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Background:  Infections after severe brain injury or polytrauma are still a
problem, and may be the result of a brain-mediated disturbed systemic
immunoreactivity. The mechanism that connects initial brain affection and
systemic immunodepression, however, is still poorly understood.

Review: In order to analyze the influence of the sympathetic nervous system in
the context of brain injury on systemic immune functions, we performed various
in vitro, in vivo and clinical studies. We were able to demonstrate that
catecholamines trigger the release of the strong anti-inflammatory cytokine
interleukin (IL)-10 from peripheral blood mononuclear cells and monocytes. In
animal models we were able to show that increased intracranial pressure as well
as intracerebral proinflammatory cytokines (eg IL-1β) produce a rapid systemic
IL-10 release through sympathetic activation. Thus, in both models, the
predominant role of catecholamines for this effect was confirmed by the
complete prevention of IL-10 increase after β-adrenoreceptor blockade.
Moreover, in clinical studies we clearly demonstrated that neurosurgical
procedures involving brain-stem manipulation invoke sympathetic activation and
a rapid systemic IL-10 release. Remarkably, this was associated with monocytic
deactivation – a sign of systemic immunodepression and a high risk of infectious
complications. Finally, these data were validated in patients with accidental brain
injury, in whom we demonstrated a correlation between the severity of injury,
sympathetic activation, IL-10 plasma levels and the incidence of infectious
complications.

Conclusion: In summary, we suppose that activation of inhibitory neuroimmune
pathways like the sympathetic nervous system, but also the hypothalamic–
pituitary–adrenal axis, may trigger a systemic anti-inflammatory response
syndrome that leads to systemic immunodepression. In this process the
catecholamine-mediated systemic IL-10 release that causes monocytic
deactivation may be a key mechanism.
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Introduction
Brain injury has been found to be an independent risk
factor for infectious complications in polytrauma patients
[1]. It has been reported that early pneumonia occurs in
40% of patients with closed head injury [2,3]. Moreover,
brain injury is associated with the appearance of different
cytokines [e.g. interleukin (IL)-1β, IL-6, IL-8, IL-10] in
the cerebrospinal fluid [4–7]. Interestingly, high levels of
proinflammatory cytokines in the brain and an elevated
intracranial pressure (ICP) lead to an activation of neuro-
immune pathways, such as the hypothalamic–
pituitary–adrenal (HPA) axis and the sympathetic nervous
system, which correlates with the severity of injury and an
unfavourable prognosis [8–10]. Because monocytes and
macrophages are the main targets of the immunomodula-

tory action of both glucocorticoids and catecholamines,
alterations of these immunologically important cells
should reflect the brain impact on the systemic postinjury
immunodepression [11–13]. Indeed, monocytic alterations
such as impaired endotoxin-induced cytokine production
and a diminished major histocompatibility complex (MHC)
class II antigen [human leucocyte antigen (HLA)-DR]
expression occurred in patients who developed infectious
complications after surgery, major trauma and burn injury
[14–18]. An important mediator of monocytic deactivation
is the anti-inflammatory cytokine IL-10. This cytokine
inhibits the production of proinflammatory cytokines [eg
tumour necrosis factor (TNF)-α] and is a major depressor
of antigen presentation and specific cellular immunity
through the reduction of MHC class II antigen expression

AMP = adenosine monophosphate; HLA = human leucocyte antigen; HPA = hypothalamic–pituitary–adrenal; ICP = intracranial pressure;
IL = interleukin; MHC = major histocompatibility complex; TNF = tumour necrosis factor.



and IL-12 production [19,20]. Interestingly, enhanced sys-
temic IL-10 levels have been suggested to contribute to
postinjury immunodepression by us and others [21–23].

We performed several studies to establish a link between
brain-injury triggered sympathetic activation, systemic
IL-10 release and immunodepression. In vitro, we investi-
gated the impact of catecholamines on monocyte function.
Furthermore, we developed two animal models in order to
study the importance of proinflammatory brain cytokines
and an increased ICP for sympathetic activation, systemic
IL-10 release and altered immunoreactivity. Finally, we
checked the significance of the in vitro and animal data in
neurosurgical and accidentally brain-injured patients.

