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Abstract

Introduction: Glucagon-like peptide-1 (GLP-1) originates from the gastrointestinal system in response to the
presence of nutrition in the intestinal lumen and potentiates postprandial insulin secretion. Also, it acts as an
immune-modulator which has influences on cell-mediated immunity.

The aim of this study was to determine the impact of early enteral nutrition versus late enteral nutrition on plasma
GLP-1 levels and the relationship between GLP-1 changes and cell-mediated immunity.

Materials and methods: The study was designed as a prospective, single-blinded study and carried out in the
neurology intensive care unit (ICU) of a university hospital. Twenty-four naive patients with acute thromboembolic
cerebrovascular events, with National Institute of Health (NIH) stroke scores between 12 and 16, were included. Any
condition interfering with GLP-1 and immunity was regarded as exclusion criterion. Two patients died, and two
dropped out of the study due to complicating conditions.

Patients were randomly subjected to early enteral feeding within the first 24 hours (Group 1), or late enteral
feeding, beginning 48 hours after admission (Group 2) via a nasogastric tube. Calculated daily energy requirement
was supplemented with parenteral nutrition, starting on the first study day for both groups. Blood samples were
obtained before, and at 5, 15, 30, 60 and 120 minutes after the first enteral feeding for GLP-1 assays; this procedure
was repeated on the third day. Before and 24 hours after the first enteral feeding, samples were also taken for
immunological analysis. Clinical observations were recorded.

Pre- and post-feeding plasma GLP-1 changes between the two groups and within groups were evaluated.
Lymphocyte subgroup changes before and 24 hours after the first enteral feeding in relation to GLP-1 changes
were sought as well.

Results: Group 1 and Group 2 exhibited similar GLP-1 levels in the pre-feeding and post-feeding periods for both
the first time and the third day of enteral feeding. Also, no significant change in pre-/post-feeding GLP-1 levels was
observed within groups. T-helper and T-regulatory cells increased, T-cytotoxic cells decreased significantly in Group
1 (P =002 P=0036; P=0.0019), but remained the same in Group 2 after enteral feeding. Positive but statistically
insignificant clinical effects in terms of predisposition to infections (10% vs 40%) and median time of ICU stay

(10 vs 15 days) were observed in Group 1.

Conclusions: Depending on our findings, we propose that early enteral feeding may cause amelioration in
cell-mediated immunity via factors other than GLP-1 in ICU patients with acute thromboembolic stroke. However,
the possible deleterious effects of parenteral nutrition cannot be ruled out.
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Introduction

A hyper-catabolic state and resulting protein energy
malnutrition are closely associated with mortality among
patients in intensive care units (ICU) [1]. Introduction
of early enteral nutrition within the first 24 to 48 hours
after admission has been demonstrated to decrease septic
complications, ameliorate the course of primary disease
and shorten the stay in the ICU when compared with
parenteral nutritional support [2-6]. These positive find-
ings were attributed to the prevention of worsening in
intestinal permeability, interruption of the catabolic
process and restoration of immune response [7].

Incretin hormones originate from the gastrointestinal
system in response to the presence of nutrition in the
intestinal lumen and potentiate postprandial insulin
secretion. Glucagon-like peptide-1 (GLP-1) is the best
known incretin hormone and is secreted principally
from the L-cells of the distal ileum. The main stimulant
of GLP-1 secretion is the presence of food awaiting
absorption in the intestinal lumen [8]. In a recent study,
GLP-1 has been demonstrated to act as an immune-
modulator and influence cell-mediated immunity [9]. Its
receptors have been shown on T-receptors in animal
models, and their stimulation with supraphysiological
concentrations of GLP-1 has been demonstrated to reg-
ulate the proliferation of lymphocytes and peripheral T
regulatory (TREG) cells [10,11]. The TREG cells origi-
nate from the thymus and play a pivotal role in the pre-
vention of autoimmune diseases by establishing immune
tolerance. They control immunity-mediated injury of
the host by limiting inflammation and tissue damage
[12]. They have also been demonstrated to act as an
immune-modulator following acute stroke, and to limit
the extent of the damaged tissue area by controlling
cellular inflammation [13].

