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Introduction
Survival times are data that measure follow-up time from a
defined starting point to the occurrence of a given event, for
example the time from the beginning to the end of a remission
period or the time from the diagnosis of a disease to death.
Standard statistical techniques cannot usually be applied
because the underlying distribution is rarely Normal and the
data are often ‘censored’. A survival time is described as
censored when there is a follow-up time but the event has not
yet occurred or is not known to have occurred. For example, if
remission time is being studied and the patient is still in
remission at the end of the study, then that patient’s
remission time would be censored. If a patient for some
reason drops out of a study before the end of the study
period, then that patient’s follow-up time would also be
considered to be censored.

The hypothetical data set given in Table 1 will be used for
illustrative purposes in this review. For this data set the event
is the death of the patient, and so the censored data are
those where the outcome is survived or unknown.

Estimating the survival curve using the
Kaplan–Meier method
In analyzing survival data, two functions that are dependent
on time are of particular interest: the survival function and the
hazard function. The survival function S(t) is defined as the
probability of surviving at least to time t. The hazard function
h(t) is the conditional probability of dying at time t having
survived to that time.

The graph of S(t) against t is called the survival curve. The
Kaplan–Meier method can be used to estimate this curve
from the observed survival times without the assumption of an
underlying probability distribution. The method is based on
the basic idea that the probability of surviving k or more
periods from entering the study is a product of the k
observed survival rates for each period (i.e. the cumulative
proportion surviving), given by the following:

S(k) = p1 × p2 × p3 × … × pk

Here, p1 is the proportion surviving the first period, p2 is the
proportion surviving beyond the second period conditional on
having survived up to the second period, and so on. The
proportion surviving period i having survived up to period i is
given by:

Where ri is the number alive at the beginning of the period
and di the number of deaths within the period.

To illustrate the method the data for the patients receiving
treatment 2 from Table 1 will be used. The survival times,
including the censored values (indicated by + in Table 2),
must be ordered in increasing duration. If a censored time
has the same value as an uncensored time, then the
uncensored should precede the censored. The calculations
are shown in Table 2. Where there is a censored time the
proportion surviving will be 1. This does not alter the
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cumulative proportion surviving, and so these calculations
can be omitted from the table. For more detailed explanation,
see Swinscow and Campbell [1].

Plotting the cumulative proportion surviving against the
survival times gives the stepped survival curve shown in Fig. 1.

This method is found in most statistical packages. Figure 2 is
the output from a statistical package used to compare the

survival curves for the two treatment groups for the data
given in Table 1.

It can be seen that patients on treatment 1 appear to have a
higher survival rate than those on treatment 2. The graph can
be used to estimate the median survival time because this is
the time with probability of survival of 0.5. The median survival
time for those on treatment 2 appears to be 5 days versus
about 37 days on treatment 1.

Comparing survival curves of two groups
using the log rank test
Comparison of two survival curves can be done using a
statistical hypothesis test called the log rank test. It is used to

Table 1

Survival time, age and outcome for a group of patients
diagnosed with a disease and receiving one of two treatments

Patient Survival time Age 
number (days) Outcome Treatment (years)

1 1 Died 2 75

2 1 Died 2 79

3 4 Died 2 85

4 5 Died 2 76

5 6 Unknown 2 66

6 8 Died 1 75

7 9 Survived 2 72

8 9 Died 2 70

9 12 Died 1 71

10 15 Unknown 1 73

11 22 Died 2 66

12 25 Survived 1 73

13 37 Died 1 68

14 55 Died 1 59

15 72 Survived 1 61

Table 2

Calculations for the Kaplan–Meier estimate of the survival function for the treatment 2 data from Table 1

Survival time Number known Proportion Cumulative proportion 
Patient number (days) to be alive (ri) Deaths (di) surviving (pi) surviving (S[t])

0 1

1 1 8

2 1 8 2 (8 – 2)/8 = 0.750 1 × 0.750 = 0.750

3 4 6 1 (6 – 1)/6 = 0.833 0.750 × 0.833 = 0.625

4 5 5 1 (5 – 1)/5 = 0.800 0.625 × 0.800 = 0.500

5 6+

7 9 3 1 (3 – 1)/3 = 0.667 0.500 × 0.667 = 0.333

8 9+

11 22 1 1 (1 – 1)/1 = 0.00 0.333 × 0.00 = 0.000

Figure 1

Plot of the survival curve for treatment 2.
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test the null hypothesis that there is no difference between
the population survival curves (i.e. the probability of an event
occurring at any time point is the same for each population).
The test statistic is calculated as follows:

Where the O1 and O2 are the total numbers of observed
events in groups 1 and 2, respectively, and E1 and E2 the
total numbers of expected events.

