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Purified cell wall from the probiotic bacterium
Lactobacillus gasseri activates systemic
inflammation and, at higher doses, produces
lethality in a rat model
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Abstract

Introduction: One proposed benefit of probiotic therapy is that probiotic bacterial cell-wall binding to intestinal
cell pathogen-recognition receptors activates protective innate immunity. However, in critically ill patients, intestinal
epithelium disruption by shock or other insults may compromise this compartmentalized response and cause
systemic bacteria and cell-wall translocation. The effects of intravascular introduction of probiotic bacterial cell wall
are unclear.

Methods: We investigated 24-hour infusions of purified cell wall from Lactobacillus gasseri ATC33323 (L. gasseri), a
probiotic bacterium, in Sprague–Dawley rats (n = 49).

Results: Increasing cell-wall doses (0 (control), 10, 20, 40, 80, or 160 mg/kg over 24 hours) produced dose-ordered
decreases in survival measured after 168 hours (11 survivors/11 total (100%), seven of seven (100%), seven of seven
(100%), six of eight (75%), five of eight (63%), and one of nine (11%), respectively, P < 0.0001). The L. gasseri cell wall
was equally or more lethal than Staphylococcus aureus cell wall, which was previously studied (100% to 88% survival
with the same increasing doses). During challenge, compared with controls, L. gasseri cell wall produced increases
in blood IL-1β, IL-10, tumor necrosis factor-α, migratory inhibitory protein-1α, monocyte chemotactic protein-1, and
nitric oxide, and decreases in neutrophils, lymphocytes, and platelets that were greater with higher versus lower
doses (P ≤ 0.05). Medium-dose cell wall (40 and 80 mg/kg combined) progressively decreased blood pressure and
increased heart rate, and all doses increased lactate, hepatic transaminases, and creatinine phosphokinase (P ≤ 0.05).

Conclusion: Although L. gasseri, like other probiotic bacteria, is considered safe, its cell wall can stimulate the
maladaptive inflammatory response associated with pathogenic bacteria. Such effects deserve study, especially
regarding critically ill patients.
Introduction
Probiotic therapy to improve intestinal barrier and im-
mune function and reduce growth and translocation of
pathogenic bacteria is increasing and has been applied in
critically ill patients for several conditions [1-5]. Many
probiotic preparations include Lactobacillus species that
are thought to be of little clinical risk [4]. Despite their
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widespread use however, concerns over probiotics, includ-
ing ones with Lactobacillus strains, have been raised
[6-15]. Although the bacteria used in probiotic prepara-
tions appear nonpathogenic, if they were to grow to large
numbers in the intestine of a critically ill patient in whom
mucosal integrity was compromised, translocation of the
bacteria or their biologically active components into
the systemic circulation could occur. In sufficient con-
centrations, such translocation could activate a systemic
inflammatory response [6-8,11-15]. The cell wall of
Lactobacillus strains includes peptidoglycan and other
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components that bind to pathogen-recognition receptors
(PRRs) on host cells [5,16-20]. Although one of the
proposed attributes of probiotic Lactobacillus strains is
that this binding in intestinal tissue stimulates protective
innate immune responses [16,21], if it is not adequately
compartmentalized, such stimulation systemically could
be deleterious. At present however, no data describe
the potential effects of intravascular introduction of
Lactobacillus cell wall. We therefore investigated the
effects of 24-hour infusions of purified cell wall from
Lactobacillus gasseri ATC33323 (L. gasseri), a probiotic
bacterium [5,22], in a rat model. The range and method of
administration of L. gasseri cell-wall doses, as well as
the rat model used, were similar to those in prior studies
testing Staphylococcus aureus and Bacillus anthracis
cell walls [23].

Materials and methods
Animal care
This study protocol was approved by the Animal Care and
Use Committee of the Clinical Center of the National
Institutes of Health (Animal Study Protocol CCM 0601).

