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BE = base excess; CAlb = albumin concentration; CPhos = phosphate concentration; PCO2 = partial CO2 tension; SBE = standard base excess; SID =
strong ion difference; SIG = strong ion gap.
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Introduction
Acid–base derangements are commonly encountered in the
critical care unit [1], and there is renewed interest in the
precise description of these disorders in critically ill patients
[2–5]. This new interest has led to a renovation of the
quantitative assessment of physiological acid–base balance,
with increasing use of the Stewart model (strong ion
difference [SID] theory) to calculate acid–base balance in the
critically ill [2,3,6,7]. This method is discussed, particularly as
it pertains to the metabolic component of acid–base
derangements, as one of several approaches that may be
used in the intensive care unit for quantitative evaluation. As
with any mathematical model, a basic understanding of its
principles is useful for proper application and interpretation.

Stewart model
All equilibrium models of acid–base balance utilize the same
basic concept. Under the assumption of equilibrium or a
steady-state approximation to equilibrium, some property of
the system (e.g. proton number, proton binding sites, or
charge, among other possible properties) is enumerated from
the distribution of that property over the various species
comprising the system, according to the energetics of the
system manifested through the relevant equilibrium constants

of the various species under a given set of conditions
[5,8–12]. This function is calculated at the normal values and
then the abnormal values; from these the degree of change is
obtained to give information about the clinical acid–base
status of the patient. All of the apparently ‘different’ methods
for assessing acid–base balance arise from this common
framework [5,12].

In the Stewart method, charge is taken as the property of
interest [7,11,13]. Using this property, acid–base status may
be expressed for a single physiologic compartment, such as
separated plasma, as follows [7,10,11,13]:

SID = – C1z–1 – C2z–2 – … Cnz
–

n (1)

Strong ions are those that do not participate in proton
transfer reactions, and the SID is defined as the difference
between the sum of positive charge concentrations and the
sum of negative charge concentrations for those ions that do
not participate in proton transfer reactions. Cn are the
analytical concentrations of the various buffer species also in
the compartment (e.g. of the buffer amino acid groups on
albumin), and z–n are the average charges of those various
species. The z–n can be expressed as functions of pH and
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equilibrium constants [11,12], and it is therefore convenient
to calculate SID using Eqn 1 from the pH and the
concentrations of relatively few buffer species, as opposed to
a direct calculation from a measurement of all of the various
strong ion species. In many implementations of the Stewart
method, contributions from the water equilibrium and from
carbonate species other than bicarbonate are neglected,
because these are small under physiologic conditions
[11,14,15]. The first term in Eqn 1 may then be equated with
the bicarbonate concentration, with the remaining terms
referring to other buffer species [11,14].

Plasma physiologic pH is then determined by the
simultaneous solution of Eqn 1 and the Henderson-
Hasselbalch Equation:

pH = pK′ + log 
[HCO3

–]
(2)

S · PCO2

Where for human plasma pK’ = 6.103. S = 0.0306 is the
equilibrium constant between aqueous and gas phase CO2
[16,17]. [HCO3

–] is the concentration of plasma bicarbonate
in mmol/l, and PCO2 is the partial CO2 tension in Torr.

The standard technique for acid–base assessment [1,18]
may be recognized as a subset of the Stewart model [14], in
which the series in Eqn 1 is truncated at the first term to give
the following:

SID = [HCO3
–] (3)

In this approach the metabolic component of an acid–base
disorder is quantified as the change in plasma bicarbonate
concentration (∆[HCO3

–]) [18], which by Eqn 3 is also equal
to ∆SID. This method is often sufficient and has been used
successfully to diagnose and treat countless patients, but it
has also been criticized as not strictly quantitative [19,20].
[HCO3

–] depends upon the PCO2 and does not provide
complete enumeration of all species, because albumin and
phosphate also participate in plasma acid–base reactions
[15,17,20,21].

