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Abstract

Introduction: In the setting of early acute kidney injury (AKI), no test has been shown to definitively predict the
progression to more severe stages.

Methods: We investigated the ability of a furosemide stress test (FST) (one-time dose of 1.0 or 1.5 mg/kg depending
on prior furosemide-exposure) to predict the development of AKIN Stage-III in 2 cohorts of critically ill subjects with
early AKI. Cohort 1 was a retrospective cohort who received a FST in the setting of AKI in critically ill patients as part of
Southern AKI Network. Cohort 2 was a prospective multicenter group of critically ill patients who received their FST in
the setting of early AKI.

Results: We studied 77 subjects; 23 from cohort 1 and 54 from cohort 2; 25 (32.4%) met the primary endpoint of
progression to AKIN-III. Subjects with progressive AKI had significantly lower urine output following FST in each of the
first 6 hours (p<0.001). The area under the receiver operator characteristic curves for the total urine output over the first
2 hours following FST to predict progression to AKIN-III was 0.87 (p = 0.001). The ideal-cutoff for predicting AKI
progression during the first 2 hours following FST was a urine volume of less than 200mls(100ml/hr) with a sensitivity of
87.1% and specificity 84.1%.

Conclusions: The FST in subjects with early AKI serves as a novel assessment of tubular function with robust predictive
capacity to identify those patients with severe and progressive AKI. Future studies to validate these findings are
warranted.

Introduction
Acute kidney injury (AKI) is a clinical syndrome that is
associated with significant morbidity and mortality [1,2].
The incidence of AKI has more than doubled in the past
decade and is projected to continue to increase [3].
Patients with AKI are cared for by a multitude of specia-
lists including, but not limited to: emergency medicine
physicians, internists, pediatricians, surgeons, intensivists,
and nephrologists [4]. Patients who develop AKI often
require renal replacement therapy (RRT), but clinicians
often disagree about the optimal timing of the initiation of
RRT. During the Acute Kidney Injury Network (AKIN)

multi-disciplinary consensus meeting, the question that
was ranked highest was: ‘When should RRT be initiated?’
[4]. RRT is an invasive procedure with inherent risks, and
one would not want to initiate this therapy if the patient
were destined to recover renal function without interven-
tion. However, a more conservative approach of initiating
RRT late in the course of the AKI can subject the patient
to adverse consequences [5]. Thus, if a test could be
devised that predicts the likelihood of progressing to a
more severe stage of AKI, decisions regarding optimal tim-
ing of RRT initiation would be better informed.
Because serum creatinine and oliguria are often late

signs of significant AKI, more sensitive diagnostic tests are
required [6-9]. This clinical need has led to the develop-
ment of multiple candidate AKI biomarkers [6,8-10].
Because AKI biomarker levels change over time depending
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on the timing and severity of injury [9], a functional
assessment of renal function might enhance biomarker
performance. Since most common form(s) of intrinsic
AKI involve acute tubular injury, we sought to develop a
functional assessment of renal tubular function. Furose-
mide, a loop diuretic, has pharmacokinetic properties that
make it an appealing functional tool. In contrast to other
drugs cleared by the kidney, furosemide is not effectively
filtered by the glomerulus. As an organic acid, furosemide
is tightly bound to serum proteins and gains access to the
tubular lumen by active secretion via the human organic
anion transporter (hOAT) system in the proximal convo-
luted tubule [11,12]. Once in the tubular lumen, furose-
mide inhibits luminal active chloride transport throughout
the thick ascending limb of Henle, thereby preventing
sodium reabsorption and resulting in natriuresis and
increased urine flow [13-15]. We surmised that furose-
mide-induced increases in urine output might be a
method to assess the integrity of renal tubular function in
the setting of early AKI. Specifically, we hypothesized that
the kidney’s response or lack of response to a furosemide
challenge, as a clinical assessment of tubular function,
could identify patients with severe tubular injury before it
was clinically apparent (for example, a rise in creatinine).
We sought to develop and standardize a furosemide stress
test (FST) for patients with AKI and describe its perfor-
mance characteristics.