Study design
In weekly experiments, Sprague–Dawley rats (n = 49 total)
with carotid arterial and jugular venous catheters were
randomized to receive 24-hour intravenous infusions
(0.5 ml/h) of L. gasseri cell wall in total doses of 10, 20,
40, 80, or 160 mg/kg or of diluent only (control). Mean
arterial blood pressures (MBPs) and heart rates (HRs)
were measured immediately before and at 1 hour intervals
from 1 to 10 hours and at 2-hour intervals from 10 to
24 hours after initiation of infusion. Arterial blood was
collected at 4, 8, and 24 hours for blood gas (ABG),
lactate, complete blood cell (CBC), cytokine, nitric oxide
(NO), alanine and aspartate aminotransferases (ALT and
AST, respectively), creatine phosphokinase (CPK), blood
urea nitrogen (BUN), and creatinine measures. Animals
had similar volumes (0.5 ml) of blood drawn and normal
saline replaced at each time point, Survival was assessed
at 168 hours.

Cell-wall preparations
The L. gasseri ATC3323 were obtained from Dr. T. R.
Klaenhammer, Department of Food, Bioprocessing, and
Nutrition Sciences, North Carolina State University,
Raleigh, NC, USA. Cell wall was purified by using previ-
ously described Methods [23]. In brief, bacteria grown to
the late exponential phase were harvested with centrifuga-
tion, washed in distilled water (endotoxin-free), and boiled
in an equal volume of 8% sodium dodecylsulfate (SDS)
for 30 minutes. After incubation overnight at room
temperature with agitation, the suspension was centri-
fuged, and the pellet extracted twice by boiling with 4%
SDS. The extract was then washed, centrifuged at 20°C,
and diluted with 1× phosphate-buffered saline to deliver
doses of 10, 20, 40, 80, and 160 mg/kg body weight when
administered as an infusion over 24 hours in a total vol-
ume of 12 ml (0.5 ml/h).
Agarose gel electrophoresis with ethidium bromide

staining and SDS-PAGE with coomassie blue staining did
not detect DNA/RNA or protein contamination in puri-
fied L. gasseri cell wall. As determined by the chromogenic
limulus amoebocyte lysate assay (Clonogen, Germantown,
MD, USA), the lipopolysaccharide (LPS) content of the
cell-wall preparation was 0.05 ng/mg. Based on the
average size of animals studied, the maximum LPS
amount administered during a 24-hour cell-wall infu-
sion would have been 8 ng/kg. As reported in prior
cell-wall studies, to confirm that LPS contamination at
a level of 0.05 ng/mg would not confound cell-wall
effects on hemodynamic, arterial blood gas, circulating
cell, cytokine, or NO measures, rats (n = 6) were chal-
lenged with a total dose of LPS comparable to what would
be received if the highest cell-wall dose tested (160 mg/kg)
were contaminated with LPS at a level of 0.05 ng/mg cell
wall (that is, 8 ng/kg infused over a 24–hour period). This
dose of LPS produced no lethality and, compared with di-
luent control, did not significantly alter any of the parame-
ters investigated in the present study [23].

Laboratory measurements
Arterial blood pressure, HR, ABG, lactate, and CBC
measures and samples for cytokine and NO levels were
obtained as previously described [23,24]. Cytokines
(interleukin-1β (IL-1β), IL-2, IL-6, IL-10, tumor necro-
sis factor-α (TNF-α), granulocyte-macrophage colony-
stimulating factor (GM-CSF), monocyte chemotactic
protein-1 (MCP-1), migratory inhibitory protein-1α
(MIP-1α), and regulated on activation, normal T-cell
expressed and secreted (RANTES)) were measured by
using a standard kit (Cytokine Multiplex Immunoassay
Kit, Millipore, Danvers, MA, USA). Plasma nitrite/nitrate
(NO) levels were measured by using a fluorometric assay
kit (Cayman Chemical, Ann Arbor, MI, USA). Chemistry
analysis was conducted with the Drew Trilogy Analyzer
(Diamond Diagnostics, Holliston, MA, USA).

Statistics
Statistical Analysis System Version 9.3 software (SAS
Institute, Inc, Cary, NC, USA) was used for all the ana-
lysis. Kaplan-Meier survival curves were used to show
survival effects, and a Wilcoxon rank test was used in
PROC LIFETEST to compare the effect of cell-wall doses
on survival. All other parameters were analyzed with
two-way ANOVA accounting for cell wall dose (each
dose versus control or between doses) and time point
of observation, and one-way ANOVA to compare the
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effect of the cell wall with control at each time point.
For clarity in figures, serial effects of each dose of cell wall
(that is, cell wall minus control) are shown. Logarithmic
transformation was used when necessary. Two-sided P
values of less than 0.05 were considered significant.
Multiple comparisons were not adjusted for.

