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Abstract

Introduction: We have recently demonstrated that metformin intoxication causes mitochondrial dysfunction in
several porcine tissues, including platelets. The aim of the present work was to clarify whether it also causes
mitochondrial dysfunction (and secondary lactate overproduction) in human platelets, in vitro and ex vivo.

Methods: Human platelets were incubated for 72 hours with saline or increasing doses of metformin (in vitro
experiments). Lactate production, respiratory chain complex activities (spectrophotometry), mitochondrial
membrane potential (flow-cytometry after staining with JC-1) and oxygen consumption (Clark-type electrode) were
then measured. Platelets were also obtained from ten patients with lactic acidosis (arterial pH 6.97 ± 0.18 and
lactate 16 ± 7 mmol/L) due to accidental metformin intoxication (serum drug level 32 ± 14 mg/L) and ten healthy
volunteers of similar sex and age. Respiratory chain complex activities were measured as above (ex vivo
experiments).

Results: In vitro, metformin dose-dependently increased lactate production (P < 0.001), decreased respiratory chain
complex I activity (P = 0.009), mitochondrial membrane potential (P = 0.003) and oxygen consumption (P < 0.001)
of human platelets. Ex vivo, platelets taken from intoxicated patients had significantly lower complex I (P = 0.045)
and complex IV (P < 0.001) activity compared to controls.

Conclusions: Depending on dose, metformin can cause mitochondrial dysfunction and lactate overproduction in
human platelets in vitro and, possibly, in vivo.

Trial registration: NCT 00942123.

Introduction
Metformin is the drug of choice for adults with type 2
diabetes [1]. It is the seventh most frequently prescribed
generic drug in the US (fifty-nine million prescriptions in
2011) [2] and is currently taken by almost two per cent
of the Italian population [3].
Metformin is a safe drug [4] but lactic acidosis can

develop rarely, especially when renal failure leads to acci-
dental intoxication [5-7]. Sixty-six similar cases have been
reported to the Poison Control Centre of Pavia, Italy, over

the last five years, resulting in seventeen deaths (Dr. Sarah
Vecchio, unpublished data). Since metformin use is con-
stantly increasing (4% to 8% rise in prescriptions per year
in the US and Italy) [2,3], related episodes of lactic acidosis
will possibly become less uncommon [8].
The pathogenesis of lactic acidosis during metformin

therapy remains poorly understood, particularly when no
other major risk factors (such as hypoxia, tissue hypoper-
fusion or liver failure) can be identified [9]. Nonetheless,
growing evidence suggests that metformin intoxication
may directly induce lactic acidosis [10], possibly by altering
liver lactate metabolism. In fact, metformin readily accu-
mulates in hepatocytes that express the Organic Cation
Transporter (OCT) 1 [11] and dose-dependently inhibits
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their mitochondrial respiration [12-15]. Therefore, metfor-
min intoxication may either increase liver lactate produc-
tion or decrease clearance (along with gluconeogenesis)
[13,16]. The fact that OCT-1 knock-out mice do not
develop lactic acidosis in response to (non severe) metfor-
min overdose does support this model [17].
However, we have recently noted that animals [18] and

humans [7] with lactic acidosis due to severe metformin
overdose have a 30% to 60% decrease in their global oxy-
gen consumption. This finding can hardly be explained
solely by the inhibition of hepatic respiration. Moreover,
metformin-intoxicated pigs have clear signs of mitochon-
drial dysfunction not just in the liver, but also in the heart,
kidney, skeletal muscle and platelets [18]. Others have
observed, usually in vitro, that metformin overdose can
alter mitochondrial activity in several other tissues includ-
ing animal cerebral cortex [19], pancreatic beta cells [20],
neutrophils [21] and oocytes [22] and human endothelial
[23], carcinoma-derived (KB) [24] and adrenal [25] cells. If
extra-hepatic lactate production also globally increases
(while hepatic lactate clearance decreases), then lactic
acidosis will easily develop.
The aim of the present work was to clarify whether met-

formin intoxication alters the mitochondrial function of
human platelets, taken as an example of extra-hepatic
tissue. We decided to work with these cells after observing
that, in pigs, metformin overdose similarly inhibits the
mitochondrial activity of platelets and other more vital,
but less accessible, organs [18].