To our knowledge, there has been no study inquiring
about the relationship between early enteral nutrition
and changes in plasma GLP-1 levels, and also the resulting
clinical implications among ICU cases. In this clinical trial,
our aim was to determine the impact of early enteral
nutrition within the first 24 hours of admission, and late
enteral nutrition; beginning 48 hours after admission, on
plasma GLP-1 levels of acutely ill ICU patients with
thromboembolic stroke. The possible relationship between
the changes in GLP-1 and cell-mediated immunity was
sought, as well.

Materials and methods

Patient selection

Patients between 40 and 70 years old admitted to our
neurology ICU with the diagnosis of an acute throm-
boembolic cerebrovascular event were included in the
study. Admission within the first 24 hours of the onset
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of symptoms with any treatment and exhibiting National
Institute of Health (NIH) stroke scores [14] ranging
between 12 and 16 were strictly sought for each indivi-
dual at inclusion.

Accompanying pregnancy, diabetes, renal or hepatic
failure, malignancy, chronic inflammatory bowel disease,
previous gastrointestinal resection for any cause, and
use of any medication that might interfere with immune
system were regarded as exclusion criteria. Concomitant
fluid and electrolyte imbalance, gastroparesis of any
etiology were also considered as ineligibility.

This study was approved by the Ethics Committee
of Baskent University (Project no: KA11/63) and was
supported by the Baskent University Research Fund.

Informed consent was obtained from first degree
relatives of the participants.

Criteria for being dropped before completion of the
study period were determined as:

- Death from any cause,

- Onset of multi-organ failure, renal or hepatic
failure, adult respiratory distress syndrome (ARDS),

- Co-presentation of any two systemic inflammatory
response syndrome (SIRS) symptoms [15],

- Detection of microorganisms in blood cultures in
addition to SIRS,

- Obligatory cessation of nasogastric intubation due
to aspiration pneumonia or any other cause,

- New-onset medical conditions indicating the use of
any medication that was not included in the standard
treatment protocol of stroke, such as glucocorticoids
that might interfere with the immune system.

Study protocol

The study was designed in a prospective and single-
blinded fashion (Figure 1). Patient allocation was per-
formed sequentially and eligible patients were separated
into two groups:

Group 1: Those who were subjected to enteral feeding
within the first 24 hours of admission (early enteral
feeding group)

Group 2: Those who were fed with total parenteral
nutrition within the first 48 hours of admission, then
were subjected to enteral feeding (late enteral feeding
group)

The European Society of Parenteral and Enteral Nutri-
tion (ESPEN) guideline for enteral and parenteral nutrition
in intensive care units, which had been already in use in
our ICU, was used [16,17]. Accordingly, daily caloric
requirement was determined as 25 kcal/kg/day for each
participant.

Enteral nutrition was supplied via a nasogastric tube
(NGT) which was inserted by an ICU physician.
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Figure 1 A scheme demonstrating the study protocol.

The early enteral feeding group (Group 1) was given the
commercially available enteral nutrition liquid JEVITY®
Abbott) within the first 24 hours via nasogastric intubation.
Every 100 ml of this liquid contained 105 kcal energy with a
combination of 14.05 g carbohydrates, 3.07 g fat and 4 g
protein. Keeping with the ICU algorithm, enteral nutrition
was started slowly with divided doses [16,18]; 10 ml/h (10.5
kcal/h) for the first six hours on the first day of enteral feed-
ing, then 20 ml/h (21 kcal/h) for the following 12 hours and
30 ml/h (31.5 kcal/h) thereafter. The deficit in daily energy
requirement was supported with supplemental parenteral
nutrition (PN). The late enteral feeding group (Group 2)
was given the daily recommended caloric requirement
(25 kcal/kg/day) parenterally with the parenteral nutritional
solution for the first 48 hours. Following this period, enteral
nutrition was started using the same protocol mentioned
for Group 1. In order to avoid caloric deprivation and
complete the daily recommended caloric requirement,
supplemental parenteral nutrition was given to both groups
during enteral nutrition. To enable gastric tolerance, the
amount of calories gained from enteral nutrition was 60%
of the calculated calories within the first 72 hours and
the deficit was supplied with PN as mentioned above.
Details of daily nutritional support are given in Table 1.