Results
Survival
All animals challenged with diluent alone (controls, n = 11)
survived (Figure 1A). Challenge with increasing doses of
L. gasseri cell wall (10, 20, 40, 80, or 160 mg/kg) produced
decreasing survival (seven survived of seven studied
(100%), seven of seven (100%), six of eight (75%), five
of eight (63%), and one of nine (11%), respectively)
(P < 0.0001 for the effect of increasing cell-wall dose
on decreasing survival). However, survival did not dif-
fer significantly comparing either the 10 versus 20 mg/kg
or 40 versus 80 m/kg L. gasseri cell-wall doses. These
groups were combined to increase the power to detect
the influence of cell wall and for presentation of data
described later (see Methods also). Overall, survival
was significantly different, comparing the low (10 and
20 mg/kg doses combined) versus medium (40 and
80 mg/kg doses combined) versus high (160 mg/kg)
cell-wall doses (P ≤ 0.0002) (Figure 1B).
A. Individual Cell Wall Dose
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Figure 1 Comparison of survival. (A) Number of animals randomized to
L. gasseri cell-wall doses, including 10, 20, 40, 80, or 160 mg/kg (administer
of animals from each group surviving over time. Survival did not differ com
the 40 versus 80 m/kg doses (medium doses), and these were combined f
time for the low (10 and 20 mg/kg doses combined) versus medium (40 a
cell-wall groups.
Inflammatory cytokine (log (pg/ml)), nitric oxide (μM), and
neutrophil, lymphocyte, and platelet levels (all × 103 cells/μl)
Compared with controls, at 4 hours after the start of the
24-hour challenge, low, medium, and high doses of L.
gasseri cell wall each increased (mean effect of cell wall
versus control, ±SEM)) IL-1β (1.65 ± 0.40, 2.52 ± 0.36,
3.24 ± 0.42) , IL-10 (2.42 ± 0.43, 2.99 ± 0.39, 3.28 ± 0.45),
TNF-α (1.90 ± 0.44, 2.28 ± 0.40, 3.21 ± 0.47), MIP-1α
(1.38 ± 0.20, 1.58 ± 0.18, 1.68 ± 0.21), MCP-1 (1.87 ± 0.27,
2.29 ± 0.24, 2.77 ± 0.28), RANTES (0.71 ± 0.28, 0.91 ± 0.26,
1.12 ± 0.30), and NO (28.0 ± 11.9, 48.8 ± 11.2, 45.7 ± 13.6)
(all P ≤ 0.05). Medium and high doses increased IL-6
(1.50 ± 0.60, 2.21 ± 0.70) (both P ≤ 0.05); and high dose in-
creased IL-2 (1.56 ± 0.63) and GM-CSF (1.24 ± 0.50) (both
P ≤ 0.05) (Figure 2, data for GM-CSF not shown). These
increases persisted with some cell-wall doses while de-
creasing at 8 and/or 24 hours with others (see Figure 2).
Overall, higher cell-wall doses had greater effects than
lower ones in patterns that were significant either at all
time points for IL-1β, IL-10, TNF-α, GM-CSF, and MCP-1
(P ≤ 0.0004 for high versus medium versus low-dose cell
wall) or at later ones for MIP-1α and NO (P ≤ 0.003 for
the interaction with time).
Compared with controls, at 4 hours, low, medium, and

high cell-wall doses each respectively decreased circulating
neutrophils (−7.94 ± 0.95, −9.5 ± 0.91, and −10.71 ± 1.04),
Cell Wall Infusion
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nd 80 mg/kg doses combined) versus high (160 mg/kg) dose



Figure 2 Serial mean effects (±SEM) of low (L), medium (M), or high (H) cell-wall doses compared with controls (phosphate-buffered
saline; see Methods regarding calculation of the effects) on log IL-1β, log IL-2, log IL-6, log IL-10, log TNF-α, log MIP-1α, log MCP-1, log
RANTES, and NO levels at 4, 8, and 24 hours after the initiation of challenges (designated on the x axis as 4, 8, or 24). Significant effects
are designated by asterisks (* ≤ 0.05; ** ≤ 0.0001).
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lymphocytes (−3.214 ± 0.61, −3.51 ± 0.58, and −3.97 ± 0.67)
and platelets (−241 ± 50, −335 ± 48, and −563 ± 55) (all
P ≤ 0.05) (Figure 3). These decreases persisted for all cell
types with each of the three cell-wall doses. However,
decreases in neutrophils were not so great later with
low and medium cell-wall doses, and decreases in plate-
lets were greater later with medium doses (P ≤ 0.03 for
the time interactions). Overall, higher cell-wall doses
had greater effects than lower ones in patterns that were
significant for neutrophils and platelets (P < 0.0001 for the
effects of high versus medium versus low-dose cell wall)
and approached significance for lymphocytes (P = 0.056).