Materials and methods
The effects of metformin on human platelet mitochondria
were first investigated in vitro and then ex vivo. Informed
consent was always obtained. The study was approved by
the Ethics Committee of the Fondazione IRCCS Ca’
Granda - Ospedale Maggiore Policlinico (Milan, Italy) and
registered with ClinicalTrials.gov (NCT 00942123).

in vitro experiments
Platelet-rich-plasma (PRP) was obtained from whole
blood of healthy donors, anticoagulated with citrate-
phosphate-dextrose and then centrifuged (1000 g for 10
min). Final platelet concentration was 389 ± 55 × 109/L
and total leukocyte count was 24 ± 22 × 106/L. It was
incubated for 72 hours with saline (NaCl 154 mmol/L) or
metformin (Sigma Aldrich, St. Louis, MO, USA) diluted
in saline at a final concentration of 1.66 mg/L (0.01
mmol/L; therapeutic dose), 166 mg/L (1 mmol/L; toxic
dose) or 16,600 mg/L (100 mmol/L; factitiously and
extremely high dose), while stored at room temperature
in a plastic bag permeable to air (plasma oxygen tension
was always > 100 mmHg (13.3 kPa)). At the end of the
incubation, plasma pH, bicarbonate, and glucose levels
were measured with a blood gas analyzer (ABL 800 Flex,

Radiometer GmbH, Willich, Germany) and platelets
counted with a hemocytometer. Platelet respiratory chain
complex activities, mitochondrial membrane potential
and oxygen consumption were assessed as reported
below.
In a second set of experiments, PRP was similarly incu-

bated with saline or metformin (16,600 mg/L) but plasma
pH, lactate and platelet mitochondrial membrane poten-
tial were measured every 24 hours, up to 72 hours (rather
than just at 72 hours).
In a third set, PRP was incubated for 72 hours with lac-

tic acid (30% in water) (Sigma Aldrich) or metformin
(16,600 mg/L) plus sodium bicarbonate. Lactic acid was
added to PRP every 24 hours so as to reach the same lac-
tate level as the samples incubated with metformin
(16,600 mg/L). Sodium bicarbonate was added every 24
hours to PRP already treated with metformin (16,600 mg/
L) to maintain bicarbonate at the same level as the sam-
ples incubated with saline. Plasma pH, lactate levels and
platelet oxygen consumption were measured at 72 hours.
Finally, we incubated human red blood cells, instead of

platelets, with saline or metformin (16,600 mg/L) and
measured pH and lactate levels every 24 hours, up to 72
hours.

ex vivo experiment
We enrolled ten consecutive patients admitted since
2008 to one Hospital in Milan (Italy) with lactic acidosis
(arterial pH < 7.30 and lactate concentration > 5 mmol/
L), serum metformin concentration > 10 mg/L (therapeu-
tic level is < 4 mg/L) and no other primary explanation
for lactic acidosis (such as, for instance, overt respiratory,
heart or liver failure). Exclusion criteria were pre-existing
mitochondrial disease and hemoglobin < 8 g/dl (< 10 g/dl
in the case of ischemic cardiomyopathy). Platelet mito-
chondrial function was studied within 48 hours of diag-
nosis. Blood was anticoagulated with ethylenediamine
tetraacetic acid (EDTA) (30 ml) (for measuring platelet
mitochondrial respiratory chain complex activities,
always done) or citrate (20 ml) (for measuring platelet
mitochondrial membrane potential, only performed since
the beginning of 2010). It was then sedimented and
centrifuged (2,500 g for 10 min) and PRP collected for
further analysis (see below). Ten healthy volunteers
(similar in sex and age to intoxicated patients) acted as
controls.