A more complete calculation may be undertaken for better
approximation by including more terms in the series in Eqn 1.
In addition, although z–n is a nonlinear function of pH, it can be
approximated over the physiologic range by a more
computationally convenient linear form, such that for plasma
the following explicit expression is obtained [11,12,15]:

SID = [HCO3
–] + CAlb (8.0pH – 41) + CPhos (0.30pH – 0.4) (4)

Where CAlb and CPhos are plasma albumin and phosphate
concentrations, respectively. All concentrations are in mmol/l.
One may multiply albumin in g/dl by 0.15 to obtain albumin in
mmol/l, and phosphate in mg/dl by 0.322 to get phosphate in
mmol/l. The factors 8.0 and 0.30 are the molar buffer values

of albumin and phosphate, respectively. The buffer value is
the change in z–n of a species for a one unit change in pH
[5,11,17]. Note that the ability of a system to resist pH
change also increases with CAlb and CPhos [11].

Equation 4 was obtained via a term by term summation over
all of the buffer groups in albumin and of phosphoric acid, as
performed by Figge and coworkers [15,21]. The theoretical
basis for the validity of this approach is well established [8],
and Eqn 4 has been shown to reproduce experimental data
well [11,12,15,21,22]. Some authors have argued that the
effects of plasma globulins should also be considered for
better approximation [17,20,23,24], although other
calculations suggest that the consideration of globulins
would be of little clinical significance in humans [22].

Consideration of the change in SID using Eqn 4 between
normal and abnormal states at constant albumin and
phosphate concentrations gives the following:

∆SID = ∆[HCO3
–] + (8.0CAlb + 0.30CPhos)∆pH (5)

Which is recognized to be of the same form and numerically
equivalent to the familiar Van Slyke equation for plasma,
yielding the plasma base excess (BE) [5,11,17,25].
Furthermore, Eqn 4 is of the same form as the CO2
equilibration curve of the BE theory presented by Siggaard-
Andersen [11,17,20,25]. The BE approach and the Stewart
method are equivalent at the same level of approximation
[11,12,26].

Strong ion gap
A widely used concept arising from the Stewart approach is
the strong ion gap (SIG), which was popularized by Kellum
[27] and Constable [28]. This relies upon a direct calculation
of the SID as, for example, the following:

SIDm = [Na+] + [K+] + 2[Mg2+] + 2[Ca2+] – 
[Cl–] – [lactate–] – [urate–]

(6)

Where SIDm is the measured SID [27]. This direct measure-
ment is then compared with that generated via Eqn 4:

SIG = SIDm – SID (7)

This gives a higher level version of the familiar plasma anion
gap [1,18]. Some publications have used the notation SIDa
(for SID apparent) to refer to the variable SIDm calculated
using Eq. 6, and SIDe (SID effective) to refer to that
calculated using Eqn 4 [2,3,15,27]. SIG has been shown to
predict the presence of unmeasured ions better than the
conventional anion gap [28], as might be expected, given that
more variables are taken into account. Some unmeasured
ions that are expected to contribute to the SIG are β-
hydroxybutyrate, acetoacetate, sulfates, and anions
associated with uremia [6].
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Changes in noncarbonate buffer
concentration
∆SID expressed through the relationship of Eqn 5
unambiguously quantifies the nonrespiratory component of
an acid–base disturbance in separated plasma [11,17],
with the total concentrations of amphoteric species such
as albumin and phosphate remaining constant [11,12,17].
An amphoteric substance is one that can act as both an
acid and a base. Stewart and other investigators
[4,7,29–33], though, have emphasized the role played by
changes in the noncarbonate buffer concentrations in
acid–base disorders. When the noncarbonate buffer
concentrations change, the situation becomes more
complex, and in general a single parameter such as ∆SID
no longer necessarily quantifies the metabolic component
of an acid–base disorder, and enough variables must be
examined to characterize the disorder unambiguously.
Examples below demonstrate this point when the
concentrations of noncarbonate buffers change, through a
pathologic process or through resuscitation.