Mean arterial blood pressure (MBP, mm Hg) and heart
rate (HR, BPM) measurements
To analyze the effects of L. gasseri cell wall on changes
in MBP and HR during the 24-hour challenges, data
were divided into the 6-hour period before the onset of
lethality (early period) and the subsequent 18-hour period
(later period) during which lethality was observed in the



4 8 24

S
er

ia
l 

M
ea

n
 E

ff
ec

ts
 (

+
S

E
M

) 
o
f 

C
el

l 
W

al
l 

-12

-9

-6

-3

0

3

6

9

12

Low (L)

Medium (M)

High (H)

4 8 24

B. Lymphocytes (x10
3
/ul)

-6

-4

-2

0

2

4

6

4 8 24

C. Platelets (x10
3
/ul)

-600

-400

-200

0

200

400

600

** **

**

** **

*

** **

**

** **
****

**
*

**

**

**

**

**** **

**
**

**
**

Hours After Initiation of Cell Wall Infusion

A. Neutrophils (x10
3
/ul)

Cell Wall Dose

�

N
o
 E

ff
ec

t
In

cr
ea

se
d

D
ec

re
as

ed

**

Figure 3 Serial mean effects (±SEM) of low (L), medium (M), or high (H) cell-wall doses compared with controls (phosphate-buffered
saline; see Methods regarding calculation of the effects) on circulating neutrophil, lymphocyte, and platelet concentrations at 4, 8, and
24 hours after the initiation of challenges (designated on the x axis as 4, 8, or 24). Significant effects are designated by asterisks
(* ≤ 0.05; ** ≤ 0.0001).
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medium- and high-dose groups (Figure 4). Compared with
controls, low-dose cell wall significantly increased MBP
early and later, and HR early (P ≤ 0.003 averaged over
time). Medium dose increased and then decreased MBP
and HR early (P ≤ 0.03 for the time interaction), and then
decreased MBP and increased HR later (P ≤ 0.0007 aver-
aged over time). High dose paradoxically increased MBP
and decreased HR both early and later (P ≤ 0.02 averaged
over time). Although the effects of the three cell-wall
doses on MBP did not differ significantly early, their
effects on MBP later and on HR both early and later
did (P < 0.0001).

Lactate, bicarbonate, and base excess, and AST, ALT,
and CPK
Compared with controls at 8 hours, low-dose cell wall de-
creased bicarbonate (−2.45 ± 0.76). At 8 and 24 hours,
medium dose increased lactate (1.01 ± 0.45 and 1.01 ± 0.29)
and decreased bicarbonate (−3.16 ± 0.73 and −2.28 ± 0.65)
and base excess (M; −1.78 ± 0.73 and −1.46 ± 0.62). At
4 and 8 hours, high dose increased lactate (1.11 ± 0.39
and 1.65 ± 0.62), and at 8 hours, decreased bicarbonate
(−2.79 ± 1.00) (all P ≤ 0.03) (Figure 5). The effects of the
three L. gasseri cell-wall doses on lactate, bicarbonate, and
base excess did not differ significantly.
Compared with controls, at 4, 8, and 24 hours, low-dose

cell wall increased AST (Log (U/L) 0.68 ± 0.21, 0.98 ± 0.35,
and 1.18 ± 0.49, respectively), ALT (0.74 ± 0.19, 1.15 ± 0.35,
and 1.32 ± 0.56), and CPK (0.85 ± 0.26, 0.82 ± 0.33, and
1.06 ± 0.47) (all P ≤ 0.03). At 8 hours, medium-dose cell
wall increased AST (0.80 ± 0.35), and at 4 and 8 hours,
increased ALT (0.52 ± 0.18 and 1.06 ± 0.34) (all P ≤ 0.02).
At 4 hours, high-dose cell wall increased ALT (0.65 ±
0.20) (P = 0.003) (Figure 5). The effects of cell wall on
AST, ALT, and CPK did not differ significantly comparing
the low, medium, and high doses.