Mitochondrial respiratory chain complex enzyme
activities
PRP (either from in vitro or ex vivo experiments) was
washed with distilled water, centrifuged at 5,000 g for 10
min (14,500 g from the second cycle on) and then washed
again with PBS until a clear platelet pellet could be stored
at -80°C (two or three cycles were usually required). At the
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time of analysis, the platelet pellet was diluted in buffer
(KCl 120 mM, HEPES 20 mM, MgCl2 5 mM and EGTA 1
mM; pH 7.2, 300 to 400 μl), sonicated (two cycles at 60 W
for 10 seconds) and centrifuged (750 g for 10 min) while
kept at 4°C. Supernatant was then analyzed using spectro-
photometry (at 30°C). We measured the activity of respira-
tory chain NADH-ubiquinone 1 reductase (complex I),
succinate-cytochrome c reductase (complex II+III) and
cytochrome c oxidase (complex IV) and expressed it rela-
tive to that of citrate synthase (a marker of mitochondrial
density) [26]. Proteins were measured using Lowry’s
method.

Mitochondrial membrane potential
Platelets were diluted in plasma at 100,000/μl and kept for
30 min at 37°C in the dark with a cationic and lipophilic
dye, named JC-1, that emits a green fluorescence in its
native (monomeric) form. If mitochondria are normally
polarized (that is, their inner milieu is negatively charged),
JC-1 will accumulate into them forming dimers that emit
orange, rather than green, fluorescence. This will not
occur if mitochondria are not normally polarized. The
ratio of normally polarized and abnormally depolarized
mitochondria can then be measured as the ratio between
orange and green fluorescence with flow-cytometry (JC-1
fluorescence ratio: FL2/FL1) [27].

Platelet oxygen consumption
Platelets were resuspended in Tyrode’s solution enriched
with 5 mM EDTA and 1 μM prostaglandin E1 (final con-
centration 1 to 1.5 × 109/ml). One ml of this suspension
was transferred into a sealed chamber connected to a
Clark-type electrode, and maintained at 37°C (Rank Broth-
ers, Bottisham, UK). Oxygen consumption was recorded as
the rate of decrease in oxygen tension within the chamber
over the first 180 seconds (ADC-16; Pico Technology, St.
Neots, UK). The results were corrected for spontaneous
drift (oxygen used by the electrode itself) and platelet
count (measured with a hemocytometer) [28].

Electron microscopy
Platelets were fixed with 2.5% glutaraldehyde in PBS
(pH 7.4), post-fixed in 1% osmium tetroxide and then
embedded in Epon. Ultra-thin sections were counter-
stained with uranyl acetate and lead citrate. Mitochondrial
morphology was assessed using ZEISS EM-109.

Statistical analysis
Sample size was only calculated for experiments per-
formed ex vivo. Based on preliminary in vitro observations,
we planned to demonstrate a 30% difference in the activity
of the mitochondrial respiratory chain complex I between
healthy subjects and metformin-intoxicated patients
(ex vivo experiments). Accordingly, ten individuals had

to be included in each group (power 0.80 and alpha
level 0.05).
Results are presented as mean and standard deviation

(SD). Normally distributed data (Shapiro-Wilcoxon test)
were analyzed using t test, one-way, one-way repeated
measures or two-way repeated measures analysis of
variance (ANOVA; post-hoc comparisons with the Holm-
Sidak method). Non-normally distributed data were first
transformed in ranks and then similarly analyzed. Correla-
tion between variables was expressed as R2 (linear regres-
sion analysis). A P value < 0.05 was considered statistically
significant (SigmaPlot version 11.0, Jandel Scientific
Software, San Jose, CA, USA).

Results
in vitro, metformin increased lactate production (P <
0.001) and glucose consumption (P < 0.001), decreased
respiratory chain complex I activity (P = 0.009), mitochon-
drial membrane potential (P = 0.003) and oxygen con-
sumption (P < 0.001) of human platelets, in a dose-
(Figure 1) and time-dependent [see Additional File 1]
manner. Therapeutic drug dose did not alter human
platelet mitochondrial function whereas toxic ones
progressively did. Final plasma lactate levels inversely cor-
related with platelet complex I activity (R2 0.54, P = 0.001;
n = 16), JC-1 fluorescence ratio (R2 0.37, P = 0.001; n =
32) and oxygen use (R2 0.82, P < 0.001; n = 27) [see Addi-
tional File 2]. The activity of other parts of the respiratory
chain and that of citrate synthase [see Additional File 3],
as well as final platelet count (P = 0.725), did not differ
between groups. Electron microscopy did not reveal major
changes in platelet mitochondrial morphology.
When lactic acid was used instead of metformin, platelet

