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Abstract

Introduction Kaplan—Meier curves and logistic models are
widely used to describe and explain the variability of survival in
intensive care unit (ICU) patients. The Kaplan—-Meier approach
considers that patients discharged alive from hospital are 'non-
informatively' censored (for instance, representative of all other
individuals who have survived to that time but are still in
hospital); this is probably wrong. Logistic models are adapted to
this so-called 'competing risks' setting but fail to take into
account censoring and differences in exposure time. To address
these issues, we exemplified the usefulness of standard
competing risks methods; namely, cumulative incidence
function (CIF) curves and the Fine and Gray model.

Methods We studied 203 mechanically ventilated cancer
patients with acute respiratory failure consecutively admitted
over a five-year period to a teaching hospital medical ICU.
Among these patients, 97 died before hospital discharge. After
estimating the CIF of hospital death, we used Fine and Gray

models and logistic models to explain variability hospital
mortality.

Results The CIF of hospital death was 35.5% on day 14 and
was 47.8% on day 60 (97/203); there were no further deaths.
Univariate models, either the Fine and Gray model or the logistic
model, selected the same eight variables as carrying
independent information on hospital mortality at the 5% level.
Results of multivariate were close, with four variables selected
by both models: autologous stem cell transplantation, absence
of congestive heart failure, neurological impairment, and acute
respiratory distress syndrome. Two additional variables,
clinically documented pneumonia and the logistic organ
dysfunction, were selected by the Fine and Gray model.

Conclusion The Fine and Gray model appears of interest when
predicting mortality in ICU patients. It is closely related to the
logistic model, through direct modeling of times to death, and
can be easily extended to model non-fatal outcomes.

Introduction

Mortality in intensive care unit (ICU) patients remains high. The
estimated mean in France is about 15% for ICU mortality and
6-25% for hospital mortality after ICU discharge [1], yielding
a hospital mortality rate of 20—30%, with substantial variations
across studies. Reported factors associated with ICU mortal-
ity are partly conflicting. Differences in the statistical methods
used to estimate mortality and to identify prognostic factors
may contribute to these discrepancies. For instance, the out-
come of interest could be hospital mortality, ICU mortality, or

mortality at a specific time point (e.g. 14 days, 30 days, 60
days, or three months after ICU admission). Furthermore,
some studies determine the prevalence of death and others
determine the incidence of death. Prevalence of death is esti-
mated from crude mortality ratios (number of deaths divided by
number of ICU admissions), and then logistic analysis is used
to identify prognostic factors. Incidence studies estimate sur-
vival using the Kaplan—Meier method and then look for prog-
nostic factors in Cox models. Many studies use both
approaches, determining survival time distributions by the

ARDS = adult respiratory distress syndrome; CIF = cumulative incidence function; ICU = intensive care unit; LOD = logistic organ dysfunction; SCT

= stem cell transplantation.
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Modelisation of ICU data in the setting of competing risks. Competing risks model (left). Cumulative incidence function of hospital death and being

discharged alive (right). ICU, intensive care unit.

Table 1

Hospital mortality according to the main characteristics of the
population at admission to the intensive care unit

Characteristic Hospital mortality

Overall population 97/203 (47.8%)

Autologous stem cell transplantation 19/29 (65.5%)

Clinically documented lung disease 17/27 (63.0%)

Absence of congestive heart failure 3/25 (12.0%)

Neurological impairment 36/52 (61.2%

Neutropenia

24/42 (57.1%

( )

41/71 (57.8%)
Unknown cause of acute respiratory failure ( )
( )

Acute respiratory distress syndrome 29/40 (72.5%

Kaplan—Meier method and then looking for prognostic factors
using logistic models [2].

The main argument against using survival methods to analyze
ICU mortality or hospital mortality pertains to censoring.
Indeed, the Kaplan—Meier method and Cox model assume that
censoring is non-informative (for instance, that the survival
time of an individual patient is independent of censoring). In
other words, patients discharged alive from the hospital must
be representative of all other individuals who have survived to
this time of discharge but who are still in hospital. In this case,
the distribution of the censoring time is unrelated to the distri-
bution of the survival time, so that censoring is 'non-informa-
tive' about the mortality pattern of the population. This is likely
to be true if the censoring process operates randomly, which
is usually the case when mortality is assessed at a point in cal-
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endar time (for instance, on 1 January 2005), provided that this
time point is selected before the study is initiated.