Materials and methods
We assembled two separate cohorts of critically ill patients
with either stage I or II AKIN criteria (Additional file 1 -
Table S1) [16], who were given a standardized dose of fur-
osemide, and assessed their response and outcomes.

Cohort 1
The Southern Acute Kidney Injury Network (SAKInet)
[17] was formed in 2007 to collect samples from patients
who developed AKI, with the goal of testing the diagnos-
tic and prognostic accuracy of previously described and
novel AKI biomarkers. For each subject, informed con-
sent was obtained in accordance with The George
Washington University Institutional Review Board-
approved SAKInet protocol. We identified a subset of
patients from the SAKInet cohort at the George
Washington University who fulfilled the study criteria.

Cohort 2
The protocol for cohort 2 was registered in clinicaltrials.
gov. The study was carried out at the George Washington
University (NCT00673244) and at the University of Chi-
cago (NCT01275729). The respective university IRBs
approved the identical protocol. Patients or their surrogates
were required to sign informed consent prior to study
entry. Patients were enrolled from June 2009 through

December 2012. Urine sediment was assessed with the
George Washington Urine Sediment Score (GW USS) as
described previously [18]. Briefly, patients with a GW USS
≥2 have evidence of granular or epithelial cell casts in their
urine sediment.

Study criteria (both cohorts 1 and 2)
Inclusion criteria: (1) age greater than 18 years, admitted
in an ICU; (2) AKIN stage I (6 hours of oliguria (<0.5 ml/
kg/hour) or 0.3 mg/dL increase in serum creatinine or
increase of 150 to 200% above baseline serum creatinine),
or AKIN stage II (12 hours of oliguria (<0.5 ml/kg/hour)
or increase of 200 to 300% above baseline serum creati-
nine); (3) indwelling bladder catheter; (4) presence of
granular or epithelial cell casts on urine sediment
(defined by GW USS ≥2), or fractional excretion of
sodium (FeNa) >1.0%; and (5) patient deemed by the
treating clinical team to be well-resuscitated.
Exclusion Criteria: (1) baseline estimated glomerular fil-

tration rate (eGFR) <30 ml/minute/1.73m2; (2) history of
renal allograft; (3) known pregnancy; (4) evidence of
obstructive uropathy (for example, hydro-ureter); (5) evi-
dence of active bleeding; (6) patients with allergy or known
sensitivity to loop diuretics; (7) achievement of AKIN stage
III criteria; or (8) evidence of volume depletion at the time
of furosemide administration.

Study procedures (cohort 1)
Patients in the SAKInet cohort who met the study criteria,
and who received a furosemide dose of 1.0 mg/kg were
entered into cohort 1. Replacement fluid was not protoco-
lized in this group of subjects. Demographic and clinical
data, urine sediment scores, and outcome data were
abstracted from the case report forms.

Study procedures (cohort 2)
Prior to FST urine was collected and scored with the GW
USS [18]. Urinalysis was performed at each site (EBM-
GW, JLK-UC). A pre-FST FeNa was only available if the
treating team had ordered it for clinical purposes. After
acquisition of informed consent, patients who were loop-
diuretic naïve were given 1.0 mg/kg of intravenous furose-
mide. Because patients who were previously treated with
loop diuretics within the previous 7 days were likely to
have a blunted response over time compared to naïve
patients, this group received an intravenous dose of 1.5
mg/kg (as little as 6 to 8 days of chronic loop-diuretic ther-
apy is associated with a blunted response to furosemide
due to increased distal tubular uptake of sodium in the
thiazide-sensitive nephron segment)[19]. In order to mini-
mize the risk of hypovolemia, urine output was replaced
ml for ml each hour with either Ringers lactate or normal
saline for six hours after the FST. The treating team could
elect not to replace the volume if net volume loss was
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considered clinically desirable. Urine output was measured
hourly for six hours and in total for 24 hours. Any and all
adverse events related to furosemide were recorded includ-
ing, but not limited to, tinnitus, hypokalemia, hypomagne-
semia and hypotension. Patients were followed for 14 days
or hospital discharge, whichever occurred first.

Outcomes
The primary outcome was the progression to AKIN stage
III (need for RRT, increase in serum creatinine of 300%
over baseline, urine output of 0.3 cc/kg/hour × 24 hours)
within 14 days of FST. The secondary outcome was the
composite of achieving stage AKIN III or death within
14 days of the FST.

