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ACTH = adrenocorticotrophic hormone; CBG = cortisol-binding globulin; CRH = corticotropin-releasing hormone; GR = glucocorticoid receptor;
11β-HSD = 11β-hydroxysteroid dehydrogenase; hsp = heat shock protein; IL = interleukin; LPS = lipopolysaccharide; MAPK = mitogen-activated
protein kinase; NF-κB = nuclear factor-κB; NOS = nitric oxide synthase; SRC = steroid receptor coactivator; TNF = tumour necrosis factor.
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Introduction
The hypothalamic–pituitary adrenal axis is a key component
of the host response to sepsis, as was suggested almost a
century ago following observations of apoplectic adrenal
glands in fatal meningococcaemia [1,2]. In animals, removal
of the adrenal cortex but sparing the medulla results in less
resistance to challenge with endotoxin [3]. In recent years,
advances in our understanding of the role played by
glucocorticoid insufficiency in the pathogenesis of septic
shock resulted in increased use of glucocorticoid replace-
ment therapy. In a previous review article [4] we described
the clinical aspects of adrenal dysfunction in sepsis, as well

as the role of cortisol replacement in the management of
septic shock. In the present review we detail the mechanisms
of glucocorticoid insufficiency that are active during sepsis
and the molecular actions of glucocorticoids.

Methods
We attempted to identify all relevant studies, regardless of
language or publication status (published, unpublished, in
press and in progress). We searched the following electronic
databases: Medline (1966 to December 2003), Embase (1974
to December 2003) and Lilacs (www.bireme.br; accessed
December 2003). Search terms used were as follows: ‘septic
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Abstract

This review describes current knowledge on the mechanisms that underlie glucocorticoid
insufficiency in sepsis and the molecular action of glucocorticoids. In patients with severe sepsis,
numerous factors predispose to glucocorticoid insufficiency, including drugs, coagulation disorders
and inflammatory mediators. These factors may compromise the hypothalamic–pituitary axis (i.e.
secondary adrenal insufficiency) or the adrenal glands (i.e. primary adrenal failure), or may impair
glucocorticoid access to target cells (i.e. peripheral tissue resistance). Irreversible anatomical
damages to the hypothalamus, pituitary, or adrenal glands rarely occur. Conversely, transient
functional impairment in hormone synthesis may be a common complication of severe sepsis.
Glucocorticoids interact with a specific cytosolic glucocorticoid receptor, which undergoes
conformational changes, sheds heat shock proteins and translocates to the nucleus. Glucocorticoids
may also interact with membrane binding sites at the surface of the cells. The molecular action of
glucocorticoids results in genomic and nongenomic effects. Direct and indirect transcriptional and
post-transcriptional effects related to the cytosolic glucocorticoid receptor account for the genomic
effects. Nongenomic effects are probably subsequent to cytosolic interaction between the
glucocorticoid receptor and proteins, or to interaction between glucocorticoids and specific
membrane binding sites.
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shock’, ‘sepsis’, ‘adrenal insufficiency’, ‘steroids’, ‘cortico-
steroids’, ‘adrenal cortex hormones’, ‘hydrocortisone’ and
‘glucocorticoids’. We also checked the reference lists of all
trials identified using these methods. Reports were selected
on the basis of relevance to the specific topics covered.

Mechanisms of glucocorticoid insufficiency
During an acute illness such as sepsis, circulating pro-
inflammatory cytokines, including IL-6, tumour necrosis factor
(TNF)-α and IL-1β, stimulate the production of corticotropin-
releasing hormone (CRH) and of adrenocotricotrophic
hormone (ACTH; corticotropin; Fig. 1). Simultaneously, vagal
afferent fibres detect the presence of cytokines such as IL-1β
and TNF-α, as well as other factors that are as yet unknown,
at the site of inflammation and activate the hypothalamic–
pituitary axis. Numerous other factors also contribute toward
upregulating ACTH synthesis, such as the noradrenergic
system, vasopressin, serotonin, angiotensin and vasoactive
intestinal peptide [5]. Subsequently, ACTH increases cortisol
release from the adrenal glands, which then binds to a
specific carrier – cortisol-binding globulin (CBG) – that is
synthetized by the liver and to albumin in order to reach the
target tissues. Under normal conditions, 90–95% of plasma
cortisol in humans is bound to CBG, and it is generally
accepted that the CBG-bound cortisol has restricted access
to target cells [6,7]. At inflammatory sites, elastase produced
by neutrophils liberates cortisol from CBG, allowing localized
delivery of cortisol [7]. Then, cortisol can freely cross the
cell’s membrane, or it may interact with specific membrane
binding sites. Alternatively, cortisol is inactivated by
conversion to cortisone by the 11β-hydroxysteroid dehydro-
genase (11β-HSD) type 2.