Discussion
The 24-hour infusions with increasing L. gasseri cell-wall
doses increased inflammatory cytokine and NO levels and
decreased circulating neutrophils, lymphocytes, and plate-
lets. Increases in intravascular inflammatory cytokines
likely caused vascular endothelial activation and adher-
ence of circulating leukocytes and platelets [25]. These
changes were all greater with higher versus lower doses
and show that the L. gasseri cell wall can stimulate a ro-
bust intravascular inflammatory response. Elements in this
type of response contribute to the septic shock and organ
injury occurring with cell wall from gram-positive bacteria
known to be pathogenic for humans, such as Staphylo-
coccus aureus [20]. Consistent with pathogenic bacteria,
L. gasseri cell wall produced reductions in survival that
were dose dependent, hypotension, and tachycardia with
medium doses, and evidence of tissue hypoperfusion with
all doses, manifested by increases in lactate, hepatic en-
zymes, and creatine phosphokinase levels. Notably, the ef-
fects of L. gasseri cell wall on survival and changes in
inflammatory cytokines, NO, and circulating leukocytes
and platelets in the present study occurred in patterns
very similar to ones observed with the same doses of puri-
fied S. aureus and Bacillus anthracis cell wall in a prior
study with the same rat model [23].
Several lines of evidence support the inflammatory ef-

fects seen with L. gasseri cell wall in this rat model. Whole
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L. gasseri bacteria or cell-wall extracts alone stimulated
inflammatory cytokine production, including IL-1β, IL-6,
IL-10, TNF-α, MCP-1, MIP-1α, or GM-CSF, or NO levels
from either murine J774.1 or RAW264.7 macrophages
or human myeloid dendritic cells [16,21]. Heat-killed
L. gasseri administered orally in Balb/c mice activated
splenic natural killer cells and increased pulmonary in-
flammatory cytokine (TNF-α, INF-γ, and IL-12) mRNA
expression [21,26]. In this latter study, immune stimula-
tion by L. gasseri was actually protective during influ-
enza viral infection [26]. This may have been because
L. gasseri remained compartmentalized in the intestinal
space. The findings from the present study raise the possi-
bility, however, that if compartmentalization is disrupted
and L. gasseri or its components translocate to the intra-
vascular space, they could elicit a maladaptive inflamma-
tory response.
How L. gasseri cell wall elicits an inflammatory response

is unclear. Few data exist regarding this cell wall’s precise
structure. However, earlier work showed that L. gasseri
cell wall consists of at least three components, including
peptidoglycan, a neutral polysaccharide, and an anionic
polysaccharide [27]. Structural aspects of the peptidogly-
can component were very similar to peptidoglycan in the
cell wall of S. aureus [28]. Binding of peptidoglycan from
S. aureus to the PRR Toll-like receptor 2 (TRL2) is be-
lieved to play an important role in the pathogenesis of
the injurious inflammatory response with which these
bacteria are associated [29]. It is, therefore, noteworthy
that stimulation of TNF-α production from human
myeloid dendritic cells by live L. gasseri has been shown
also to be mediated in part by TLR2 [30]. Of note as well,
the neutral polysaccharide found in the L. gasseri cell wall
is similar to one found in S. pneumococcus, another patho-
genic gram-positive bacterium [27].
Interestingly, the highest dose of L. gasseri cell wall in

the present study appeared to have greater lethal effects
than comparable doses of S. aureus or B. anthracis in
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the prior studies noted [23]. These differences are diffi-
cult to interpret because the subject animals were de-
rived from differing batches and were investigated
during different time periods. However, while the pep-
tidoglycan of these three bacteria may be relatively
similar, it is likely that differences in the teichoic acids
and glycopolymers making up the cell wall of each
could produce differing physiologic responses [31].
The clinical implications of the present findings are

not clear. It required 1 × 1010 CFU of L. gasseri to produce
1 mg of cell wall for these experiments. Thus, lethal cell-
wall doses (40 to 160 mg/kg) were equivalent to infection
with 10 to 40 × 1010 CFU/kg bw or 6 to 24 × 109 CFU/ml
blood (based on the estimated blood volume of a rat
weighing 250 g). These concentrations are comparable to
those in a study of L. casei, a bacterium commonly used
in probiotics, reporting that the 50% lethal dose in mice
was 9 × 109 CFU/kg bw, whereas the minimal lethal dose
in rats was 40 × 109 CFU/kg bw [32].
However, it is difficult to compare these bacterial

