levels were continuously decreasing from t = O hours
onward, whereas Bax expression was significantly elevated at
t=24 hours and t =72 hours when compared with t =0 hours
after hemorrhage, indicating a distinct pro-apoptotic shift (Fig-

Page 6 of 10

(page number not for citation purposes)

ure 4c, left and middle). Furthermore, protein data of inversely
expressed Bax and Bcl-2 protein expression were confirmed
by additional analysis of Bax and Bcl-2 mRNA expression
using real-time PCR (data not shown).

To elucidate the involvement of additional mitochondrial pro-
teins in splenocyte apoptosis, we sought to introduce another
member of the mitochondria-related anti-apoptotic Bcl-2 fam-
ily, Mcl-1 (Figure 4a—c, right). However, consistent expression
levels of the Mcl-1 protein were detectable in sham-operated
and control animals, except for an increased expression at t =
24 hours after hemorrhage. In contrast, Mcl-1 expression in
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Figure 4
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Protein expression of mitochondrial proteins after hemorrhagic shock (HS). Western blot analysis of splenic Bax (left), Bcl-2 (middle), and Mcl-1
(right) expression compared to the housekeeping gene B-actin (lower part), detected in splenocytes of sham and controls (a) as well as in HS ani-
mals (b). Results are representative of at least three animals per group and controls. *P < 0.05 as determined by analysis of variance (with post hoc

Bonferroni/Dunn) test and Mann-Whitney test. Co, control.

splenocytes of HS-treated animals was significantly enhanced
at t = 24 hours after hemorrhage when compared with t = 0
hours and t = 72 hours, supporting our hypothesis that splenic
cells are rescued from apoptosis by potential involvement of
Mcl-1 (Figure 4b,c, right). Additionally, the time course of anti-
apoptotic Mcl-1 expression is in line with the appropriate cas-
pase-3/7 and caspase-9 activities and correlates with the HS-
induced DNA fragmentation demonstrated in Figure 2.

Discussion

Previous human studies have shown that serious injury
induces a variety of both morphological and functional
changes in lymphocytes, which are indicated to play a major
part in post-traumatic immunosuppression [29-32]. To date,
reports on animal models and clinical studies have been able
to demonstrate that the consecutive dysfunction of key
immune effector cells after trauma hemorrhage and shock,
such as lymphocytes, may be associated with induced and

prematurely activated apoptosis [33-36]. Animal studies have
clearly shown that hemorrhage alone is sufficient to cause a
variety of parenchymal alterations, including cellular damage
and cytotoxic effects [37-39]. Additionally, hemorrhage alone
has been shown to induce thymocyte apoptosis, which is
assumed to contribute to the deregulation of immune
responses and the development of post-traumatic immuno-
suppression [18]. Furthermore, the spleen as an important
homing of T lymphocytes appears to be involved in the immune
response following hemorrhage in combination with trauma
[19]. After ischemia/reperfusion injury, apoptosis also can be
induced in liver [6], kidney [40], heart [41], and brain [42]. On
the basis of our experimental settings presented in the follow-
ing study, previous data have critically discussed the type fluid
resuscitation following HS in regard to the extent of parenchy-
mal apoptosis. For example, an increased hepatic, intestinal,
and pulmonary apoptotic activity has been reported during
resuscitation with lactated Ringer solution [43,44]. In contrast,
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hypertonic saline infusion exhibits protective properties reduc-
ing cellular apoptosis, tissue damage, and susceptibility to
sepsis [45-48]. Nevertheless, our correlating results obtained
by TUNEL stain and caspase activity assays allowed us to pro-
pose that HS induces both pro- and anti-apoptotic changes in
murine splenocytes. Biphasic activation of parenchymal apop-
totic processes in various animal models of injury has been
reported by the use of several pharmacological substances
(for example, staurosporin [49] or bleomycin [50]).