The total expected number of events for a group is the sum of
the expected number of events at the time of each event. The
expected number of events at the time of an event can be
calculated as the risk for death at that time multiplied by the
number alive in the group. Under the null hypothesis, the risk
of death (number of deaths/number alive) can be calculated
from the combined data for both groups. Table 3 shows the
calculation of the expected number of deaths for treatment
group 2 for the example data. For example, at the beginning
of day 4 when the third death (event 3) takes place, there are
13 patients still alive. One dies, giving a risk for death of
1/13 = 0.077. Six of the 13 patients are from treatment
group 2, and therefore the expected number of deaths is
given by 6 × 0.077 = 0.46 at event 3. The total expected
number of events for group 2 is calculated as:

Where r2i is the number alive from group 2 at the time of
event i. E1 can be calculated as n – E2, where n is the total
number of events.

The test statistic is compared with a χ2 distribution with 1
degree of freedom. It is a simplified version of a statistic that
is often calculated in statistical packages [2].
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Figure 2

Survival curves for the two treatment groups for the data in Table 1.
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Table 3

Calculations for the log-rank test to compare treatments for the data in Table 1

Survival Number Number known Expected number 
time Treatment known to Deaths Risk for death to be alive from of events in treatment 
(days) group be alive (ri) (di) (di/ri) treatment group 2 (r2i) group 2 (E2i)

0

1 2 15 2 2/15 = 0.133 8 8 × 0.133 = 1.07

1 2

4 2 13 1 1/13 = 0.077 6 6 × 0.077 = 0.46

5 2 12 1 1/12 = 0.083 5 5 × 0.083 = 0.42

6+ 2 11 0 0/11 = 0 4 4 × 0 = 0.00

8 1 10 1 1/10 = 0.100 3 3 × 0.100 = 0.30

9 2 9 1 1/9 = 0.111 3 3 × 0.111 = 0.33

9+ 2 8 0 0/8 = 0 2 2 × 0 = 0.00

12 1 7 1 1/7 = 0.143 1 1 × 0.143 = 0.14

15+ 1 6 0 0/6 = 0 1 1 × 0 = 0.00

22 2 5 1 1/5 = 0.200 1 1 × 0.200 = 0.20

25+ 1 4 0 0/4 = 0 0 0 × 0 = 0.00

37 1 3 1 1/3 = 0.333 0 0 × 0 = 0.00

55 1 2 1 1/2 = 0.500 0 0 × 0 = 0.00

72+ 1

E2 = 2.92
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For the data in Table 1, the total number of expected deaths
for treatment group 2 is calculated as 2.92 and the total
number of observed deaths is 10, giving a total number of
expected deaths for treatment group 1 of 10 – 2.92 = 7.08.
The value of the test statistic is therefore calculated as
follows:

This gives a P value of 0.032, which indicates a significant
difference between the population survival curves.

An assumption for the log rank test is that of proportional
hazards. This is discussed below. Small departures from this
assumption, however, do not invalidate the test.

Cox’s proportional hazards model (Cox
regression)
The log rank test is used to test whether there is a difference
between the survival times of different groups but it does not
allow other explanatory variables to be taken into account.

Cox’s proportional hazards model is analogous to a multiple
regression model and enables the difference between
survival times of particular groups of patients to be tested
while allowing for other factors. In this model, the response
(dependent) variable is the ‘hazard’. The hazard is the
probability of dying (or experiencing the event in question)
given that patients have survived up to a given point in time,
or the risk for death at that moment.

In Cox’s model no assumption is made about the probability
distribution of the hazard. However, it is assumed that if the
risk for dying at a particular point in time in one group is, say,
twice that in the other group, then at any other time it will still
be twice that in the other group. In other words, the hazard
ratio does not depend on time.

The model can be written as:

ln h(t) = ln h0(t) + b1x1 + … + bpxp

or                           ln           = b1x1 + … + bpxp

Where h(t) is the hazard at time t; x1, x2 … xp are the
explanatory variables; and h0(t) is the baseline hazard when all
the explanatory variables are zero. The coefficients b1, b2 … bp
are estimated from the data using a statistical package.

Because hazard measures the instantaneous risk for death, it
is difficult to illustrate it from sample data. Instead, the
cumulative hazard function H(t) can be examined. This can be
obtained from the cumulative survival function S(t) as follows:

H(t) = –ln S(t)

The estimated cumulative hazard function for the example
data given in Table 1 is shown in Table 4.