Catecholamines induce interleukin-10 release
from monocytes in vitro
Monocytes/macrophages play a critical role in immunity as
regulators of homeostasis, antigen-presenting cells, and
effector cells in infection, tumour surveillance and wound-
ing [9,10,14,15,24–27].

The cytokines secreted by monocytes/macrophages in
inflammation fall into three categories. First are those that
promote or mediate the acute inflammatory response as
well as the type 1 response of lymphocytes. These include
TNF-α, IL-1, IL-6, the IL-12 heterodimer (p70) and a
range of chemotactic proteins such as IL-8 [28–32]. A
second category of cytokines are those that inhibit inflam-
mation. Included are IL-10, transforming growth factor-β
and IL-1 receptor antagonist [24,33–36]. Finally, mono-
cytes/macrophages have been shown to release cytokines
that promote tissue repair and homeostasis after or during
inflammation, such as platelet-derived and fibroblast
growth factors [29]. Consequently, monocytes/macrophages
regulate the inflammatory and immune response through
both suppressive and enhancing signals.

Furthermore, monocytes/macrophages themselves can be
activated and deactivated [24]. Recently, we showed that
monocytic deactivation is associated with a much higher
risk of infection and with a high mortality in established
sepsis [25,37,38]. Deactivated monocytes are characterized
by markedly reduced HLA-DR expression, diminished
antigen-presenting and respiratory burst capacities, and a
profoundly decreased ability to produce proinflammatory
cytokines like TNF-α after ex vivo endotoxin stimulation
[25,38,39]. An important mediator of monocytic deactiva-
tion is IL-10 [19,28,40,41].

In addition to direct immunoregulatory loops (eg IL-10
induction in monocytes by TNF-α [42]), monocytic deac-
tivation or switch of these immune cells into an anti-
inflammatory action can be triggered by neuroimmune
pathways. Thus, monocytes/macrophages express gluco-
corticoid and β-adrenergic receptors [24,43]. Catechol-

amines act on their target cells through binding to cell-
surface adrenergic receptors. These adrenoreceptors are
divided into two classes – α and β – from which the latter
are more widely expressed on immune cells [43].
β-adrenoreceptors are coupled intracellularly to the guano-
sine triphosphate-binding protein of the adenylate cyclase
complex, resulting in a rise in intracellular cyclic adeno-
sine monophosphate (AMP) levels and protein kinase A
activation upon stimulation. In this way, catecholamines or
other cyclic AMP-elevating drugs can regulate cytokine
production in monocytes [12,42,44,45] (Fig. 1).

In order to establish a link between sympathetic activation
and monocytic deactivation and anti-inflammatory func-
tion, we tested whether catecholamines can trigger IL-10
release from peripheral blood mononuclear cells and puri-
fied monocytes in vitro [8]. Indeed, both catecholamines
(adrenaline and noradrenaline) and their second messen-
ger (dibutyryl–cyclic AMP) induced a marked IL-10
release in otherwise unstimulated peripheral blood
mononuclear cells from healthy donors within 15 min.
Separation experiments revealed that monocytes were
responsible for this effect. The adrenaline- and noradrena-
line-triggered IL-10 induction was dose-dependently
inhibited by preincubation with the β2-adrenoreceptor
antagonist propranolol. The protein kinase A inhibitor
H89 blocked IL-10 secretion in response to both cate-
cholamines and dibutyryl–cyclic AMP [8].

Our in vitro data confirmed other studies [43] that demon-
strated that catecholamines and adrenergic agonists can
modulate various aspects of the immune response (initial,
proliferative and effector phases), altering such functions
as cytokine production, lymphocyte proliferation and anti-
body secretion. Thus, it has been shown that cate-
cholamines inhibit the monocytic production of TNF-α
after endotoxin stimulation [11,45]. Furthermore, van der
Poll et al [12] demonstrated that pre-exposure of mononu-
clear cells to adrenaline or noradrenaline not only inhibits
endotoxin-induced TNF-α production but also increases
the endotoxin-induced IL-10 release. These findings
were also proved in vivo using catecholamine infusions in
healthy volunteers [12].