Statistics
We assessed the distribution of demographic and clinical
variables. Differences between proportions of patients
with certain characteristics were assessed with the chi-
square, Fisher exact, Student t, and Mann-Whitney tests
as appropriate. The primary analysis was to assess the
urine output response to the FST, which was determined
by assessing the area under the curve (AUC) receiver
operating characteristics (ROC) comparing the primary
endpoint of progression to AKIN stage III and the sec-
ondary endpoint of death/AKIN III within 14 days of the

FST. Multivariable logistic regression was used to create
three models. Model 1 is a clinical model using the Acute
Physiology and Chronic Health Evaluation (APACHE II)
score, baseline urinary flow rate (UFR), baseline eGFR,
and AKIN stage II at study entry. Model 2 has all univari-
ate variables with a difference <0.10 entered as covariates.
Model 3 is multivariate, backward elimination, logistic
regression. All means are reported + standard error (SE)
unless otherwise specified. Statistical analysis was per-
formed using SPSS 18.0 (Chicago, Ill). Methodology used
to calculate FeNa, APACHE II score[20], and cardiovas-
cular (CV) SOFA[21] score and eGFR[22] is shown in
Additional file 1.

Results and discussion
We assessed a total of 77 patients, 23 patients from
cohort 1 and 54 from cohort 2 (Figure 1). The mean age
was 65.3 ± 1.6 years; 42.8% were male: Among the
patients 44 (57.1%) were African-American, 23 (29.9%)
were Caucasian, and 10 (13%) were Hispanic (Table 1).
Of the 77 patients, 25 (32.4%) met the primary outcome
of AKIN Stage III and 16 (20.7%) died. Of the total
cohort, 32 (41.5%) met the secondary composite end-
point of AKIN III or death within 14 days of the FST.
Of the 25 patients who progressed to AKIN stage III, 11
(44.0%) received RRT.

Figure 1 Patient flow. eGFR, estimated glomerular filtration rate; FeNa, fractional excretion of sodium; AKIN, Acute Kidney Injury Network.
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In the overall cohort, 24 patients (31%) had chronic kid-
ney disease (CKD). The numbers of patients with diabetes
mellitus (DM), hypertension (HTN), and congestive heart
failure (CHF) were 35 (44%), 60 (78%), and 25 (33%),
respectively. The proportion of patients with CKD, HTN,
CHF, and DM was not statistically different between pro-
gressors and non-progressors (Table 1). There was no dif-
ference in the prevalence of sepsis or recent cardiac
surgery in those who did and did not progress. Baseline
serum albumin concentration was not different between
progressors and non-progressors (2.82 g/dL versus

2.89 g/dL, P = 0.89). Baseline serum lactate concentrations
were not different between those who did and did not pro-
gress (data not shown). The mean cardiovascular Sequen-
tial Organ Failure Assessment (SOFA) score was 1.16 (0.3)
and the mean APACHE II score was 17.8 (1.11); there was
no difference between progressors and non-progressors
(Table 1).
The baseline UFR for the 6 hours before the FST was

74.2 (11.6) ml/hour. The baseline UFR was 95.7 (16.3) and
29.7 (4.2) in the non-progressor group and in the progres-
sor group, respectively (P <0.01). We assessed the capacity

Table 1 Patient characteristics

Variable Combined Non-progressors AKIN III P

n = 77 n = 52 n = 25

Age, years 65.3 (1.6) 63.8 (2.2) 68.2 (1.9) 0.13

Gender, % male 42.8% 36.5% 56.0% 0.14

Race, n (%)

African American 44 (57.1%) 29 (55.6%) 15 (60.0%) 0.63

Caucasian 23 (29.9%) 15 (28.8%) 8 (32.0%) 0.92

Hispanic 10 (13.0%) 8 (15.4%) 2 (8.0%) 0.48

Comorbidities, n (%)

CKD 24 (31.0%) 17 (32.7%) 7 (28.0%) 0.80

Hypertension 60 (78.0%) 41 (78.8%) 19 (76.0%) 0.78

CHF 25 (33.0%) 15 (29.0%) 10 (40.0%) 0.44

DM 35 (44.0%) 22 (41.5%) 13 (52.0%) 0.47

Nephrotoxic exposure, n (%)