Before the first divided dose of the first enteral feeding
(0. minute) and then at 5, 15, 30, 60 and 120 minutes
after feeding, venous blood samples were obtained,

centrifuged and stored at -40°C for GLP-1 analysis in
both the early and late feeding groups. The same proce-
dures were repeated on the third day after the first ent-
eral feeding. Capillary glucose measurements were
performed with a glucometric method before and after
two hours of enteral feeding for all cases.

Additional blood samples in tubes containing EDTA
were obtained from both of the groups, before the first
enteral feeding and 24 hours later for immunological ana-
lysis. Leukocyte, lymphocyte count and CD4+/CD25high/
foxP3+ (TREG cells), CD3 (total T lymphocytes), CD4
(T-helper cells) and CD8 (cytotoxic T cells) cell percen-
tages were calculated by flow-cytometry device.

Daily NIH stroke scores of all patients were recorded
[14]. The number of patients who required mechanical
ventilation, time spent on mechanical ventilation and in
ICU, and the survival rates were recorded. Patients who
exhibited features of infection and required antibiotics
were documented.

Analyses

Glucagon-like peptide-1 assays were performed using a
GLP-1 (active) enzyme-linked immunoassay kit (cat #
EGLP-35K, Linco Research, Inc., St. Charles, MO, USA).
The lowest reported detection limit was 2 pmol/l;
reported within-assay coefficient of variation (CV) was
8% at low and high concentrations (range 4 to 76 pmol/l),
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Table 1 Details of daily energy supply of Group 1 and Group 2 regarding to EN and PN contribution (mean * SD)

GROUP 1 GROUP 2

#Study day Enteral N (kcal) Parenteral N (kcal) Enteral N (kcal) Parenteral N (kcal)
#1 525 21 1,520 + 35 - 1,950 £ 75

#2 790 + 28 1,220 + 24 - 1,950 £ 75

#3 1,025 + 24 985 + 50 515+ 24 1435 + 21

#4 1,245 + 50 815 + 24 755 + 21 1,185 + 50

#5 1,560 + 74 505 + 78 1,015 + 42 960 + 24

#6 1,805 + 63 255 + 51 1,200 + 54 755 + 50

#7 2,045 + 102 - 1,510 £ 74 445 + 67

and between-assay CV was 12% at 4 to 8 pmol/l and 7%
at 28 to 76 pmol/l [19]. For GLP-1 ELISA assay blood
samples were collected in ice-cooled Vacutainer™ EDTA-
plasma tubes. DPP-IV inhibitor (Linco Research, Inc., Cat
# DPP4, 10 pl DPP-1V inhibitor per milliliter of blood)
was added immediately (<30 seconds) after collection to
prevent enzymatic degradation of GLP-1. Tubes were
inverted to mix and placed in an ice bath, and within 30
minutes were centrifuged at 1,000 x g for 10 minutes in a
refrigerated centrifuge. Then plasma specimens were
stored at -70°C until analysis.

Capillary glucose measurements were performed with
the Medisense Precision QID (r = 0.979 with “YSI23AM
Glucose Analyzer”).

Flow cytometric gating and analyses

Data were analysed with FACS DIVA software (San Jose,
CA, USA). All reagents and solutions were supplied
from BD BioScience Company (San Jose, CA, USA).
Gating analyses were performed in a blinded fashion.
Cells were gated for the analyses of lymphocytes by
side/forward scatter and gating for T cells was based on
CD3 expression. Thereafter, the CD3 positive and CD4
positive cells were grouped in T helper (Th) and CD3
positive and CD8 positive cells (Tc) in T cytotoxic
population. Gates for expression of CD25 in the CD4
population (CD4+CD25+) were selected and FoxP3
expressions were detected in these cells (CD4+CD25
+Fox P3+) (Figure 2).
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Figure 2 Characterization of T lymphocyte, T-helper, T-cytotoxic and foxP3 expressions. Lymphocytes had been selected from side/
forward scatter and CD3, CD3CD4, CD3CD8 cells detected by using sequential gating. CD25+ foxP3+ TREG cells were shown within the CD4+ T
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Statistical analyses