oxygen consumption never significantly diminished
(despite equally severe lactic acidosis). Conversely, when
sodium bicarbonate was used to mitigate metformin-
induced acidosis, platelet oxygen use never returned to
normal (Figure 2).
In contrast to platelets, a very high dose of metformin

did not increase lactate production of human red blood
cells compared to saline (P = 0.927) [see Additional File 4].
The effects of metformin intoxication on human plate-

lets were also assessed ex vivo. Ten patients (70 ± 5 years;
women 60%) with drug accumulation (serum metformin
level 32 ± 14 mg/L) and lactic acidosis (arterial pH 6.97 ±
0.18 and lactate 16 ± 7 mmol/L) were enrolled. Intoxica-
tion was always accidental and associated with renal failure
(creatininemia 8.9 ± 2.5 mg/dl, urea 215 ± 72 mg/dl and
oligo-anuria) and continued drug intake. Possible precipi-
tating factors were dehydration (a few days history of
vomiting and diarrhea was reported in eight cases), use of
potentially nephrotoxic drugs (four cases), urinary tract
infection (one case) and/or complicated prostatic surgery
(one case). Treatment included hemodialysis (nine cases)
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or continuous renal replacement therapy (one case),
mechanical ventilation (two cases), catecholamines (four
cases) and admission to ICU (five cases). All patients sur-
vived to hospital discharge.
Platelets of intoxicated patients had significantly lower

complex I (P = 0.045) and complex IV (P < 0.001)

activity compared to healthy controls (64 ± 9 years,
women 50%) (Figure 3). The proportion between nor-
mally polarized and abnormally depolarized mitochon-
dria, only measured in four intoxicated patients and six
healthy subjects, tended to be lower in the former (P =
0.051) (Figure 3). Electron microscopy did not reveal

e 

JC
-1

 fl
uo

re
sc

en
ce

 ra
tio

 

V
O

2 (
nm

ol
/m

in
*1

06
 c

el
ls

) 

f 

3 

2 

0 

4 

* * 

6.6 

6.2 

pH
 

La
ct

at
e 

(m
m

ol
/l)

 

a b 

c d 

7.4 

7.8 

Metformin concentration (mg/l) 
0 1.66 166 16600 

G
lu

co
se

 (m
m

ol
/l)

 

C
I/C

S
 a

ct
iv

ity
 (%

) 

8 

6 

2 

0 

4 

* 

* 

7.0 

5 

0 

15 

25 

10 

1 

* 

* 20 

* 

* 

20 

15 

5 

0 

10 
* 

* 

8 

6 

2 

0 

10 

4 

* 

Metformin concentration (mg/l) 
0 1.66 166 16600 

Metformin concentration (mg/l) 
0 1.66 166 16600 

Metformin concentration (mg/l) 
0 1.66 166 16600 

Metformin concentration (mg/l) 
0 1.66 166 16600 

Metformin concentration (mg/l) 
0 1.66 166 16600 

Figure 1 Effects of metformin on human platelet mitochondrial function. Platelets from healthy donors were incubated in plasma with
saline (white bar) or metformin diluted in saline (concentration: 1.66 mg/L, grey bar; 166 mg/L, dark grey bar; or 16,600 mg/L, black bar). After
72 hours, (a) plasma pH (P < 0.001; one-way ANOVA), (b) lactate (P < 0.001; ANOVA on ranks) and (c) glucose (P < 0.001; ANOVA on ranks)
concentrations, (d) platelet complex I (relative to citrate synthase, CI/CS) activity (P = 0.009; one-way ANOVA), (e) the proportion between
normally polarized and abnormally depolarized mitochondria (JC-1 fluorescence ratio) (P = 0.003; one-way ANOVA) and (f) oxygen consumption
(VO2) (P < 0.001; one-way ANOVA) were measured. Data are mean and SD, from four to eight experiments. * P < 0.05 versus saline (Holm-Sidak
method). ANOVA, analysis of variance; SD, standard deviation.
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any clear difference in platelet mitochondrial morphol-
ogy between groups.