NSAIDS 8 (10.0)% 6 (2.0%) 2 (1.0%) 1.00

Aminoglycosides 1 (1.0%) 0 (0.0%) 1 (0.4%) 0.63

Amphotericin 2 (3.0%) 2 (4.0%) 0 (0.0%) 1.00

Contrast 21 (27.0%) 15 (28.8%) 6 (23.1%) 0.79

Post-cardiac surgery 9 (11.7%) 6 (11.5%) 3 (12.0%) 1.00

Sepsis 15 (19.5%) 12 (23.1%) 3 (12.0%) 0.36

Clinical Data

Baseline eGFR, ml/minute/1.73m2 68.6 (4.1) 60.0 (8.8) 73.3 (4.2) 0.15

Baseline UFR (ml/hr) 74.6 (11.6) 95.7 (16.3) 29.7 (4.2) 0.001

Furosemide-naïve, n (%) 29 (37.7%) 23 (44.2%) 6 (24.0%) 0.13

Urine cast score) 2.3 (0.13) 2.1 (0.16) 2.7 (0.23) 0.05

FeNa above 1%, n (%)a 14 (18.0%) 10 (19.2%) 4 (16.0%) 1.00

CV SOFA score 1.16 (0.3) 1.05 (0.2) 1.5 (0.4) 0.37

APACHE II score 17.8 (1.11) 16.5 (1.2) 21.6 (2.5) 0.08

AKIN stage at enrollment, n (%)

AKIN I 41 (53.2%) 34 (65.4%) 7 (28.0%) 0.003

AKIN II 36 (46.7%) 18 (34.6%) 18 (72.0%) 0.003

Outcomes, n (%)

Death 16 (20.7%) 7 (13.4%) 9 (36.0%) 0.04

AKIN stage III 25 (32.4%) N/A 25 (100%) N/A

RRT 11 (14.2%) N/A 11 (44.0%) N/A

Death/AKIN III 32 (41.5%) 7 (13.4%) 25 (100.0%) 0.001

Data are presented as mean ± standard error unless otherwise indicated. CKD, chronic kidney disease; CHF, congestive heart failure; DM, diabetes mellitus;
NSAIDs, non-steroidal anti-inflammatory drugs; eGFR, estimated glomerular filtration rate; UFR, urinary flow rate; CV SOFA, Cardiovascular Sequential Organ Failure
Assessment; APACHE, Acute Physiology and Chronic Health Evaluation; AKIN, Acute Kidney Injury Network; FeNa, fractional excretion of sodium; RRT, renal
replacement therapy; RPP, renal perfusion pressure; n, number of patients; N/A, not applicable. aFeNa not assessed in 29 patients because the George
Washington University Urine Sediment Score was already ≥2 at the time of assessment.
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of the UFR in absolute values (UFR-raw), the UFR cor-
rected for ideal body weight (UFR-IBW), and the UFR
corrected for actual body weight (UFR-ABW) to predict
progression to AKIN stage III. The ROC AUC for UFR-
raw, UFR-IBW, and UFR-ABE was 0.76 (0.09), 0.71 (0.08),
and 0.76 (0.08), respectively (Additional file 1 - Table S2).
Within the combined cohort of patients, 36 (46.8%) had
AKIN stage II by either urine output (UO) or serum crea-
tinine (Scr) criteria at time of enrollment. There were
fewer patients with AKIN stage II amongst non-progres-
sors (n = 18 (34.6%)) compared to progressors (n = 18
(72%)) (P<0.003). In the combined cohort, the mean cast
score was 2.3 (0.13). Non-progressors had a GW USS of
2.1 (0.16) compared to progressors who had a mean GW
USS of 2.7 (0.23) (P = 0.05). The ROC AUC for GW USS
to predict AKIN III was 0.63 (0.07). Patient characteristics
of progressors and non-progressors are shown in Table 1.
Patient characteristics in cohorts 1 and 2 are shown in
Additional file 1 - Table S3.
FST urine output (for each increase of 10 ml of UO) was

predictive of non-progression to AKIN stage III when
baseline patient imbalances were placed into a multivariate
logistic regression analysis (odds ratio (OR) 0.98, 95% CI
0.96, 0.99, P = 0.05). Multivariable logistic analyses are
shown in Additional file 1 - Table S4.