In summary, catecholamines may cause a switch of mono-
cytes/macrophages into an anti-inflammatory action and
may act to dampen excessive proinflammatory effects of the
cytokine network during early phases of systemic insults.

Brain IL-1ββ and increased ICP induce systemic
IL-10 release through stimulation of the
sympathetic nervous system in vivo
Interestingly, in recent investigations an anatomical link
between the autonomic nervous system and the immune
system was established. Primary and secondary lymphoid
organs are thus innervated extensively by noradrenergic
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sympathetic nerve fibres [43,46]. Additionally, mediators of
the immune system (especially IL-1β) can enhance splenic
sympathetic nerve activity and increase noradrenaline
turnover in the spleen, lung, diaphragm and pancreas
[47–49]. Taken together, the in vivo situation seems to be

characterized by a close mutual regulation of the immune
and the sympathetic nervous systems.

Considering brain injury, cytokines produced in the brain
after trauma as well as an increased ICP can enhance sym-
pathetic nerve activity. Therefore, we investigated the
role of brain cytokines and increased ICP in the systemic
IL-10 release via the catecholamine–β2-adrenoreceptor
pathway using different animal models.

First, we tested the consequences of an acutely increased
ICP for the IL-10 plasma levels [8]. In rats, an elevation of
ICP to 60mmHg was achieved by inflation of a subdurally
placed Forgarty catheter. Furthermore, one animal group
was additionally treated with the β2-adrenoreceptor antag-
onist propranolol by intravenous infusion during the
whole observation period. Using this approach we showed
that 30min after ongoing elevated ICP, IL-10 plasma
levels were significantly raised. Moreover, the systemic
IL-10 increase was completely prevented by parallel infu-
sion of the β2-adrenoreceptor antagonist propranolol,
demonstrating the pivotal role of catecholamines for this
effect [8].

In order to study the importance of brain cytokines for the
systemic immune alterations, an animal model of chronic
intracerebral infusion of different proinflammatory
cytokines was established [23]. Using this model, we were
able to demonstrate that continuous intracerebroventricu-
lar infusion of IL-1β (but not TNF-α) at 10ng/h signifi-
cantly diminished the endotoxin-induced TNF-α
secretion capacity in whole-blood cell cultures, whereas
the IL-10 production was increased 4h after initiation of
the infusion [50]. Remarkably, the brain IL-1β-induced
early IL-10 peak was prevented by the β2-adrenoreceptor
antagonist propranolol [50]. Furthermore, intracere-
broventricular bolus injections of IL-1β (100ng) also
caused a rapid systemic IL-10 after 30min, which was
comparable to the IL-10 release after ICP increase
(unpublished data). Finally, intravenous infusion of cate-
cholamines produced the same effect, with increase in
IL-10 plasma levels within minutes (unpublished data).

Interestingly, we showed that brain cytokines and sympa-
thetic activation may also participate in the changes in
blood immune cell numbers after brain injury [51]; intra-
cerebroventricular infusion of IL-1β but not TNF-α
dramatically increased neutrophil counts, whereas lympho-
cyte numbers dropped. Remarkably, administration of the
β-adrenoreceptor antagonist propranolol prevented the
decrease in lymphocytes and diminished the neutrophilia
after intracerebroventricular infusion of IL-1β.

In conclusion, our in vivo data in rats completely con-
firmed the in vitro results of a catecholamine-triggered
rapid IL-10 release. Moreover, they gave strong evidence
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Figure 1

Mechanism of the brain injury-induced interleukin (IL)-10 release that
leads to systemic immunodepression. Proinflammatory cytokines are
produced in the brain after infection, injury and ischaemia. Microglia,
astrocytes and blood-derived immune cells are the main sources for
this cytokine production. These brain cytokines (especially IL-1β)
and/or an increased intracranial pressure (ICP) may activate inhibitory
neuroimmune pathways, such as the sympathetic nervous system. This
leads to high catecholamine levels in plasma. Immune cells, especially
monocytes, carry β-adrenoreceptors on their surface that mediate the
catecholamine-induced increase of intracellular levels of cyclic
adenosine monophosphate (cAMP) as second messenger for the
regulation of monocytic cytokine production. Thus, catecholamines and
cyclic AMP-elevating drugs can inhibit the production of IL-1β, IL-12
heterodimer and tumour necrosis factor (TNF)-α and increase the
synthesis of the potent anti-inflammatory and immunosuppressive
cytokine IL-10, resulting in the downregulation of monocytic
proinflammatory and accessory functions. By this mechanism,
catecholamines may switch the monocytes/macrophages to a
predominant anti-inflammatory action. HLA, human leukocyte antigen.