Discussion
This study demonstrates that, depending on dose (and
time), metformin can cause mitochondrial dysfunction
and lactate overproduction in human platelets.
In fact, human platelets incubated with a high (toxic)

dose of metformin had progressively lower complex I
activity, mitochondrial membrane potential and oxygen
consumption and higher lactate production than those
incubated with saline. These changes occurred indepen-
dently from hypoxia and differences in platelet count and
mitochondrial density. Human platelets incubated with a

low (therapeutic) dose of metformin behaved as those
incubated with saline. This finding is consistent with the
observation that metformin does not significantly increase
the incidence of lactic acidosis, compared to other antidia-
betic drugs [4], unless it accumulates.
When lactic acid was used instead of metformin to

induce severe lactic acidosis, human platelet oxygen con-
sumption never significantly declined. Conversely, when
sodium bicarbonate was used to mitigate metformin-
induced acidosis, human platelet oxygen consumption
never returned to normal. Therefore, human platelet
respiration diminishes during metformin-induced lactic
acidosis because of drug accumulation, rather than (lactic)
acidosis. Accordingly, healthy pigs infused with a large
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Figure 2 Effects of pH on human platelet oxygen consumption. Platelets from healthy donors were incubated in plasma with saline (white
bar) or metformin diluted in saline (16,600 mg/L; grey bar), lactic acid (to mimic metformin-induced lactic acidosis; dark grey bar) or metformin
diluted in saline (16600 mg/L) plus sodium bicarbonate (to correct metabolic acidosis; black bar). After 72 hours, (a) plasma pH (P < 0.001; one-
way ANOVA), (b) lactate (P < 0.001; one-way ANOVA) and (c) bicarbonate (P < 0.001; one-way ANOVA) concentrations and (d) platelet oxygen
consumption (P < 0.001; ANOVA on ranks) (VO2) were measured. Data are mean and SD, from four experiments. * P < 0.05 versus saline (Holm-
Sidak method). ANOVA, analysis of variance; SD, standard deviation.
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dose of metformin consume less oxygen than sham con-
trols, whereas those infused with lactic acid do not
(despite similar severity of lactic acidosis) [18].
When human red blood cells (that lack mitochondria)

were used instead of platelets, an extremely high dose of

metformin did not alter cellular metabolism. Thus, it
may be concluded that metformin can cause lactate
overproduction by specifically altering mitochondrial
function, in human platelets as well as in mouse
pancreatic ß and connective tissue cells [20,29], rat
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hepatocytes and skeletal muscle [12,13,30] and human
intestine [31].
Aside from dose, metformin toxicity also depended on

the duration of incubation. Slow drug diffusion into cells,
due to inherent lipophilicity, is the most likely explanation.
For this reason, patients who acutely ingest large doses of
metformin may initially have very high serum drug levels
but no, or only mild, lactic acidosis. In contrast, those who
inadvertently get intoxicated over a few days may have
relatively low serum drug levels (but still above therapeutic
limits) and extremely severe lactic acidosis [6].
Our in vitro findings were, at least partially, replicated ex

vivo. In fact, platelets taken from metformin-intoxicated
patients had clear signs of mitochondrial dysfunction,
including inhibition of complex I and IV and a lower pro-
portion of normally polarized mitochondria (although this
was only occasionally measured).
On average, patients with metformin intoxication had a

20% decrease in platelet complex I activity. We initially
expected a larger effect, based on our in vitro experiments
in which a 30%, or even larger, decrease was observed.
However, the effects of metformin on mitochondria likely
depend on dose, in vivo just as in vitro. Patients enrolled
in this present study had an average serum drug level of
32 ± 14 mg/L, much lower than that of severely intoxi-
cated patients (61 ± 25 mg/L in our previous series) [7]. in
vitro, metformin was added to plasma to obtain an initial
(toxic) concentration of 166 mg/L, or higher. Even if final
drug levels were probably lower, due to cellular uptake
[13], they likely exceeded 32 ± 14 mg/L. In other words,
overdose severity was high (or very high) in vitro, but only
moderate in vivo. We cannot exclude that a 24- to 48-
hour delay in evaluating platelet mitochondrial function
further contributed to diminish our capacity to detect
early larger alterations.
The constant decrease in platelet complex IV activity