The assumption that the proportional hazards stay constant
over time can be inspected by looking at a graph showing the
logarithm of the estimated cumulative hazard function. The
assumption is equivalent to assuming that the difference
between the logarithms of the hazards for the two treatments
does not change with time, or equally that the difference
between the logarithms of the cumulative hazard functions is
constant. Figure 3 is the graph for the example data. The lines
for the two treatments are roughly parallel, suggesting that
the proportional hazards assumption is reasonable in this
case. A more formal test of the assumption is possible (see
Armitage and coworkers [2]). Note that, in this graph, the
time scale was also logarithmically transformed. This was to
make the comparison clearer between the two treatments,
but it does not affect the vertical positioning of the lines.

Cox’s regression was applied to the example data using
treatment and age as explanatory variables. The output is
shown in Table 5.

The P values indicate that the difference between treatments
was bordering on statistical significance, whereas there was
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Table 4

Cumulative hazard functions (logarithmic scale) for the
example data

Survival time Cumulative survival: Cumulative hazard: 
(days): t S(t) H(t) = –ln S(t)

Treatment 1

8 0.8571 0.1542

12 0.7143 0.3365

15 0.7143 0.3365

25 0.7143 0.3365

37 0.4762 0.7419

55 0.2381 1.4351

72 0.2381 1.4351

Treatment 2

1

1 0.7500 0.2877

4 0.6250 0.4700

5 0.5000 0.6931

6 0.5000 0.6931

9 0.5000 0.6931

9 0.3333 1.0986

22 0.0000
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strong evidence that age was associated with length of
survival. The coefficient for treatment, –1.887, is the
logarithm of the hazard ratio for a patient given treatment 1
compared with a patient given treatment 2 of the same age.
The exponential (antilog) of this value is 0.152, indicating that
a person receiving treatment 1 is 0.152 times as likely to die
at any time as a patient receiving treatment 2; that is, the risk
associated with treatment 1 appears to be much lower.
However, the confidence interval contains 1, indicating that
there may be no difference in risk associated with the two
treatments.

Using the Kaplan–Meier (log rank) test, the P value for the
difference between treatments was 0.032, whereas using
Cox’s regression, and including age as an explanatory
variable, the corresponding P value was 0.052. This is not a
substantial change and still suggests that a difference
between treatments is likely. In this case age is clearly an
important explanatory variable and should be included in the
analysis.

The exponential of the coefficient for age, 1.247, indicates
that a patient 1 year older than another patient, both being

given the same treatment, has an increased risk for dying, by
a factor of 1.247. Note that, in this case, the confidence
interval does not contain 1, indicating the statistical
significance of age.

Further models for survival data, allowing for different
assumptions, are discussed by Kirkwood and Sterne [3].

An example from the literature
Dupont and coworkers [4] investigated the survival of
patients with bronchiectasis according to age and use of
long-term oxygen therapy. The Kaplan–Meier curves and
results of the log rank tests shown in Fig. 4 indicate that there
is a significant difference between the survival curves in each
case.

The authors also applied Cox’s proportional hazards analysis
and obtained the results given in Table 6. These results
indicate that both age and long-term oxygen therapy have a
significant effect on survival. The estimated risk ratio for age,
for example, suggests that the risk for death for patients over
the age of 65 years is 2.7 times greater than that for those
below 65 years.
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Figure 3

Cumulative hazard functions for the example data.
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Table 5

Application of Cox’s regression to the example data, using
treatment and age as explanatory variables

95.0% 
Coefficient Standard confidence 

(b) error P eb interval for eb

Treatment –1.887 0.973 0.052 0.152 0.022–1.020

Age 0.220 0.085 0.010 1.247 1.054–1.474

Figure 4

The Kaplan–Meier estimates of survival for (a) age > 65 years or
≤65 years, and (b) long-term oxygen therapy (LTOT) before intensive
care unit admission (yes/no). The P values are for the log rank test.
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Assumptions and limitations
The log rank test and Cox’s proportional hazards model
assume that the hazard ratio is constant over time. Care must
be taken to check this assumption.

Conclusion
Survival analysis provides special techniques that are
required to compare the risks for death (or of some other
event) associated with different treatments or groups, where
the risk changes over time. In measuring survival time, the
start and end-points must be clearly defined and the
censored observations noted. Only the most commonly used
techniques are introduced in this review. Kaplan–Meier
provides a method for estimating the survival curve, the log
rank test provides a statistical comparison of two groups, and
Cox’s proportional hazards model allows additional covariates
to be included. Both of the latter two methods assume that
the hazard ratio comparing two groups is constant over time.
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Table 6

Results of Cox’s proportional hazards analysis for the patients
with bronchiectasis

Explanatory 95% confidence 
variables Risk ratio interval P

Age (>65 years) 2.7 1.15–6.29 0.022

LTOT (yes) 3.12 1.47–6.90 0.003

LTOT, long-term oxygen therapy.
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