Dysfunction at any of these steps eventually results in
diminished cortisol action. Thus, it can be anticipated that
glucocorticoid insufficiency may be related to a decrease in
glucocorticoid synthesis (i.e. adrenal insufficiency) or to
reduced access of glucocorticoid to target tissues and cells.

Decreased glucocorticoid synthesis

Upon ACTH stimulation, glucocorticoids are synthesized by
the adrenal cortex from cholesterol. The cholesterol required
for steroidogenesis is derived from local cholesterol synthesis
from acetate (about 20%) and from exogenous sources (the
remaining 80%) [8]. Cholesterol is converted to 21-carbon
glucocorticoids and 19-carbon weak androgens in serial
enzymatic steps. A small amount of corticosterone is stored
as a sulphate conjugate in the adrenal cortex [9]. However,
the amount of glucocorticoid found in adrenal tissue is not
sufficient to account for the initial rise in cortisol that occurs
following stress, and it is not sufficient to maintain normal
rates of secretion for more than a few minutes in the absence
of continuing biosynthesis. Thus, the rate of secretion is
directly proportional to the rate of biosynthesis. In other
words, any disruption in glucocorticoid synthesis will
immediately result in glucocorticoid insufficiency. Adrenal
insufficiency can be considered primary or secondary,
although this categorization is often artificial within the
context of critical illness.

Secondary adrenal failure

Sepsis may result in decreased CRH or ACTH synthesis by
inducing irreversible anatomical damage to the hypothalamus
or the pituitary gland. The anterior and posterior hypophysial
arteries are derived from the internal carotid arteries. The

Figure 1

Crosstalk between the immune system and the neuroendocrine axis. 11β-HSD, 11β-hydroxysteroid dehydrogenase; CBG, cortisol-binding
globulin; HT, hypothalamus; IL, interleukin; PG, pituitary gland; TNF, tumour necrosis factor.



245

arterial branches to the pars tuberalis and the primary plexus
of the portal vessels in the median eminence are derived from
the internal carotid and posterior communicating arteries. The
venous blood passes to surrounding venous sinuses in the
dura mater or in the basisphenoid bone. In many cases the
arterial supply to the pars distalis is reduced or even absent,
and the portal vessels may be only routes by which blood can
be supplied to the anterior pituitary gland. Consequently,
pituitary necrosis is a well known complication of dramatic
cardiovascular collapse, as occurs in Sheehan’s syndrome
during the postpartum period. Within this context,
glucocorticoid insufficiency is usually associated with
deficiency in thyroid and growth hormones and in
vasopressin. Necrosis or haemorrhage of the hypothalamus
or of the pituitary gland have been reported in sepsis as a
result of prolonged hypotension or severe coagulation
disorders [10].

Sometimes, sepsis may exacerbate chronic known or latent
secondary adrenal insufficiency, which may be due to
hypothalamic or pituitary tumours, chronic inflammation, or
congenital ACTH deficiency. Secondary adrenal insufficiency
may also follow drug therapy (Table 1) [11]. Previous
treatments with glucocorticoids induce prolonged suppression
of CRH and ACTH synthesis, and result in slow onset
secondary adrenal insufficiency that may outlast exposure to

this treatment [12]. The duration of suppression of the
hypothalamic–pituitary axis after a single dose of a
glucocorticoid depends on the anti-inflammatory potency and
duration of the glucocorticoid preparation, hydrocortisone
being the least suppressive agent and dexamethasone the
most [13]. Although systemic glucocorticoid administration is
more likely to suppress the hypothalamic–pituitary axis than
local treatments, adrenal insufficiency has been observed
even after topical administration of glucocorticoids [14]. It is
thought that after 20–30 mg/day prednisone (or equivalent)
for 5 days, the hypothalamic–pituitary axis is highly likely to be
suppressed [15]. Thus, patients with sepsis who have
previously been treated with glucocorticoids should be
considered adrenal insufficient. It may be more cost-effective
to treat all such patients with systematic replacement therapy
than to target treatment at those patients who are identified
by endocrine tests.