doses with the probiotic doses used clinically. Only one
report has provided semiquantitative blood bacteria
counts from patients with probiotic-related sepsis, and
this study did not quantify counts greater than 100 cfu/ml
[12]. The development of sepsis during probiotic use in
patients has actually appeared more related to the degree
of underlying illness than to the dose of probiotic itself
[10,12]. Although daily doses of 2.5 × 1011 CFU/kg for up
to a year and single doses of up to 1013 CFU/kg have been
well tolerated in healthy patients [10], doses of only
1010 CFU in severely ill patients have resulted in sepsis
and bacteremia [7,9,12,33,34].
It is possible that the concentrations of L. gasseri cell

wall eliciting the responses noted in the present study
are rarely if ever reached clinically. A rationale under-
lying the bacterial strains used in probiotics is that they
have a high affinity for binding to intestinal epithelium
and that they are minimally invasive [4,5]. Conversely,
however, the finding that L. gasseri cell wall can elicit an
intravascular inflammatory response comparable to that
of bacteria such as S. aureus [23], a known human
pathogen, must raise concern clinically.
In a review of 241 Lactobacillus infections in patients,

bacteremia was noted in 129 cases, and the overall mortal-
ity rate was 29.1% [35]. Caution would appear especially
warranted in critically ill patients in whom intestinal in-
tegrity may be disrupted [7,10,12,33,36]. Whether effects
such as the ones noted in the present study relate to
adverse effects noted with probiotic therapies clinically is
not clear but would appear to warrant further consider-
ation [7,35,37]. It is important to point out however, that
the therapeutic effects of probiotics such as those L.
gasseri is included in, rely on whole living bacteria.
Also, to identify an agent as a probiotic requires that it be
alive. The cell wall tested here was derived from killed
bacteria, and it does not represent the entire bacterium.
This study has potential limitations. First, although the

present model used 24-hour cell-wall infusions to permit
the gradual systemic introduction of bacterial products, it
does not reproduce the early pathogenesis of translocation.
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Thus, introduction of cell wall during the natural process of
translocation may elicit a very different host response from
the one observed here.
Second, although whole cell wall was used for study, it

is likely that, as for other gram-positive bacteria, much of
the preparation’s effects were related to the peptidoglycan
component [20,38-40]. Further investigating the individual
components making up the L. gasseri cell wall would be
informative.
Third, the highest dose of L. gasseri cell wall studied

had paradoxic effects on MBP and HR, actually increasing
the former and decreasing the latter. The basis for this
response is unknown, although it might be related to a
primary central nervous system effect of this cell-wall
dose. Despite these paradoxic effects with the most lethal
dose, lethality with the medium cell-wall dose was asso-
ciated with progressive reductions in blood pressure
and increases in heart rate, as would be expected in a
state of sepsis.
Fourth, animal numbers may appear relatively small in

the study groups. However, even with these numbers,
differences in survival, the primary outcome comparing
the low, medium, and high cell-wall doses, were highly
significant. With such differences, it would not have been
possible, from an animal care and use perspective, to
justify further animals for study. Finally, multiple com-
parisons were not adjusted for.

Conclusions
Lactobacillus gasseri is considered to be a relatively safe
bacterium and, like other Lactobacillus strains, is com-
monly included in probiotic preparations [5]. However,
the present study demonstrated that its cell wall is capable
of stimulating the type of maladaptive inflammatory
response typically associated with far more pathogenic
gram-positive bacteria. Such effects may deserve further
study, especially with regard to the use of probiotics, in-
cluding strains like L. gasseri, in critically ill patients.

Key messages

� Purified cell wall from L. gasseri, a strain of bacteria
considered safe and included in probiotic preparations
used in critically ill patients, when introduced into the
systemic circulation of rats, produced a robust
inflammatory response and lethality, comparable to
the effects of cell wall from S. aureus.

� Although stimulation of innate immunity is
thought to be a key benefit of bacteria used in
probiotic preparations, better understanding the
effects of these bacteria introduced systemically
may be important, especially for preparations used
in critically ill patients with compromised gut
integrity.
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