A power calculation was conducted to determine the
number of samples for cases required to perform this
study in order to achieve 80% power for the GLP differ-
ence in an average of 0.2 at 5% significance level. This was
achieved by using the EPI Info software package version
3.5.1. The minimum required number of patients was
determined as 20. Statistical analyses were performed
using the statistical package SPSS v 17.0. For each contin-
uous variable, normality was checked by Kolmogorov
Smirnov and Shapiro-Wilk tests. Comparisons between
groups were applied using one-way Student’s ¢-tests for
normally distributed data and Mann Whitney test was
used for the data not normally distributed. The categorical
variables between the groups were analysed by using the
Chi square test. The GLP-1 and other pre-post measured
data were processed using the Repeated Measure Analyses.
Receiver operating characteristic curves (ROC curves)
were constructed and the areas under the curve (AUC)
were calculated. Values of P < 0.05 were considered as
statistically significant.

Results

Twenty-four eligible cases out of 67 admissions were
recruited between December 2011 and May 2012. During
follow-up, two patients died before the end of the study
period (one patient from each group). One patient devel-
oped acute renal failure (in Group 2) and one had aspira-
tion pneumonia in the ICU (in Group 1); they were taken
out of the study.

From a total of 20 patients, 10 in each group completed
the study. The groups were compared according to age,
gender, initial blood glucose level, NIH stroke score on
admission, baseline GLP-1 level, total leucocyte and
lymphocyte counts, CD3 (T lymphocyte), CD3CD4
(T helper cell), CD3CD8 (T cytotoxic lymphocyte) and
TREG cell amounts as exact numbers on admission. No
statistically significant difference was found (Table 2).

The daily median energy requirement in the Early Ent-
eral Feeding Group was determined as 2,050 (minimum:
1,700 to maximum: 2,225) kcal/day. On the first day of
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feeding, 525 + 21 kcal of it was supplied from enteral
liquid and 1,520 + 35 kcal from PN nutrition liquid. In
other words, 25% of the calculated energy requirement
was obtained from enteral liquid. On the other hand,
the daily median energy requirement in the Late Enteral
Feeding Group was determined as 1,950 (minimum 1,650
to maximum 2,375) kcal/day. The energy needs of this
group were supported only by the total parenteral nutri-
tion for the first 48 hours. Total energy supplied on the
first enteral feeding day was statistically indifferent
between the two groups (P = 0.37).

Comparison of changes in GLP-1 levels between the two
groups and within groups

Documentation of median (minimum to maximum)
GLP-1 measurements with regard to time points of enteral
feeding both in Group 1 and Group 2 are given in Table 3.
The early enteral feeding group (Group 1) and late enteral
feeding group (Group 2) exhibited similar plasma GLP-1
levels before the first enteral feeding (P = 0.39). The GLP-
1 curves of the groups following the first enteral feeding
were statistically indifferent, as well (P = 0.60). Plasma fast-
ing GLP-1 levels on the third day after the first enteral
feeding did not differ between them (P = 0.91). The third
day post-feeding GLP-1 curves of the groups were also
statistically indifferent (P = 0.09) (Table 4).

Plasma pre-feeding GLP-1 levels on the first and third
day were compared with post-feeding GLP-1 curves for
each group. There was no difference for Group 1 or for
Group 2 between the pre-feeding GLP-1 levels and
post-feeding GLP-1 curves on the first and third day
(for Group 1; P = 0.97 and P = 0.10, for Group 2; P = 0.89
and P = 0.12, respectively).

The GLP-1 peak secretion time was 15 minutes after
the first enteral feeding for both groups. According to
the area under the curve (AUC) method, the GLP-1
peak level was 11.2 and 12.9 pmol/l for Group 1 and
Group 2, respectively (P = 0.35).