However this assumption cannot be made if, for example, the
survival time of an individual is censored, being withdrawn as
a result of a deterioration or an amelioration in his/her physical
condition. This is probably the case in the ICU where patients
are discharged alive, and thus withdrawn from the survival
analysis, because they need no more intensive care, usually
due to amelioration or deterioration of their vital conditions.
Patients are therefore discharged alive (censored) because
they have a lower risk or higher risk of hospital death than the
average. These patients are therefore not the same patient
population as those who stayed within the hospital. Resulting
censoring is 'informative', meaning that censoring carries infor-
mation about or depends on the survival time. In other words,
informative censoring defined a competing risk, given that dis-
charge from the hospital affects the probability of experiencing
the event of interest (death before discharge) (Figure 1). In this
setting, standard survival methods are no longer valid, and
specific methods need to be considered.

Logistic regression, which is widely used to model hospital
mortality, is well suited to the described setting. Nevertheless,
logistic modeling has been reported to cause loss of informa-
tion, because it ignores the time to death and the length of
hospital stay [3,4]. Specific statistical approaches dedicated
to competing risk data, which allow handling of both censoring
and time to events, have been proposed [5-7]. They have been
applied to ICU data for predicting the occurrence of a non-
fatal event in the face of competing mortality [8]. In studies of
mortality in ICU patients, since being discharged alive is also
a competing risk, these approaches could also apply directly.
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Univariate prognostic analyses based on logistic regression and Fine and Gray regression

Variable Logistic model Fine and Gray model
Mortality Mortality Discharged alive

QOdds ratio (95% CI) P value SHR (95% CI) P value SHR (95% CI) P value
Autologous stem cell transplantation 2.34 (1.03-5.32) 0.043 1.73 (1.07-2.80) 0.025 0.55 (0.29-1.07) 0.077
Clinically documented lung disease 2.30 (1.09-4.87) 0.029 1.91 (1.06-3.45) 0.032 0.63 50.42-0.95) 0.027
Absence of congestive heart failure 0.12 (0.04-0.42) <0.001 0.16 (0.06-0.49) 0.001 2.98 (1.95-4.55) <0.001
Neurological impairment 3.32 (1.69-6.50) <0.001 2.35 (1.56-3.55)  <0.001 0.38 (0.23-0.61)  <0.001
Neutropenia 1.85 (1.03-3.33) 0.038 1.61 (1.08-2.39) 0.020 0.65 (0.43-0.97) 0.037
Logistic organ dysfunction 1.20 (1.09-1.33) <0.001 1.16 (1.09-1.24) <0.001 0.87 (0.81-0.93) <0.001
Unknown diagnosis 2.19 (1.13-4.26) 0.021 1.86 (1.20-2.87) 0.005 0.59 (0.35-0.97) 0.039
Acute respiratory distress syndrome 3.68 (1.72-7.89) <0.001 2.08 (1.39-3.09) <0.001 0.33 (0.19-0.59) <0.001

Cl, confidence interval; SHR, sub-hazard ratio.

This paper was designed to illustrate the use of competing
risks approaches for evaluating the prognostic factors on hos-
pital mortality. To this end, we used a sample of 203 cancer
patients admitted to an ICU for acute respiratory failure [9].

Patients and methods
Between 1 November 1997 and 31 October 2002, all adult

cancer patients (= 18 years old) admitted to the medical ICU
of the Saint-Louis Teaching Hospital, Paris, France for acute
respiratory failure were included. Patients in the cohort were
followed up until hospital discharge or death. This study has
been previously published elsewhere [9] and will now be
briefly summarized.

Hospital mortality was the primary endpoint. Standardized
forms were used at ICU admission to collect the following: his-
tory of autologous or allogeneic stem cell transplantation
(SCT), clinically documented lung disease, microbiologically
documented invasive aspergillosis, unknown cause of acute
respiratory failure, neurological impairment, alveolar hemor-
rhage, absence of congestive heart failure, acute respiratory
distress syndrome (ARDS), neutropenia, logistic organ dys-
function (LOD) score [10], and history of corticosteroid
therapy.

Statistical analysis

All statistical analyses were carried out using the SAS 8.2 soft-
ware package (SAS Inc, Cary, NC, USA) and the R 2.0.1 soft-
ware package [11].

To describe hospital mortality, we utilized a competing risks
model (Figure 1). First, we computed the cumulative incidence
function (CIF) of death over time. At time t, the CIF defines the
probability of dying in the hospital by that time t when the pop-
ulation can be discharged alive. Note that, contrarily to a dis-
tribution function that tends to 1, the CIF tends to the raw

proportion of deaths, so it is also called a 'subdistribution func-
tion'. The CIF has been estimated from the data using the
cmprsk package developed by Gray [12].