was totally unexpected, as it never occurred in vitro, not
even at the highest drug dose. Underlying mechanisms
were not specifically investigated so that we can only
speculate on them. Only some of the patients received
sedation, catecholamines and/or mechanical ventilation,
so that these factors likely had no major role. Conversely,
all patients had undergone renal replacement therapy by
the time their platelet mitochondrial function was
assessed. Whether renal failure per se or extra-corporeal
support can inhibit human platelet complex IV is cur-
rently unknown.
All patients enrolled in this study had a favourable

outcome, despite signs of mitochondrial inhibition in pla-
telets (and possibly other tissues). This may suggest that
prognosis does not depend on the effects of metformin on
the respiratory chain. However, it may also indicate that
the rate of survival will be unexpectedly high if mitochon-
drial dysfunction is due to a compound that can be easily

removed from the body (using renal replacement therapy,
for instance) [32].

Conclusions
Severe metformin overdose can alter mitochondrial
function and increase lactate production of human pla-
telets, in vitro and, possibly, ex vivo. If analogue changes
also occur in other organs, they will likely contribute to
the pathogenesis of metformin-induced lactic acidosis.

Key messages
• In pigs, severe metformin intoxication causes mito-
chondrial dysfunction in platelets as well as in other
more vital organs, including the heart, kidney and ske-
letal muscle.
• Human platelets exposed to a toxic dose of metfor-
min, either in vitro or in vivo, have clear signs of
mitochondrial dysfunction.
• If mitochondrial dysfunction is a generalized phe-
nomenon even in humans, it will likely contribute to
the development of lactic acidosis (possibly by aug-
menting tissue lactate production).

Additional material

Additional File 1: Time-dependent effects of a highly toxic dose of
metformin on human platelet mitochondrial function. Platelets from
healthy donors were incubated in plasma with metformin diluted in
saline (16,600 mg/L). (a) Plasma lactate concentration (P = 0.002; one-way
repeated measures ANOVA) and (b) the ratio between normally polarized
and abnormally depolarized platelet mitochondria (JC-1 fluorescence
ratio) (P = 0.035; one-way repeated measures ANOVA) were measured
every 24 hours, up to 72 hours. Data are mean and SD, from three
experiments. *P < 0.05 versus time 0 (Holm-Sidak method). ANOVA,
analysis of variance; SD, standard deviation.

Additional File 2: Relationship between platelet mitochondrial
function and lactate production. Platelets from healthy donors were
incubated for 72 hours in plasma with metformin diluted in saline
(concentrations ranging from 0 to 16,600 mg/L). Correlation (linear
regression analysis) between final plasma lactate levels and (a) platelet
complex I (CI) activity expressed relative to citrate synthase (CS) activity
(R2 0.54, P = 0.001; n = 16), (b) platelet JC-1 fluorescence ratio (R2 0.37, P
= 0.001; n = 32), and (c) platelet oxygen use (R2 0.82, P < 0.001; n = 27)
are shown.

Additional File 3: Dose-dependent effects of metformin on human
platelet respiratory chain complex activities. Platelets from healthy
donors were incubated in plasma with saline (white bar) or metformin
diluted in saline (concentration: 1.66 mg/L, grey bar; 166 mg/L, dark grey
bar; or 16,600 mg/L, black bar). After 72 hours, the activity of (a) complex
I (CI) (P = 0.009; one-way ANOVA), (b) complex II and III (CII+III) (P =
0.767; one-way ANOVA) and (c) complex IV (CIV) (P = 0.864; one-way
ANOVA) were measured and expressed relative to that of (d) citrate
synthase (CS) (P = 0.840; one-way ANOVA). Data are mean and SD from
four experiments. *P < 0.05 versus saline (Holm-Sidak method). ANOVA,
analysis of variance; SD, standard deviation.

Additional File 4: Effects of a highly toxic dose of metformin on red
blood cell lactate production. Red blood cells from healthy donors
were incubated with either saline (white bar) or metformin diluted in
saline (16,600 mg/L) (black bars). Lactate levels were measured every 24
hours, up to 72 hours (P = 0.927; two-way repeated measures ANOVA on
ranks). Data are mean and SD, from three experiments. ANOVA, analysis
of variance; SD, standard deviation.
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