Table 1 gives several examples for separated human
plasma, including the normal values of case 1. Case 2
demonstrates a metabolic acidosis with constant
noncarbonate buffer concentrations, in which the ∆SID of
–10 mmol/l quantifies the metabolic component of the
acid–base disorder [11], which has been described as a
strong ion acidosis [4]. Case 3 gives values for the fairly
common occurrence of isolated hypoproteinemia. This too
gives a ∆SID of –10 mmol/l, although the total weak acid
and weak base concentrations have both decreased [11].
The physiological interpretation of this condition in terms of
acid–base pathology is the subject of debate
[3,6,12,20,31,34]. Considering this to be an acid–base
disorder, some authors would classify this case as
hypoproteinemic alkalosis with a compensating SID
acidosis [4,6,30–32]. More generally, this has been termed
a buffer ion alkalosis with compensating strong ion acidosis
[4]. If the mechanism of hypoalbuminemia is en bloc loss of
charged albumin with counterions in tow, for example in
nephrotic syndrome, then it seems dubious to describe this
process as compensation in the usual physiologic sense.
Also, note that both cases 2 and 3 have the same decrease

in SID, but the individual in case 2 is expected to be quite
sick with acidemia whereas the patient in case 3 is probably
not acutely ill, except for the effects of low oncotic pressure.

Although it has been suggested that alkalosis can result from
hypoproteinemia, with patients without adequate compensation
becoming alkalemic [29,32], the idea of alterations in protein
concentration as acid–base disorders per se has been
questioned [3,20]. The concept of the normal SID changing
as a function of protein concentration has been suggested
[3,11,12]. In such an instance, ∆SID again quantifies the
metabolic component of an acid–base disturbance, essentially
renormalizing the noncarbonate buffer concentrations to the
abnormal values [11,12]. This is basically what has been
advocated in the past for BE [20,34], in which Eqn 5 uses
the abnormal protein and phosphate concentrations for
CAlb and CPhos [11]. Thus, the SID of 29 mmol/l in case 3 is
said to be normal for the decreased albumin concentration
[3], giving a ∆SID of 0 mmol/l. This individual will, however,
be more susceptible to acidemia or alkalemia for a given
derangement, as expressed through the molar buffer values
and noncarbonate buffer concentrations, than would a
normal individual [5]. If SID is not renormalized as
described above, then BE and ∆SID differ by an added
constant [11,12].

Another interesting issue is raised in the treatment of patients
with intravenous albumin or other amphoteric species. Kellum
previously pointed out that, based on the SID, one might think
that albumin solutions with a SID of 40–50 mmol/l would be
alkalinizing to the blood, even though their pH is close to 6.0
[35]. This apparent paradox is resolved by again realizing
that, for amphoteric substances, one is not only changing the
SID but also increasing both the total weak acid and weak
base concentrations by increasing the total protein
concentration [9,11]. This highlights the point made by
Stewart concerning the necessity of considering all variables
in assessing acid–base balance [7,13]. A complete
calculation yields what is intuitively predicted – that such a
solution is in fact acidifying to blood (unpublished data). One
might further speculate that the administration of ‘unbuffered’
albumin to patients may contribute to the reason why this
treatment has not been more successful in the critically ill

Table 1

Acid–base parameters for a normal and two abnormal cases

Case pH [HCO3
–] (mmol/l) CAlb (mmol/l) CPhos (mmol/l) PCO2 (Torr) SID (mmol/l)

1 (normal) 7.40 24.25 0.67 1.16 40.0 39

2 7.30 15.27 0.67 1.16 31.7 29

3 7.40 24.25 0.15 1.16 40.0 29

Case 1 is for a normal individual, case 2 is for a metabolic acidosis at constant noncarbonate buffer concentrations, and case 3 is for
hypoproteinemia. CAlb, albumin concentration; CPhos, phosphate concentration; PCO2, partial CO2 tension; SID, strong ion difference.
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[36]. Extensive quantitative discussions regarding the
acid–base balance of administered fluids have typically not
been given in publications on resuscitation with amphoteric
colloids [36–39], although this is an issue that should be
examined. Constable [40] recently gave a brief quantitative
discussion of acid–base effects of giving various crystalloids.