for the involvement of this mechanism in brain-mediated
immunodepression. Thus, in both models of brain injury
(ICP increase and intracerebral IL-1β infusion) a rapid
systemic IL-10 release was found, which was mediated
through the activation of the sympathetic nervous system.

Sympathetic activation is involved in systemic
immunodepression after neurosurgery and
accidental brain injury
In several clinical studies we demonstrated that neurosur-
gical procedures are associated with a postoperative
cytokine release into the cerebrospinal fluid and a
decreased monocytic HLA-DR expression – a sign of sys-
temic immunodepression. If the percentage of monocytes
that express HLA-DR molecules was lower than 30%
during the first 3 days after neurosurgery, this was closely
related to the development of infectious complications
(predictive value 0.9) [8–10,52]. This monocytic deactiva-
tion was linked to a brain cytokine-induced stimulation of
the HPA axis [10,53].

Our studies also revealed that stimulation of the HPA axis
is not the only mechanism involved in monocytic deactiva-
tion after brain surgery/injury, however. We found a strong
effect of tumour location on the postoperative immunologi-
cal changes after elective neurosurgery [8]. Almost exclu-
sively, patients with infratentorial tumours with brain-stem
compression showed a marked systemic release of the anti-
inflammatory cytokine IL-10 4–8h after neurosurgery.
These patients, however, also had strong intraoperative
signs of sympathetic activation, such as increases in systolic
blood pressure. Therefore, we assumed that sympathetic
activation, probably induced by brain IL-1β or brain-stem
irritation/compression (manipulation, increased ICP), could
be of major importance for the IL-10 release and immun-
odepression in neurosurgical patients.

To further study the effect of brain-stem compression on
the IL-10 plasma levels and the monocytic HLA-DR
expression we analyzed patients with an ICP greater than
20mmHg after selective head injury, or intracerebral
haemorrhage or infarction [8]. We showed that an elevated
ICP in patients with brain insults was regularly associated
with massive sympathetic activation, increased IL-10
plasma levels and a severely decreased HLA-DR expres-
sion on monocytes – signs of systemic immunodepression.

Finally, it should be emphasized again that IL-10 not only
downregulates monocytic MHC class II expression and
antigen-presenting capacity. It also inhibits monocytic
production of proinflammatory and the specific cellular
immune response-stimulating cytokines, including IL-1β,
IL-12 heterodimer and TNF-α, while inducing secretion
of IL-1 receptor antagonist that competitively inhibits
IL-1 activity (Fig. 1) [22,33,35,36,54]. Thus, the rapid cat-
echolamine-mediated systemic release of the immuno-

inhibitory cytokine IL-10 might be a key mechanism in
brain injury-induced systemic immunodepression.

It also has to be considered, however, that increased intra-
cellular cyclic AMP levels, as induced by catecholamines,
have been demonstrated to have marked IL-10-indepen-
dent immunosuppressive effects in monocytes (Fig. 1)
[42]. Lastly, other immune-inhibitory cytokines such as
transforming growth factor-β can be triggered by cate-
cholamines and may further enhance their immunosup-
pressive action [55].

Conclusion
In summary, our data regarding brain injury suggest that
brain-derived cytokines as well as direct brain-stem irrita-
tion can trigger strong sympathetic activation leading to a
systemic IL-10 release and monocytic deactivation which,
as a sign of severe systemic immunodepression, is associ-
ated with a high risk of infectious complications. The
likely pathophysiological role of this neuroimmunological
pathway of immune suppression is further underlined by
the fact that, apart from brain injury, ‘sympathetic storm’
with elevated plasma catecholamine concentrations can
also result from other stressful events, such as myocardial
infarction, sepsis and stressful episodes [56–61].
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