In the present study, apoptotic changes of murine splenocytes
from animals subjected to HS and resuscitation were
compared with sham-operated and control animals and inves-
tigated within an observation period of 72 hours. Our results
demonstrate a time-dependent and biphasic activity (at t =0
hours and t = 72 hours after hemorrhage) of key apoptosis-
inducing enzymes (caspase-3/7 and caspase-8) and apopto-
sis-related CD120a expression along with corresponding
apoptotic DNA fragmentation via TUNEL analysis. However,
the minor expression levels of both CD120a and CD95 death
receptors do not necessarily mean that the receptor-mediated
pathway is not activated, since it requires not only the
receptors but also binding of their ligands. Despite this,
TUNEL staining analysis and confirmative results of increased
caspase-3/7 and caspse-8 activity of splenocytes over the 3-
day observation period support the common notion that the
early splenocyte apoptosis is associated, at least in part, with
caspase-dependent and both intrinsic and extrinsic apoptotic
signalling pathways. Our analyses of HS-induced apoptotic
changes in splenocytes indicated a biphasic activation of cas-
pase-9 with a corresponding increase of pro-apoptotic Bax
and repressed anti-apoptotic Bcl-2 protein expression. This is
partially in line with recent observations showing pulmonary
upregulation of Bax protein expression in rats following lac-
tated Ringer solution and hetastarch resuscitated HS [44].
Remarkably, our results suggest a downregulated splenocyte
apoptosis at t = 24 hours after HS predominantly correlating
with an upregulation of the specific anti-apoptotic mediators,
namely Mcl-1 as a member of the Bcl-2 family. The essential
role of Mcl-1 in regulating cell viability has been established in
various experimental settings [51,52], including a murine host-
mediated macrophage apoptosis model during pneumococcal
infection [63]. In the latter model, a tightly regulated biphasic
pattern of macrophage susceptibility to apoptosis has been
proposed for optimal killing of bacteria during infection. Fol-
lowing this, a biphasic course of apoptosis regulation seems
to be a beneficial feature providing effective host response
against serious injury or pathogens. Furthermore, our results
suggest the potential involvement of Mcl-1 protein in a possi-
ble counter-regulatory mechanism at t = 24 hours after HS.
Thus, our results provide evidence of early splenocyte apopto-
sis triggered by HS, implicating an initial pro-apoptotic shift,
counter-regulation, and subsequent rebound effect. It might
be proposed that the predominant and specific upregulation of
the Mcl-1 protein at t =24 hours within the early phase of post-
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hemorrhage recovery contributes to a physiological attempt,
thus acting against the potential risk of immunosuppression
following HS.

Conclusion

Our findings demonstrate that HS is sufficient to induce
murine splenocyte apoptosis and further itemize time-depend-
ent downstream signalling events within the complex patho-
physiology of HS-induced immune alterations, which have not
been described in these settings to date. We further provide
evidence that splenocyte apoptosis after HS displays a bipha-
sic pattern within the early recovery phase, which is caspase-
3/7 — as well as caspase-9-dependent and appears to be
mainly intrinsic-mediated via the mitochondrial proteins Bax,
Bcl-2, and Mcl-1. Due to the observed activation of caspase-
8, an involvement of receptor-mediated pathways in HS-
induced apoptotic changes cannot be excluded. In summary,
it might be suggested that HS-induced apoptosis-related mal-
function of murine splenocytes may be critically involved in the
post-traumatic immunosuppression.

Key messages

* Animal models help to elucidate the complex patho-
physiology of trauma-hemorrhage-induced immune
responses.

* Immunsuppression following trauma hemorrhage might
be caused by parenchymal alterations (for example, in
the spleen).

*  Murine hemorrhagic shock leads to time-dependent
activation of splenic apoptosis

* The biphasic course of apoptosis after hemorrhagic
shock displays a biphasic pattern in the early recovery
phase in which the intrinsic mitochondria-related Bax,
Bcl-2, and Mcl-1 proteins are critically involved.
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