Furosemide stress test characteristics
The FST was well-tolerated with no episodes of hypoten-
sion or any other adverse event deemed attributable to the
test. We assessed the UFR in response to furosemide. The
maximum UFR was within the first 2 to 3 hours (Table 2,
Figure 2). We compared the UFR in response to FST
between those patients that progressed and did not pro-
gress to AKIN stage III (Table 2, Figure 2). For each
hourly interval, progressors had a lower UFR response
compared to non-progressors (P <0.001). We also com-
pared the UFR of FST between subjects who were furose-
mide naïve versus those that were not; there was no
difference between these (Additional file 1 - Table S5).
We tested various combinations of the UO intervals to

assess which had the best discriminative capacity (Table 3).
We found that the sum of the first 2 hours of UO after the

FST had the highest AUC to predict the primary outcome
(0.87 in both cohort 1 and cohort 2). We also assessed the
sensitivity and specificity of various 2-hour urine volumes
to predict the primary and secondary outcomes (Table 4).
The 2-hour UO of 200 ml or less had the best sensitivity
and specificity to predict the primary outcome.
In this pilot study, we have demonstrated that the FST

is feasible and well tolerated in critically ill patients with
AKI. Furosemide administration can be associated with
vasodilation and hypotension, but we did not observe any
of these complications during our study. We took careful
measures to decrease this potential adverse event by
ensuring that the patients were deemed clinically well-
resuscitated, and when appropriate received isovolemic
replacement of UO with isotonic fluids. This may in part
explain why we did not observe any adverse events.
The performance of the FST to predict the primary out-

come was robust and consistent in both cohorts, with a
range in ROC AUC of 0.82 to 0.87 (Table 3). Importantly,
in comparison, the capacity of baseline UFR to predict the
primary outcome had an ROC AUC of 0.71 to 0.76 (Addi-
tional file 1 - Table S2). This finding supports the concept
that the FST offers important clinical information not cap-
tured by baseline UFR alone. In our study, the performance
of the FST was comparable or exceeded the performance
of several AKI biomarkers in predicting AKI progression
[6,8,9]. We found the first 2-hour interval had the best pre-
dictive capacity (0.87), and this interval corresponds with
the maximum UFR in response to the FST. When we
assessed specific UO cutoffs we found that the 2-hour UO
of 200 cc offered the best combination of sensitivity and
specificity (87.1% and 84.1%, respectively). Because acute
tubular necrosis causes intratubular obstruction and back
leak, we were unsure whether the standard UO kinetics in
response to furosemide would be similar to those seen in
patients without renal disease [23,24]. Previous investiga-
tors have shown that in patients without AKI, the maxi-
mum diuretic effect of furosemide occurs within the first
three hours [25]. We showed similar kinetics in our study
(Figure 2). Patients who progressed to AKIN III compared
to those that did not progress were similar in age, CV
SOFA score, APACHE II score, and baseline eGFR, and

Table 2 Furosemide stress test effect on urine flow

Measurement time point Combined Non-progressors Progressed to AKIN III p

n = 77 n = 52 n = 25

Hour 1 251 (35.2) 329 (46.0) 89 (33.0) 0.001

Hour 2 296 (35.8) 392 (42.2) 96 (46.6) 0.001

Hour 3 246 (26.6) 311 (31.7) 109 (35.4) 0.001

Hour 4 207 (24.1) 265 (31.1) 88 (23.4) 0.001

Hour 5 175 (18.6) 219 (22.8) 83 (23.7) 0.001

Hour 6 155 (17.4) 194 (22.3) 75 (17.4) 0.001

Urine volume in ml is shown as mean (standard error). AKIN, Acute Kidney Injury Network; n, number of patients.
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had a similar incidence of comorbidity (Table 1). Nephro-
toxic exposure and clinical phenotype was also similar in
progressors and non-progressors (Table 1). Not surpris-
ingly, the progressor group tended to have more patients
with AKIN stage II, a lower baseline UFR, and a higher
mean cast score prior to FST. In multivariable analyses,
UO response to FST was still statistically associated with
progression to AKIN stage III, even when these variables
were placed into the model (Additional file 1 - Table S4).
The concept of using furosemide to evaluate AKI is not