Opiate receptors are known to modulate ACTH/cortisol
synthesis. In normal individuals administration of an opiate
agonist results in a fall in plasma cortisol levels, although it
induces hypotension. In contrast, administration of naloxone,
an opiate antagonist, increases plasma ACTH and cortisol to
levels similar to those that occur in insulin-induced
hypoglycaemia [16]. Anaesthesia with high-dose diazepam
and fentanyl inhibits the early increase in ACTH and cortisol
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Table 1

Drug related glucocorticoid insufficiency

Mechanisms Drugs

Primary adrenal insufficiency

Haemorrhage Anticoagulant therapy (heparin, warfarin)

Cortisol synthesis enzyme inhibition Aminogluthethimide

Ketoconazole

Fluconazole

Etomidate

Dexmedetomidine

Cortisol metabolism activation Phenobarbital

Phenytoin

Rifampin

Secondary adrenal insufficiency

Suppression of CRH and ACTH synthesis Glucocorticoid therapy (systemic or topical)

Megestrol acetate

Medroxyprogesterone

Ketorolac tromethamine

Antidepressant drugs (e.g. imipramine)

Opiate drugs

Peripheral resistance to glucocorticoids

Interaction with glucocorticoids receptor Mifepristone

Inhibition of the glucocorticosteroid-induced gene transcription Antipsychotic drugs (e.g. chlorpromazine)

Antidepressant drugs (e.g. imipramine)

ACTH, adrenocorticotrophic hormone; CRH, corticotropin-releasing hormone.
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that occurs in response to surgery, suggesting that these
drugs act at the level of the hypothalamus [17,18]. Given that
these drugs are commonly used for sedation in critically ill
patients, one may expect that these drugs contribute, at least
partly, to adrenal insufficiency in patients with sepsis.

During sepsis, suppression of CRH synthesis may also result
from neuronal apoptosis, which may be triggered by elevation
in substance P [19] or inducible nitric oxide synthase (NOS)
in the hypothalamus [20]. Circulating proinflammatory
mediators such as TNF-α may block CRH-induced ACTH
release [21]. Likewise, local expression of TNF-α and IL-1β
may interfere with CRH and ACTH synthesis [20].

Primary adrenal failure

In sepsis, primary adrenal failure may result from bilateral
necrosis and haemorrhage of the adrenals, as reported by
Waterhouse [1] and Friderichsen [2]. Adrenal blood flow is
about 6–7 ml/min per gram of tissue. Three small arteries
derived from the inferior phrenic artery, the renal artery and
the aorta form rich plexuses in the cortex and supply the
gland. The plexuses are continuous with the sinuses of the
medulla, which drain into the central vein of the medulla. The
right adrenal vein drains into the inferior vena cava and the
left into the renal vein. Hence, the rich blood supply required
by the organ and the limited venous drainage (a single vein)
predispose to extensive haemorrhage [22]. Experiments in
animals has shown that the ACTH-stimulated (stressed)
adrenal gland is more susceptible to haemorrhage [23].
Bilateral adrenal haemorrhage may be found in about 1–1.8%
of autopsied patients [24] and in up to 30% of nonsurvivors
from septic shock [25]. The main risk factors for hemorrhagic
primary adrenal failure are increase in serum urea nitrogen of
25 mg/dl or more, positive blood cultures, shock, coagulation
disorders, and anticoagulant therapy.

Sepsis may exacerbate chronic known or latent primary
adrenal insufficiency, which is usually caused by autoimmune
adrenalitis in developed countries and tuberculous adrenalitis
in developing countries [26]. Other infectious diseases,
including viral and fungal infections, may also cause chronic
primary adrenal insufficiency, particularly in immuno-
suppressed patients. For example, morphological evaluation
of adrenal glands from 128 autopsied patients with the AIDS
identified compromised adrenals in 99.2% of cases, with
distinct pathological features and infectious agents [27].
Cytomegalovirus is by far the commonest pathogen involved
in adrenal dysfunction in AIDS patients [27,28]. Finally,
genetic disorders, tumoural and nontumoural adrenal infiltration,
and bilateral adrenalectomy are less common causes.