To estimate the influence of baseline covariates on hospital
mortality, we then used logistic models that estimated the
strength of the association between each variable and death
based on the odds ratio. Finally, we used the Fine and Gray
model [7], which extends the Cox model to competing risks
data by considering the subdistribution hazard (for instance,
the hazard function associated with the CIF). The strength of
the association between each variable and the outcome was
assessed using the sub-hazard ratio, which is the ratio of haz-
ards associated with the CIF in the presence of and in the
absence of a prognostic factor. In both logistic modeling and
Fine and Gray modeling, prognostic factors were evaluated in
univariate and multivariate analyses. Models were fitted using
the Irm and crr routines in the R software package [11],
respectively. Variables associated with the primary endpoint
(hospital death) at the 10% level on the basis of univariate
models were introduced in the multivariate models.

Results

Of the 203 patients included in the study, 97 patients (47.8%)
died in the hospital. The estimated CIF of death was 35.5% on
day 14 and was 47.8% on day 60; no additional deaths
occurred after day 60 (Figure 1). Table 1 presents hospital
mortality according to the main characteristics at ICU admis-
sion. Based on univariate logistic models, eight variables were
associated with hospital mortality: autologous SCT, clinically
documented lung disease, absence of congestive heart fail-
ure, neurological impairment, neutropenia, LOD, unknown
cause of acute respiratory failure, and ARDS (Table 2). In the
multivariate logistic model, four of these variables supplied
independent prognostic information at the 5% level: autolo-
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Table 3

Resche-Rigon et al.

The logistic and the Fine and Gray multivariate regression models including eight variables selected on the basis of univariate

analyses
Variable Logistic model Fine and Gray model
Mortality Mortality Discharged alive

Odds ratio (95% ClI) P value SHR (95% CI) P value SHR (95% CI) P value
Autologous stem cell transplantation 3.51 (1.37-9.02) 0.009 1.77 (1.00-3.14) 0.049 0.46 (0.23-0.95) 0.035
Clinically documented lung disease 2.01 (0.79-5.14) 0.143 2.09 (1.05-4.15) 0.036 0.71 (0.47-1.08) 0.110
Absence of congestive heart failure 0.12 (0.03-0.57) 0.008 0.22 (0.07-0.64) 0.006 2.20 (1.42-3.42) <0.001
Neurological impairment 2.63 (1.19-5.81) 0.017 1.84 (1.16-2.91) 0.009 0.44 (0.27-0.71) <0.001
Neutropenia 1.15 (0.53-2.51) 0.721 1.22 (0.73-2.91) 0.450 0.81 (0.50-1.31) 0.390
Logistic organ dysfunction 1.11 (0.97-1.27) 0.133 1.10 (1.00-1.20) 0.040 0.92 (0.85-1.01) 0.065
Unknown diagnosis 1.82 (0.85-3.89) 0.122 1.20 (0.72-2.00) 0.480 0.71 (0.40-1.27) 0.250
Acute respiratory distress syndrome 3.26 (1.42-7.49) 0.005 1.85 (1.21-2.85) 0.005 0.33 (0.19-0.58) <0.001

Cl, confidence interval; SHR, sub-hazard ratio.

gous SCT, absence of congestive heart failure, neurological
impairment, and ARDS (Table 3).

From univariate Fine and Gray models, the same eight varia-
bles were associated with the cumulative incidence of hospital
death (Table 2). When a multivariate Fine and Gray regression
model was used, six of the eight variables were found to sup-
ply independent prognostic information at the 5% level: autol-
ogous SCT, clinically documented lung disease, absence of
congestive heart failure, neurological impairment, LOD, and
ARDS (Table 3). Variables associated with the cumulative inci-
dence of being discharged alive from the hospital were the
same as those associated with the cumulative incidence of
hospital death, except for autologous SCT in univariate analy-
ses (Table 2) and LOD in multivariate analysis (Table 3).

Discussion

Competing risks methods have been used in ICU studies to
study non-fatal endpoints in the face of competing mortality
[13,14]. We have shown that even mortality in ICU patients
can be analyzed using these methods where discharges alive
compete with hospital deaths. We illustrated the use and
interest of the two main statistical models available in this set-
ting; namely, the logistic model and the Fine and Gray model.