entirely new. In 1973, Baek and colleagues [26] assessed
15 patients who did not have clinically apparent AKI at
that time, subjected them to a furosemide challenge, and
then evaluated the patients’ free water clearance (CH2O).
They found that CH2O near zero and a poor response to
furosemide signaled that ‘acute renal failure was immi-
nent’. In this modest sized study, the dose of furosemide
was not standardized and the study did not report if the
patients had early stage AKI or any evidence of AKI at all.
Nonetheless, our findings confirm the findings of that ori-
ginal report. Moreover, clinicians regularly give patients
with oliguric AKI a furosemide challenge. However, there

has not been a standardized approach with fluid replace-
ment, early assessment, and appropriate clinical cutoffs to
guide care.
In this study, we have used the FST as a functional test

to predict progressive AKI. Urine biomarkers have been
used previously to predict worsening AKI. The predictive
value of the FST compares favorably with other recent
biomarker studies. Hall and colleagues determined the
ability of urine neutrophil gelatinase associated lipocalin
(NGAL), kidney injury molecule-1 (KIM-1) and IL-18 to
predict worsening AKI (unadjusted AUC values were 0.71,
0.64 and 0.63 respectively) [27]. The TRIBE-AKI consor-
tium found unadjusted AUC values of 0.63 for IL-18, and
0.58 and 0.74 for urinary and plasma NGAL, respectively
[6]. Koyner and colleagues in a separate study found that
π- glutathione S-transferase (GST) predicted progression
to stage III AKI with an AUC of 0.86 [28]. We recently
found that urinary angiotensinogen predicts worsening
AKI with an AUC of 0.70 [17].
Although the findings in this study show good perfor-

mance metrics for the FST, the use of the FST in patients
who are not appropriately resuscitated can be potentially

Figure 2 Urinary output in response to furosemide stress test.
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deleterious. We cannot overemphasize the point that
patients need to be euvolemic before undertaking any type
of furosemide challenge, and that volume replacement is
mandatory in patients who are not obviously volume over-
loaded, as the mean UO in response to the challenge was

over 1.3 L in 6 hours. In addition, the FST should be con-
ducted in an appropriate clinical setting where UO, heart
rate, and blood pressure can be monitored frequently.
The study has several limitations. Since this is a pilot

study, larger more comprehensive studies of the FST are

Table 3 Furosemide stress test receiver operation characteristics for progression to AKIN Stage III

A

Urine output measurement time point ROC AUCs

Cohort 1 Cohort 2 Combined

n = 23 n = 54 n = 77

One hour 0.83 (0.11) 0.82 (0.07) 0.82 (0.05)

Two hours 0.87 (0.09) 0.87 (0.07) 0.87 (0.05)

Three hours 0.84 (0.09) 0.87 (0.07) 0.86 (0.05)

Four hours 0.85 (0.09) 0.87 (0.07) 0.86 (0.05)

Five hours 0.85 (0.09) 0.87 (0.07) 0.85 (0.05)

Six hours 0.85 (0.09) 0.86 (0.07) 0.85 (0.05)

B Furosemide stress test receiver operation characteristics for progression to AKIN stage III or death

Urine output measurement time point ROC AUCs

Cohort 1 Cohort 2 Combined

n = 23 n = 54 n = 77

One hour 0.86 (0.11) 0.74 (0.08) 0.79 (0.06)

Two hours 0.89 (0.09) 0.76 (0.08) 0.81 (0.06)

Three hours 0.87 (0.09) 0.76 (0.08) 0.80 (0.06)

Four hours 0.87 (0.09) 0.76 (0.08) 0.80 (0.06)

Five hours 0.88 (0.09) 0.77 (0.08) 0.81 (0.06)

Six hours 0.87 (0.09) 0.76 (0.08) 0.80 (0.06)

The outcome was Acute Kidney Injury Network (AKIN) stage III only within 14 days of the FST. One hour is the first hour after the furosemide stress test (FST),
two hours is the sum of the first and second hour after the FST. All measurements shown were significant at P <0.01. ROC AUC, receiver operating characteristic
area under the curve.