Numerous drugs that are commonly used in acutely ill
patients are known to decrease cortisol synthesis (Table 1).
These drugs may block enzymatic steps such as inhibition of
the adrenal P450 cholesterol side-chain cleavage enzyme by
aminogluthethimide [29], or partial or full inhibition of the

adrenal 11β-hydroxylase by etomidate [30], ketoconazole
[31] or high-dose fluconazole [32]. Etomidate inhibits
steroidogenesis by blocking mitochondrial cytochrome P450
enzymes, and this effect may persist as long as 24 hours after
a single dose of etomidate in critically ill patients [17].
Dexmedetomidine, a highly selective and potent α2 agonist, is
increasingly used for postoperative sedation and analgesia
[33]. It is an imidazole compound and in vitro and in vivo
animal studies have shown that dexmedetomidine inhibits
cortisol synthesis at a concentration that is higher than those
obtained during anaesthesia in humans [34]. In addition, it
has recently been shown that dexmedetomidine may be used
for short-term (i.e. 24 hours) postoperative sedation in the
intensive care unit without altering adrenal function [35].

During severe sepsis, circulating proinflammatory cytokines
such as TNF-α may inhibit ACTH-induced cortisol release
[36]. Neutrophil-derived corticostatins such as α-defensins
compete with ACTH on their binding sites and exert an
inhibitory effect on the adrenal cells [37]. This phenomenon
may explain the blunted response to exogenous ACTH that is
observed in about 50% of patients with severe sepsis [38]. In
less sick patients, ACTH resistance may be better unmasked
by the low dose (1 µg) than by the traditional 250 µg ACTH
test [39].

Finally, cortisol metabolism may be accelerated by drug
competition. Indeed, the main enzymes involved in cortisol
metabolism – the microsomal 6β-hydroxylase and the
cytosolic 4-ene-reductase, members of the cytochrome 3A
subfamily – may be inhibited by a number of drugs (Table 1),
including ketoconazole and cyclosporine [40], clarithromycin
[41] and antiepileptic drugs such as phenytoin [42] and
phenobarbital [43].

Decreased glucocorticoid delivery and action
Decreased glucocorticoid access to tissues
CBG is a member of the serine protease inhibitor (serpin)
superfamily. It has retained the stressed native structure typical
of the inhibitor members of the family, and the transition from
the stressed to the relaxed conformation of the protein has
been adapted to allow altered hormone delivery at inflammatory
sites [6]. CBG acts as a substrate for neutrophil elastase.
However, CBG does not alter the activity of this enzyme but is
cleaved by it at a single location close to its carboxyl-terminus;
this reduces its molecular size by 5 kDa, with concomitant
release of more than 80% of CBG-bound cortisol. It has been
shown that granulocytes from septic patients, but not from
control individuals, reduced the molecular weight of CBG by
about 5 kDa and destroyed its steroid-binding activity. These
findings suggest that CBG-elastase release of cortisol allows
for localized delivery of cortisol to sites of inflammation,
avoiding systemic side effects [7].

CBG may also directly modulate cortisol concentration in
response to a given production rate. Indeed, in dexametha-
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sone-suppressed adults, cortisol concentrations correlated
with exogenous cortisol infusion rate only when adjusted for
CBG levels [44]. In addition, CBG levels inversely correlated
with the cortisol disappearance rate, suggesting that CBG
actively modulates the disposition of cortisol in humans [44].
Sepsis following trauma and burns is characterized by
reduced activity and amount of CBG [45–47], which may be
related to circulating IL-6 levels. In addition, reports in burned
patients have shown that low-fat diet was associated with a
significant increase in serum CBG concentrations, suggest-
ing that dietary manipulations may modulate circulating CBG
levels [46]. The decreased circulating CBG levels eventually
result in decreased cortisol distribution and delivery to the
site of inflammation and to immune cells, although the fraction
of serum free cortisol is increased. In addition, at the tissue
level elastase is crucial for CBG cleavage and thus for
cortisol release. Therefore, drugs that inhibit elastase will
prevent cortisol release from CBG and cortisol access to the
tissue.