Standard survival analyses are not satisfactory for describing
ICU-patient mortality over time: the assumption that censoring
is independent of the event of interest (death) is violated, since
patients discharged alive are not representative of all other
patients still in the hospital. The misuse of the Kaplan—Meier
method in this setting is well known and the CIFs have been
reported as the optimal tools to measure the probability of the
outcome of interest over time [5,6]. The logistic model is
widely used, but it ignores the exposure times. Moreover, since
the logistic regression does not allow the inclusion of time-
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dependent covariates [15], one could not adjust for exposure
time in that model.

A new regression model, based on CIF-associated hazards,
has been proposed by Fine and Gray [7] for identifying prog-
nostic factors in this competing risks setting. This model was
first used in cancer patients, to predict non-fatal events such
as relapses or metastasis, with death prior to these events as
a competing risk [16-21]. We proposed to illustrate the use of
the Fine and Gray model for explaining hospital mortality in
ICU patients, using a specific R routine [11]. Of note, since all
patients either died or were discharged alive by the end of fol-
low-up, standard routines from the SAS package would have
been used after recoding exposure times of patients who were
discharged alive at the largest observed time of death [5].

Actually, the Fine and Gray model is closely related to the
logistic model. The logistic regression focuses attention on the
prevalence of hospital death as a measure of prognosis in ICU
patients. The Fine and Gray model is based on the hazard
associated with the CIF, and therefore predicts the cumulative
incidence of death, which tends over time to the prevalence of
death. It models this hazard over time, incorporating the differ-
ent exposure times in the ICU (or hospital) ignored by the
logistic model.

As aresult, the logistic model and the Fine and Gray model dif-
fer in terms of measures used to evaluate the strength of asso-
ciation between the prognostic factor and the hospital death.
The sub-hazard ratio on which the Fine and Gray model relies
could appear difficult to interpret since it relies on the ratio of
subdistribution hazards, which are not directly interpretable in
terms of probabilities. Nevertheless, the odds ratio estimated
from the logistic model is often misinterpreted as a relative risk
— although it should not be misinterpreted unless the outcome



of interest is rare (e.g. <20-30%) [22]. When analyzing the
mortality of specific ICU patients, such as the cancer patients
of our series, this is clearly untrue. In that sense, the sub-haz-
ard ratio appears to be a better approximation of the relative
risk than the odds ratio [23].

Estimates of the separate effects of covariates on each out-
come could be provided by both models. In ICU patients,
when only two risks are considered and no patients are lost to
follow-up, fitting a logistic model using either death or
discharge alive will result in mathematically equivalent models.
By contrast, the Fine and Gray model considers the hazard of
death over time so that distinct effects, although inter-related,
could be estimated, reaching distinct P values. Indeed, a del-
eterious effect on one risk is necessarily associated with a
protective effect on the other risk: therefore, increased mortal-
ity in a patient subset is necessarily associated with a
decreased incidence of being discharged alive. This was illus-
trated in our series. For instance, in patients with autologous
SCT, the cumulative incidence of hospital death was signifi-
cantly increased and that of being discharged alive was
decreased, but not significantly (Table 2).

In this paper we have raised the differences between both the
logistic model and the Fine and Gray model. Of note, both
models present limitations mostly due to the required underly-
ing assumptions (proportional hazards for Fine and Gray; log-
linearity and additive effects of covariates for both models).

Finally, we evaluated the competing risks approach for predict-
ing hospital mortality because being discharged alive com-
petes with the outcome of interest. The same method could be
used to predict ICU mortality. As mentioned earlier, competing
risks analyses based on either the logistic model or the Fine
and Gray model may also be valuable for modeling non-fatal
outcomes in ICU patients, such as mechanical ventilation or
nosocomial infection, with deaths before the outcome of inter-
est and being discharged alive as competing risks [13].

Conclusion

When modeling the mortality of ICU patients, we showed that
discharge alive defines a competing risks outcome for hospital
(or ICU) mortality. Therefore, besides the widely used logistic
regression analyses, standard methods for analyzing compet-
ing risks data can be used. Although closely related, the mod-
els mostly differ in the handling of exposure times.
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Key messages

*  When estimating the mortality of ICU patients, being
discharged alive from the ICU or from the hospital
should be considered a competing risk.

* Specific statistical approaches for analyzing outcomes
competing against other events are of prime interest in
the ICU setting.

* To depict mortality over time, the CIF should be used.

* To predict mortality, the Fine and Gray model, which is
based on the subdistribution hazard associated with the
CIF, is an alternate to the widely used logistic regres-
sion model.
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