The GLP-1 peak secretion time was 60 minutes for
both groups on the third day after the first enteral feed-
ing. Peak GLP-1 plasma levels exhibited statistically

Table 2 Baseline characteristics of groups and comparison of study parameters

Group 1 (n = 10) Group 2 (n = 10) P
Male (M)/Female (F) 7 M/3 F 5M/5F -
Age (years) 67.7 £ 106 659 + 108 0.712
NIH stroke score 145 + 23 148 = 1.1 0.718
Capillary glucose (mg/dl) 1359 + 166 1418 £ 254 0.545
GLP-1 (pmol/l) 7.10 + 352 857 + 391 0.389
Lymphocyte (n/mm3) 681.95 (321.9 to 37454) 688.2 (490.5 to 2,014) 0479
Leukocyte (n/mm3) 11.8 (83 t0 20.2) 106 (4.5 to 18.5) 0.894
CD3 cells (cell/pl) 414.15 (167.39 to 2,857.74) 476.8 (296.3 to 1,2084) 0.876
CD3CDA4cells (cell/pl) 229.17 (969 to 1,583.1) 269.27 (1364 to 821.7) 0674
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Table 3 Documentation of median (minimum-maximum) GLP-1 measurements with regard to time points of enteral

feeding both in Group 1 and Group 2

GLP-1 (pmol/L) Group 1 Group 2 P
Prefeeding 53 (4.2 to 14.6) 75 (3.8 to 14.8) 0.384
At 5 minutes after 1st feeding 59 (4.1 to 12.0) 7.2 (43 to 124) 0912
At 15 minutes after 1st Feeding 60 (351t0 17.2) 83 (4.0 to 12.9) 0406
At 30 minutes after 1st Feeding 56 (3.9 to 106) 6.5 (3.7 to 13.3) 045
At 60 minutes after the first feeding 5.1 (44 to 10.6) 78 (49 to 12.5) 0.096
At 120 minutes after the first feeding 55 (4.3 to 10.8) 6.3 (4.3 to 16.1) 0481
Prefeeding on the third day 73 (4410 116) 69 (3.8 to 13.5) 0912
At 5 minutes after feeding on the third day 76 (42 to 13.7) 6.4 (4.6 to 24.8) 0.971
At 15 minutes after feeding on the third day 8.3 (44 to 16.5) 6.6 (4.2 to 24.0) 0.971
At 30 minutes after feeding on the third day 85 (43 to 187) 7.2 (4.7 to 18.1) 0912
At 60 minutes after feeding on the third day 6.6 (4.8 to 94) 9.2 (45 to 16.0) 0.143
At 120 minutes after feeding on the third day 59 (45 to 16.1) 62 (4110 21.8) 0.091

insignificant difference between Group 1 and Group 2;
18.7 vs 18.1 pmol/l, respectively (P = 0.49) (Figure 3).

Changes in lymphocytes and lymphocyte subgroups
Baseline leucocyte, lymphocyte counts, T lymphocyte
(CD3), T helper (CD3CD4), T cytotoxic (CD3CD8) and
TREG cell amounts were similar between the two groups
(P > 0.05). Twenty four hours after the first enteral feed-
ing, T-helper and TREG cell amounts increased signifi-
cantly in the early enteral feeding group (P = 0.02 and
P = 0.036, respectively). However, similar increasing
ratios were not observed in the late feeding group
(P =0.36 and P = 0.49 for T-helper and TREG cells,
respectively). The number of T-cytotoxic cells decreased
significantly in Group 1, but not in Group 2 (P = 0.0019
and P = 0.23, respectively) (Table 5).

Correlation between GLP-1 and lymphocyte changes
There was no correlation between the change in GLP-1
levels both on the first and the third day of enteral feed-
ing, and the change in lymphocyte subgroups at baseline
and 24 hours after feeding in Group 1 and Group 2
(Table 6).

Table 4 Mean GLP-1 levels in relation to enteral feeding
in both groups

GLP-1 (pmol/L) Group1 Group2 P

Before first enteral Feeding 7.10 + 857 + 0.389
3.52 391

*Following first enteral feeding 6.74 + 768 + 0.60
2.39 247

On the third day before enteral 757 £ 784 091

feeding 2.84 337

*On the third day following enteral 785+ 971 + 0.09

feeding 237 446

*The measurements were performed at 5, 15, 30, 60 and 120 minutes of
feeding

Changes in plasma glucose levels

Glucose peak time obtained by the bedside glucometric
method was the first measurement time (baseline fasting
glucose) for both groups. The two groups exhibited sta-
tistically insignificant differences between the baseline
glucose values and seven-day follow-up values obtained
from AUC calculations (P = 0.47). There was negative
correlation (50.1%) between the capillary glucose AUC
and GLP-1 curve in all cases (r = -0.051, P = 0.039).