Tissue levels of cortisol are also regulated by enzymatic
conversion of cortisol to its inactive form, cortisone, by the
11β-HSD type 2. Sepsis is usually characterized by an
increase in the cortisol/cortisone ratio that is proportional to
the increase in acute phase protein concentration, suggest-
ing a pivotal role for 11β-HSD isoenzyme 1 in the modulation
of systemically available cortisol [48]. In addition, it has been
shown that IL-1β and TNF-α upregulate 11β-HSD type 1
activity [49], and TNF-α decreases 11β-HSD type 2 activity
[50]. Thus, in the early phase of the inflammatory process,
mediators derived from the recruitment of T-helper-1 cells
increase the conversion of cortisone to cortisol. Cortisone
serves as an additional source for cortisol at the site of
inflammation. In a second phase, cortisol enhances the
recruitment of T-helper-2 cells, and subsequently released
cytokines such as IL-2, IL-4 and IL-13 stimulate 11β-HSD
type 2 activity, converting cortisol to cortisone [51]. Thus, at
the site of inflammation, the tight crosstalk between immune
cells and cortisol allows local cortisol levels to increase in the
early phase of the inflammatory process, thus counteracting
the effects of proinflammatory mediators. Afterward, it allows
cortisol levels to decrease, avoiding local immuno-
suppression. Because cytokine-regulated cortisol–cortisone
shuttle plays such a pivotal role in the regulation of tissue
glucocorticoid activity, the ratio of tissue cortisol/cortisone
concentrations is the best marker of glucocorticoid activity.

Decreased glucocorticoid receptor number/affinity

When cortisol is delivered to target cells, it freely crosses the
cell’s membrane and then it interacts in the cytosol with
specific receptors. Glucocorticoids mediate their effects on
target immune tissues via two distinct receptor subtypes: the
mineralocorticoid receptor and the glucocorticoid receptor
(GR). Although the mineralocorticoid receptor has a higher
affinity for circulating glucocorticoids than the GR, the GR is
expressed in much higher amounts in immune tissues [52].

There are no data suggesting that sepsis or other diseases
may be associated with impaired cortisol entry into the cells.
Both endotoxin and lipopolysaccaride (LPS) have been
shown to decrease GR affinity for ligand, mainly by inducing
cytokine expression [53]. Studies have shown that cytokines
may alter the GR function in various cell types, including T
cells [54], monocytes/macrophages [55], bronchial lung [53]
and liver [55] cells. A similar reduction in GR function and
affinity for ligand can be demonstrated on peripheral cells and
tissues from patients with inflammatory diseases such as
asthma, ulcerative colitis, AIDS, rheumatoid arthritis, acute
respiratory distress syndrome and sepsis [56–64]. Investiga-
tions into GR expression yielded heterogeneous findings.
Some studies found downregulation of GR [53,65–67] and
others found upregulation [68–70]. These discrepancies may
result from the use of different types of cells and tissues, as
well as different treatments (IL-1α or IL-1β, or IL inducers
such as endotoxin). In addition, studies conducted in cells
treated with IL-1 for 24–48 hours or in tissues from animals
with chronic sepsis or patients with chronic inflammation
consistently showed GR upregulation [61,70,71], whereas
experiments with shorter treatments with IL-1 inducers or
conducted in the early phase of human sepsis showed GR
downregulation [53,66,67]. Most of the studies showing GR
downregulation also found decreased cytosolic GR binding,
which may result from compartmentalization of the GR during
the acute response to cytokines. The hypothesis of GR
compartmentalization may be supported by the fact that LPS
and IL-1β induced GR upregulation without increasing GR
mRNA [69].

Potential mechanisms for cytokine-induced reduction in GR
function and affinity may include inhibition of GR translocation
from cytoplasm to nucleus and reduction in GR-mediated
gene transcription [68]. In addition, FLICE-associated huge
protein – a transducer of TNF-α and Fas ligand signals – may
participate in TNF-α-induced blockade of GR transactivation
by binding to nuclear receptor binding domain of GR-
interacting protein 1. Thus, TNF-α may induce glucocorticoid
resistance acting upstream and independently of nuclear
factor-κB (NF-κB) [72].