Primary outcome was Acute Kidney Injury Network (AKIN) stage III or death within 14 days of furosemide stress test (FST). One hour is the first hour after the
FST, two hours is the sum of the first and second hour after the FST. All measurements shown were significant at P <0.01. ROC AUC, receiver operating
characteristic area under the curve; n, number of patients.

Table 4 Sensitivity and specificity of two hour urine thresholds for progression to AKIN stage III

A

Combined cohort

Total urine output over 2 hours Sensitivity Specificity

≤100 ml 90.2% 60.0%

<200 ml 87.1% 84.1%

<300 ml 85.3% 88.0%

<400 ml 66.7% 88.0%

<500 ml 50.5% 88.0%

B Sensitivity and specificity of two hour urine thresholds for progression to AKIN III or death

Combined cohort

Total urine output over two hours Sensitivity Specificity

<100 ml 93.3% 53.2%

<200 ml 90% 74.2%

<300 ml 87.8% 77.4%

<400 ml 66.7% 77.4%

<500 ml 53.3% 77.4%

The primary outcome was Acute Kidney Injury Network (AKIN) stage III within 14 days of the furosemide stress test.

The primary outcome was Acute Kidney Injury Network (AKIN) stage III or death within 14 days of the furosemide stress test.
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warranted in order to fully understand the advantages
and disadvantages of this dynamic functional test.
Although previous clinical trials of furosemide use in
AKI have not shown any beneficial effect, we cannot be
sure that the FST did not impact the natural history of
AKI and therefore affect its predictive performance
[29,30]. Some investigators have suggested that furose-
mide is protective in AKI because its administration
may decrease tubular oxygen consumption, in which
case its early administration in AKI would be protective
[31]. Clinical trials using furosemide early in the course
of AKI are underway and may help determine whether
furosemide has a role in the treatment of AKI [32]. In
addition, we did not specifically study patients with
acute decompensated heart failure, nephrotic syndrome,
or other patient populations with diuretic resistance. As
such, we cannot be certain that the FST will perform
similarly in those patient populations.
Similar to the approach used in acute coronary syndrome

before the advances in thrombolytic therapy, the clinical
syndrome of angina (that is, chest pain and dyspnea) was
followed by a biomarker assessment (that is, creatine phos-
phosphokinase-MB) to further risk-assess the patient. For
those patients who were confirmed with a biomarker, stress
testing (for example, dobutamine or treadmill stress test)
was used to confirm the presence of severe coronary artery
disease. We believe that a similar process can begin in
patients with AKI. Patients with renal angina [33] can be
further assessed with AKI biomarkers. For those patients in
whom AKI biomarkers confirm AKI, FST could be used to
assess the severity and prognosis of AKI. Because indiscri-
minate use of loop diuretics can be harmful, appropriate
resuscitation prior to FST is mandatory, and the FST should
not be used as a primary screening diagnostic. We suggest
that future studies to test this hypothesis be conducted.

Conclusions
In summary, the FST is a novel dynamic functional assess-
ment of tubular function that has good predictive capacity
to identify those patients who will progress to advanced-
stage AKI. Combinations of risk assessment, AKI biomar-
kers, and response to the FST may be used to help answer
the important clinical question: ‘When, or, should I start
RRT in my patient with AKI?’

Key Messages
• The furosemide stress test (FST) is feasible and
well-tolerated in critically ill patients with early AKI.
• The performance of the FST to predict the primary
outcome was robust and consistent in both cohorts,
with a range in ROC AUC of 0.82 to 0.87.
• Patients should be euvolemic before undertaking any
type of furosemide challenge, and volume replacement

is mandatory in patients who are not obviously volume
overloaded.
• FST should be conducted in an appropriate clinical
setting where UO, heart rate, and blood pressure
can be monitored frequently.
• FST is a novel dynamic functional assessment of tub-
ular function that appears to have good predictive
capacity to identify those patients who will progress to
advanced-stage AKI. Further validation studies of the
FST are warranted.
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