Clinical implications

The NIH stroke scores exhibited statistically significant
decline in both groups: P = 0.024 for Group 1 and P =
0.026 for Group 2. The amelioration in NIH scores
began after the third day of hospitalization for all. The
median percentage change of NIH stroke score in
Group 1 was 6.7% and 6.5% for Group 2 (P = 0.26).

The median ICU stay of patients was 10 days (mini-
mum: 3 to maximum: 29 days) in Group 1 and 15
days (minimum: 5 to maximum: 35 days) in Group 2,
(P = 0.165).

One patient (10%) in Group 1 and four patients (40%)
in Group 2 were diagnosed with infection (P = 0.30).

One patient in each group required mechanical venti-
lation (P = 0.10). After completion of study period one
patient (10%) in Group 1 and two patients (20%) in
Group 2 died (P = 0.50).

Discussion

In this study, we did not detect any change in serial
plasma GLP-1 measurements of ICU patients with acute
thromboembolic stroke subjected to early and late
enteral feeding performed via nasogastric route accord-
ing to standard criteria [16]. There had also been no
difference between the pre-feeding GLP-1 levels and
enteral feeding GLP-1 curves of cases within the groups.
We additionally demonstrated that early enteral feeding
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feeding peak GLP-1 levels (at 60 minutes) in cases (P = 0.63 for
Group 1, P = 0.28 for Group 2).

significantly increased the number of T helper and
TREG cells, and decreased the amount of T cytotoxic
cells with any change in plasma GLP-1.

We decided to perform this investigation on patients
with acute thromboembolic stroke because of their acute
illness status. Thereby, we aimed to avoid the impact of
any interfering situation. Recently demonstrated neuro-
protective properties of GLP-1 via GLP-1 receptors on
neurons was the other reason [20-24].

Current study did not exhibit the presumed postpran-
dial increase at GLP-1 levels in both early and late enteral
feeding groups. These findings may be interpreted in two
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ways. The first explanation is the impact of meal kinetic
effect on GLP-1 secretion which is determined princi-
pally by meal size [25]. Large amounts of nutrition have a
greater impact on GLP-1 secretion than small amounts
[26,27]. In our study, keeping in accordance with the
ESPEN guideline for enteral nutrition [16,18], for avoid-
ing the risk of aspiration pneumonia and feeding diar-
rhea, our patients were fed with standard amounts of a
liquid mixed meal. Small amounts of the liquid meal,
10 to 30 cc at introduction, may not be sufficient for the
stimulation of GLP-1 secretion. The second explanation
is the possible physiological transient hypercortisolism
originating from the stress caused by acute stroke. Stu-
dies on critically ill patients have demonstrated that low
GLP-1 levels accompanying stress hyperglycemia is nega-
tively correlated with plasma cortisol levels [28-30]. In a
recent study, exogenous GLP-1 infusion has been
demonstrated to attenuate stress hyperglycemia in ICU
patients [31]. This study may underline the inadequacy of
incretin response in ICU patients and support our
findings.

Post-ischemic inflammation resulting from focal
hypoperfusion-induced oxidative injury causes perma-
nent neuronal damage in ischemic stroke [13]. Cellular
immunity by T-lymphocytes plays a pivotal role in
post-ischemic inflammation. T-regulatory cells (TREG)
characterized by the expression of CD4CD25 surface
marker and foxP3 transcription marker at flow-cytometry,
are immune tolerance elements that inhibit the magnitude
of immunopathological damage via decreasing the severity
of T-cell mediated immune response and avoiding its
permanency [32]. These cells have experimentally been
shown to decrease infarct damage in acute stroke [33]. In
recent animal models, the presence of GLP-1 receptors on
T lymphocytes has been demonstrated and experimentally
their stimulation has been shown to increase peripheral
TREG cells [10,11]. Besides, factors other than GLP-1 that
may act on TREG cells should not be ignored. The
increasing number of TREG cells in our early enteral
feeding group without accompanying GLP-1 elevation
may be a good example of this proposal.