Molecular action of glucocorticoids
Glucocorticoids act by binding to a specific GR. A 94 kDa
protein, the GR is a member of the nuclear receptor family.
Upon activation it dissociates from a multiprotein complex,
dimerizes, enters the nucleus and binds to specific DNA
regions termed glucocorticoid responsive elements (Fig. 2).
The GR contains three domains. The amino-terminal domain
harbours transactivation functions (τ1 region) and regulates
many biological effects. The DNA-binding domain is well
conserved among the nuclear hormone receptors. The
carboxyl-terminal domain, called the ligand-binding domain,
also contains a transactivation region (τ2). At homeostasis
the GR forms a multiprotein complex with numerous
members of the heat shock protein (hsp) family (hsp90,
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hsp70, hsp56 and hsp40), immunophilins (FKBP51 and
FKBP52), P23 and potentially other proteins that are as yet
unknown [73]. The transactivation regions τ1 and τ2 probably
constitute major areas for interaction with coactivator and
corepressor on nuclear receptor transcriptional activities [74].

Upon activation, subsequent to ligand binding, the GR
undergoes conformational changes, dissociation from other
proteins (particularly shedding from hsps), dimerization,
translocation to the nucleus and contact with general
transcription factors, adapter proteins and various co-
activators. Then, transcriptional activation or repression of
specific target genes occurs and subsequently levels of
regulated proteins change. In addition, post-transcriptional
effects such as on mRNA may occur. GR interactions with
the other proteins of the complex are still poorly understood.
However, it is thought that these interactions may account for
a number of rapid nongenomic biological effects of
glucocorticoids (e.g. phosphorylation/dephosphorylation of

GR, calcium signalling-related effects, and effects due to
membrane events) [75]. Indeed, these effects are too rapid to
allow time for transcriptional and translational events to take
place, and they are insensitive to appropriate inhibitors. One
must distinguish glucocorticoid-induced genomic and non-
genomic effects.

Genomic effects

The GR directly activates or represses target genes by
binding to hormone response elements in promoter or
enhancer regions and by binding to other DNA sequence
specific activators, and it can inhibit the transcriptional
activities of other classes of transcription factors by
transrepression. Regulation of gene trascription by nuclear
receptors requires the recruitment of coregulators. Their
number do not allow direct ineraction, suggesting that they
act in combination or in a sequential manner [76]. Among
these coregulators, the p160 steroid receptor coactivator
(SRC) gene family contains three homologous members

Critical Care    August 2004 Vol 8 No 4 Prigent et al.

Figure 2

Molecular action of glucocorticoids. GR, glucocorticoid receptor; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; PI3 kinase,
phosphatidylinositol 3-kinase.
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(SRC-1, SRC-2 and SRC-3). These coactivators are crucial
in facilitating chromatin remodelling, assembly of general
transcription factors, and transcription of target genes by the
recruitment of histone acetyltransferases and methyl-
transferases to specific enhancer/promotor regions [77]. The
GR-induced transrepression occurs through DNA-dependent
mechanisms (i.e. displacement of an activator, overlapping
binding sites, or binding to continuous negative gluco-
corticoid responsive element) and via DNA independent
mechanisms (without direct contact between the GR and
DNA). The latter includes binding of GR to a DNA-bound
activator (tethering mechanism) or formation of abortive
complex between GR and another transcription factor
(squelching mechanism) [78].

Studies using DNA microarray analysis combined with
quantitative TaqMan polymerase chain reaction and flow cyto-
metry showed the complex transcriptional effects of gluco-
corticoids. They transactivated genes for chemokines, cyto-
kines, complement family members and newly discovered
innate immune-related genes, including scavenger and Toll-like
receptors. Glucocorticoids also transrepressed adaptive
immune-related genes. Finally, glucocorticoids may simul-
taneously transactivate and repress inflammatory T-helper
subsets and apoptosis-related gene clusters [79]. Develop-
ment of GR agonists that may favour transrepression over trans-
activation represent an exciting new field of research [80].

The NF-κB protein family includes p65 and p50, which form a
complex that is maintained in its inactive form by a specific
inhibitor – IκB-α – in the cytosol [81]. The interaction
between glucocorticoids, NF-κB and activator protein-1
represents the main GR-induced, DNA-independent mode of
transrepression and is reviewed elsewhere [82] Briefly, GR
prevents activator protein-1 from interacting with its binding
site within the promoters. In vitro inhibition of NF-κB
activation has been reported in various types of cells,
although an enhanced expression of the p65 component of
NF-κB has been reported in response to glucocorticoids. In
addition, the induction of IκB-α by glucocorticoids further
inhibits NF-κB-dependent gene transcription.