Model for whole blood
Several points arise in the comparison of SID with BE, as has
been performed in a number of studies [33,38,41–44]. This
is in some respects a misplaced comparison, because BE
represents a difference whereas SID does not [11,26]. The
corresponding variable to SID in the BE formalism is the
concentration of total proton binding sites, while the BE
represents the change in this quantity from the normal value,
and corresponds to ∆SID [11,12,17,26]. More significant,
clinical studies using Stewart theory have calculated the
separated plasma SID, while making comparison with the BE
for whole blood or the standard base excess (SBE)
[33,38,41,42], rather than the corresponding plasma BE.
Furthermore, consideration of only the plasma compartment
creates a potential source of error, because separated
plasma versions of the Stewart method quantify only a portion
of the acid–base disorder [12,17,45]. An equation for the
SID of whole blood has recently been derived, partly to
address this issue [12].

(8)

Where φ(E) is the hematocrit, CHgb(B) is the hemoglobin
concentration of whole blood, and CDPG(E) is the 2,3-
diphosphoglycerate concentration in the erythrocyte. Again,
concentrations are in mmol/l, and one may multiply
hemoglobin in g/dl by 0.155 to obtain hemoglobin in mmol/l.
The normal 2,3-diphosphoglycerate concentration in the
erythrocyte is 6.0 mmol/l [12]. The ‘P’, ‘B’, and ‘E’
designations stand for plasma, whole blood, and erythrocyte
fluid, respectively. The corresponding Van Slyke form has
also been obtained, and is numerically identical to BE for
whole blood [12].

The SBE, as mentioned above, is also widely used
[3,17,20,25]. This parameter reflects the extracellular
acid–base status and approximates the in vivo BE for the
organism [17,20,25]. The Van Slyke equation for SBE
approximates this situation via a 2:1 dilution of whole blood in
its own plasma [17,20,25]. It should be borne in mind,
therefore, that Eqn 4 may prove more concordant with clinical
data than Eqn 8, since the plasma expression may produce
values closer to the in vivo condition because of the
distribution functions of various species across the whole
organism [17].

Stewart theory and mechanism
Finally, the Stewart model is taken by some to be a
mechanistic description of acid–base chemistry in which
changes only occur by alteration in PCO2, SID, or
noncarbonate buffer concentrations because these are the
only true independent variables; changes never occur by
addition or removal of H+ to the system or by changes in
[HCO3

–] because these are dependent variables [7,13]. It is
said that because the Stewart theory provides mechanistic
information, it is superior to the BE approach [3,35,46,47].
Support for this point of view is offered in the form of
philosophic arguments regarding the nature of independence
[7,13], as well as studies showing that the Stewart model
accurately predicts what is observed experimentally
[30,42,44,48]. However, like the BE approach and like any
other method derived from considerations involving the
calculation of interval change via the assessment of initial and
final equilibrium states, the Stewart method does not produce
mechanistic information [8,35]. These are basically
bookkeeping methods. To believe otherwise risks falling prey
to the computo, ergo est (I calculate it, therefore it is) fallacy.
What is thus required for mechanistic understanding is the
collection of actual mechanistic data, perhaps obtainable
through isotopic labeling and kinetics experiments.

Conclusion
Both experimental and theoretical data have shown that the
Stewart method is accurate for describing physiological
acid–base status, and the use of the SIG potentially offers an
improvement over the traditional anion gap, but because the
Stewart method proceeds from the same common framework
as the BE approach, it theoretically offers no quantitative
advantage over BE at corresponding levels of approximation
[11,12,26,35,49]. As such, it remains to be seen whether the
renovation of acid–base assessment afforded by the Stewart
approach constitutes a radical new architecture for
understanding acid–base physiology, or whether it is simply a
new façade.
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