A limited number of studies investigating the influ-
ence of nutritional state and some micronutrients on
cell-mediated immunity and early enteral nutrition have
been shown to ameliorate cell-mediated immunity in
ICU patients [34,35]. However, the impact of early enteral
nutrition on TREG cells is obscure and there is no rele-
vant study. In this trial, among ICU patients with acute
stroke, we clearly demonstrated that early enteral nutrition
resulted in augmentation of T helper and TREG cell
amounts. T-helper cells are very well known to increase
the TREG cell population via their secretory cytokines
[32], so together the increase of these cell groups is not a
surprise.
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Table 5 Comparison of hematologic parameters with exact number of lymphocytes and subgroups at *pre-feeding
and **24 hours after first enteral feeding in Group 1 and Group 2

Group 1 (n = 10) P Group 2 (n = 10) P

Leukocyte (cell/mm?3) *12.02 £ 368 0.28 *10.74 £ 4.25 0.32
**13.00 £ 291 **11.14 £ 358

Lymphocyte (cell/pl) *681.95 (3219 to 3,7454) 0.34 *688.2 (490.5 to 2,014) 0.18
**725.65 (1309 to 4,620) **8454 (234 to 1,584)

CD3 cells (cell/pl) *414.15 (167.39 to 2,857.74) 033 *476.8 (296.3 to 1,2084) 0.65
**676.12 (82.1 to 2,684.22) **549.7 (1514 to 947.4)

T helper cells (cell/pl) *229.17 (969 to 1,583.1) 0.02 *269.27 (1364 to 821.7) 0.36
*¥469.22 (533 to 1,919.2) *¥2124 (614 to 636.6)

T cytotoxic cells (cell/pl) *202.23 (24.6 to 746.7) 0.019 *168.99 (83.5 to 338.3) 023
**181.32 (55 to 1,123) **1714 (76.1 to 361.8)

TREG cells (cell/pl) *0.22 (0 to 2.46) 0.036 *0.24 (0 to 1.14) 049

**0.41 (04 to 4.07)

**0.21 (0 to 0.53)

Data were given as the median (min-max) number of cells/3 mm or pl.

The clinical outcomes of early enteral feeding had also
been investigated in the present study. Even though sta-
tistically insignificant, probably due to the low number
of patients, median ICU stay and risk of infection
tended to be lower with early enteral nutrition. This
finding has been supported by a retrospective study per-
formed on 4,049 critically ill, mechanically ventilated
patients [36]. The decreasing number of cytotoxic T
cells in our early enteral feeding group may be consid-
ered as a contradiction to the declining risk of infection
in this group. Cytotoxic T cells are well-recognized
members of cell-mediated immunity via their direct
cytolytic effect [32]. It has been recently demonstrated
that the immune modulatory effects of TREG cells are
partially mediated by lowering the cytotoxic T cell number
and thereby slowing the response rate of cell-mediated
immunity [37,38]. Depending on the data mentioned
above, we may propose that the decreasing cytotoxic T
cell amounts in our early enteral feeding group may be
related to their increasing TREG cell counts. In the same
group, a decrease in risk of infection, in spite of declining
T cytotoxic cells, may be attributed to the increase in
T-helper cells, modulating humoral immunity via cyto-
kines, and their impact on natural killer cells [32].

The link between early enteral nutrition and the increas-
ing T-helper and TREG cell population was not via GLP-1
and blood glucose changes. The curves of blood glucose
changes were similar between Group 1 and Group 2.

Early enteral nutrition has been shown to positively
affect cellular immunity among surgical ICU patients [36].

In a study performed on neurological and non-neurological
ICUpatients, GLP-1 levels have been found to be indif-
ferent, as well [28]. According to these studies, we do not
expect to see different results in various ICU patient
groups except for cases with interfering factors.