Glucocorticoids may also regulate inflammatory mediators by
acting at the post-transcriptional level, on mRNA or on
proteins. For example, via post-transcriptional mechanisms,
dexamethasone inhibits IL-8 mRNA and protein expression in
cultured airway epithelial cells [83], inhibits inducible NOS
expression and activity in C6 glioma cells [84], increases
macrophage migrating inhibitory factor in rat tissues [85], and
increases angiotensin-converting enzyme in primary culture of
adult cardiac fibroblasts [86].

Nongenomic effects

Membrane-bound receptors are thought to mediate specific
nongenomic effects of glucocorticoids [87]. Indeed,
membrane-binding sites for different glucocorticoids have

been described in many tissues and cells, including liver
plasma membranes and neuronal synaptic membranes, with
evidence for both nonclassic receptors and a membrane form
of classic GR [88]. Conversely, nonspecific nongenomic
effects are thought to result from physicochemical membrane
interactions, and to occur within seconds to minutes but only
at high doses of glucocorticoid [89].

Thus far, rapid glucocorticoid action has been intensively
investigated mainly in the central nervous system, and
includes effects on neuronal excitability, neuroendocrine
responses and behavioural tasks [90]. Some of these effects
might be important in the host response to sepsis.

Nonspecific nongenomic effects

Direct membrane effects of glucocorticoids in the
hypothalamic synaptosomes have been suggested as the
cellular mechanism for plasma cortisol-induced negative
feedback [91]. The loss of this effect may partly explain the
disruption in circadian rhythm of cortisol synthesis during
sepsis. Acetylcholine-induced current in pheochromocytoma
cell line PC12 is inhibited by extracellular but not intracellular
application of corticosterone [92]. These effects are not
inhibited by the transcription inhibitors, and allow gluco-
corticoids to control immediate catecholamine release from
sympathetic cells. This may explain the rapid restoration of
the sympathetic modulation of heart rate and vasomotor tone
[93], as well as the potentiation of exogenous catecholamine
action that can be seen within minutes after a 50 mg bolus of
hydrocortisone in septic shock [94,95].

Specific nongenomic effects

Some of these effects may be relevant to sepsis treatment
because they may account for glucocorticoid-induced rapid
anti-inflammatory and cardiovascular effects.

The p38 mitogen-activated protein kinase (MAPK)
participates in intracellular signalling cascades resulting in
inflammatory responses. Studies in healthy volunteers
challenged with LPS showed that p38 MAPK is a
determinant of LPS-induced cytokine production, leucocyte
responses [96], neutrophil activation and chemotaxis [97],
and of LPS-induced coagulation activation, fibrinolysis
inhibition and endothelial cell activation [98]. The classic GR
may interfere directly with Raf-1, which is downstream of Ras
in MAPK cascade, or via 14-3-3 (an adapter protein that is
known to interplay with proteins such as protein kinase C and
Raf-1) [99]. In addition, the GR may inhibit Raf/MAPK
extracellular signal-regulated kinase activation through
protein–protein interactions [100]. Whether the interaction
between GR and p38 MAPK accounts for nongenomic anti-
inflammatory effects of glucocorticoids remains to be
investigated.

Membrane GRs that are present in normal and in cancerous
lymphoid cells may be involved in disruption of the
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mitochondrial membrane potential and in decreased ATP
availability, and subsequently may lead to apoptosis [101].

It has recently been shown that glucocorticoids, through non-
nuclear activation of phosphatidylinositol 3-kinase and the
proteine kinase Akt, could exert perfusion-independent
protective effects in a model of ischaemic brain injury [102].
Similarly, binding of glucocorticoids to the GR-stimulated
phosphatidylinositol 3-kinase and protein kinase Akt, leading to
endothelial NOS activation and nitric oxide dependent
vasorelaxation, is the mechanism by which glucocorticoids
decreased vascular inflammation and reduced myocardial
infarct size following ischaemia/reperfusion injury in mice [103].
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