There are a few pitfalls of the present study. The
immune-modulating and neuroprotective properties of
GLP-1 are reported primarily in animal models when
pharmacological doses of GLP-1 (or an agonist) are
administered. Hence, infusion of GLP-1 (or an agonist)
would have been an alternative approach for our study.
However, the decision of not infusing GLP-1 or a GLP-1
agonist into acutely-ill ICU patients was made, taking the
ethical issues into consideration. As is known, GLP-1
infusion is not free of complications. For instance, it may
increase the risk of aspiration pneumonia via decreasing
gastrointestinal system (GIS) motility [31]. Deane et al.
has shown that in critically ill patients with normal
gastric emptying during placebo infusion, GLP-1 slowed
gastric emptying substantially but, if the gastric emptying
was delayed during placebo infusion, GLP-1 had no
detectable effect on gastric emptying [39]. Therefore, the
gastrointestinal effects of GLP-1 appear to be diminished
in the critically ill.

Performing GLP-1 measurements at different time
points, even though equally matched with regard to ent-
eral feeding times, may be considered as a second limita-
tion. This situation may be regarded as an inhomogeneity
with regard to timing. Nevertheless, the statistically in-
significant difference between the GLP-1 levels of both

Table 6 Documentation of the correlation analysis between GLP-1 change and change in lymphocyte subgroups (%) in

all patients (n = 20)

GLP-1 (pmol/l) (n = 20)

T-helper cell change (%)

T-cytotoxic cell change (%) TREG cell change (%)

Baseline GLP-1
GLP-1 curve following the first enteral feeding
GLP-1 curve following enteral feeding on the third day

r=-019 P =040
r=-045,P = 045
r=-047,P =036

r=028 P=022
r=043, P=0053
r= 1045, P = 0062

r=0035 P=088
r=021,P=037
r=0.17,P= 046
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groups before the first enteral feeding, makes this inhomo-
geneity clinically worthless.

Parenteral nutrition is a potential and substantial con-
founder. It can be argued that the extra parenteral nutri-
tion is the cause of the observed changes in lymphocyte
subgroups and clinical implications, rather than early
enteral nutrition in our study. In Casaer’s study, the
negative outcomes observed by introduction of parenteral
nutrition early within the first two days when compared
to late (after eight days) are attributed to the changes in
blood glucose levels [40]. Accordingly, parenteral nutri-
tion may be considered as an important factor when
interpreting the results of such studies. In our study,
taking the negative impact of malnutrition into account,
the daily energy requirement was completed with enteral
and parenteral nutrition where needed within each parti-
cipant. The results might be confusing if there was a
mismatch at the energy supply for both groups. In his
study, Casaer defines late parenteral supply as “after
8 days”. However, in our study, every participant received
parenteral nutrition beginning on the first day. Mean
glucose measurements of our groups were statistically
indifferent both at inclusion and during the following
seven days (P = 0.47). Finally, although the plasma sam-
ples were obtained at different time points of acute
illness, mean GLP-1 levels of our groups before first ent-
eral feeding were similar (P = 0.389). Lymphocyte counts
and subgroups’ amounts were also indifferent (shown in
Table 5). Depending on the information mentioned
above, it is reasonable to say that parenteral nutrition
does not have a negative impact on our results.

Conclusions

In our study the number of T-helper lymphocytes and
TREG cells were found to increase with early enteral
feeding in neurology ICU patients. The changes in lym-
phocyte subgroups were not related to GLP-1 levels. The
clinically positive effects of lymphocyte changes were
demonstrated, as well. Considering the lack of GLP-1
response of our patients to enteral feeding, we think that
GLP-1-based therapies may have some additional benefits
in this area of expertise. This hypothesis needs to be
proven with further experimental and clinical studies.

Key messages

« Serial plasma GLP-1 measurements exhibited sta-
tistically insignificant differences with early enteral
feeding in acutely ill neurology ICU patients.

o The number of T helper and TREG cells were
shown to increase and T cytotoxic cells were shown
to decrease with early enteral feeding in acutely ill
neurology ICU patients. However, the impact of
early parenteral support given to complete the calcu-
lated daily energy requirement cannot be denied.
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+ Positive clinical effects of early enteral feeding on
predisposition to infections and ICU stay time were
observed.

+ Cell-mediated immunity is assumed to ameliorate
via factors other than GLP-1 among these patients.
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