
Introduction

Th e reported incidence of acute respiratory distress 

syndrome (ARDS) ranges from 7 to 59 per 100,000 

people [1,2], and is associated with a mortality rate of 40 

to 45%. Th is rate remains unacceptably high despite the 

introduction of lung protective ventilation and, although 

hospital mortality may be slowly decreasing, ICU and 

28 day mortality have remained constant [1,3]. Failure to 

implement lung protective ventilation (LPV) may be one 

of the reasons ICU mortality rates have remained 

unchanged [4-6]. When surveyed, health care providers 

reported that hypercapnia or its related eff ects were 

signifi cant barriers to achieving LPV [7]. Hypercapnia 

complicated 14% of patients in the large ARDS network 

on the use of LPV [8]. However, patients with a high risk 

of death were excluded. In a study of severe ARDS, where 

tidal volumes were adjusted to target a mean airway 

pressure less than 28  cmH
2
O, all patients experienced 

hypercapnia [9]. As evidence emerges that tidal volumes 

<6 ml.kg-1 might further reduce mortality [9,10], alterna-

tive strategies to manage the inevitable hypercapnia must 

be considered.

Permissive hypercapnia is one approach, but it only 

improves mortality when patients are ventilated with 

high tidal volumes [8]. Such volumes should no longer be 

used since 6  ml.kg-1 is superior to 12  ml.kg-1 and 

<4 ml.kg-1 might be superior to 6 ml.kg-1 [9-11]. Although 

hypercapnia might have benefi cial eff ects on oxygen 

delivery and attenuation of infl ammation [12], it also 

harms injured lung through immunosuppression and 

impaired pulmonary epithelial repair [13,14]. Further-

more, hypercapnia perpetuates right heart failure [15] 

and is undesirable in patients with elevated intracranial 

pressure. An alternative strategy to manage hypercapnia 

is extracorporeal carbon dioxide removal (ECCOR), a 

technology pioneered four decades ago [16] but only 

recently readily accessible through commercialization of 

several novel devices. ECCOR therefore deserves a fresh 

look and this review aims to provide an overview of 

devices currently available and those that may be 

available in the near future.

ECCOR in principle

ECCOR is designed to remove carbon dioxide (CO
2
) and, 

unlike extracorporeal membrane oxygen (ECMO), does 

not provide signifi cant oxygenation. A discussion of 

ECMO is beyond the scope of this article but is well 

reviewed elsewhere [17,18]. In its simplest form, ECCOR 

consists of a drainage cannula placed in a large central 

vein, a pump, a membrane lung and a return cannula 

(Figure  1). Blood is pumped through the membrane 
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‘lung’ and CO
2
 is removed by diff usion. Membrane lungs 

are permeable to gases but not liquids. A fl ow of gas 

containing little or no CO
2
 runs along the other side of 

the membrane, ensuring the diff usion gradient favors 

CO
2
 removal.

In contrast to ECMO, where the need for oxygenation 

requires high blood fl ow rates, ECCOR allows much 

lower blood fl ow rates, a result of major diff erences in 

CO
2
 and oxygen (O

2
) kinetics. First, almost all the O

2
 in 

blood is carried by hemoglobin, which displays sigmoidal 

saturation kinetics. Assuming normal hemoglobin and 

venous O
2
, each liter of venous blood can only carry an 

extra 40 to 60  ml of O
2
 before the hemoglobin is satu-

rated. Blood fl ows of 5 to 7  L.minute-1 are therefore 

required to supply enough O
2
 for an average adult (250 ml.

minute-1). Conversely, most CO
2
 is transported as 

dissolved bi carbo nate, displaying linear kinetics without 

saturation. Th us, 1 L of blood is capable of carrying more 

CO
2
 than O

2,
 and 250  ml of CO

2
 can be removed from 

<1 L of blood. Second, CO
2
 diff uses more readily than O

2
 

across extracorporeal membranes because of greater 

solubility [17].

The membrane lung

Th e membrane lung made long-term extracorporeal gas 

exchange feasible. Before membrane lungs, extracor por eal 

circuits achieved gas exchange by creating a direct air-

blood interface, either bubbling air through blood or 

creating a thin fi lm of blood on the surface of a rotating 

cylinder/disc. However, blood-air interfaces denature 

proteins, activate clotting and infl ammatory pathways, 

and damage circulating cells [19]. Consequently, devices 

relying on blood-air interfaces cannot be used more than 

a few hours without serious complications.

Th e concept of placing a barrier between blood and air 

began with the observation that gas exchange occurred 

across cellophane tubing in hemodialysis machines [20]. 

Th is led to the development of membrane lungs consist-

ing of gas permeable silicone-rubber mounted on a nylon 

mesh [21]. Th e nylon mesh provided structural strength 

and decreased leakage from random pinhole defects, 

which occur during the manufacture of thin silicone-

rubber membranes [19]. Th ree major factors determine 

the amount of gas crossing membranes: the diff usion 

gradient, the membrane-blood contact time and the 

membrane diff usion characteristics.

Th e CO
2
 diff usion gradient is determined by the CO

2
 

content of the blood and the air passing through the 

membrane lung, as well as the speed of the airfl ow. 

Membrane-blood contact time is determined by mem-

brane geometry. In early devices, Th eodore Kolobow 

arranged the membrane into a coil [22] and used a fabric 

with an irregular surface, increasing the surface area [23]. 

Hollow fi ber membranes have now replaced coiled 

silicon-rubber membranes. Early fi bers were constructed 

with microporous polypropylene. Micropores create 

microscopic blood-gas interfaces allowing effi  cient gas 

exchange, but also cause plasma leak. Recently, non-

microporous poly-4-methyl-1-pentene (PMP) has been 

used; it provides superior gas exchange, better bio com-

patibility and is less susceptible to plasma leak [24-26]. 

Adding covalently bound heparin to membrane surfaces 

enhances biocompatibility, and gas exchange has been 

improved by arranging fi bers into a complex mat and 

running blood on the outside [27] (Figure  2). Th is 

arrange ment allows perpendicular blood fl ow to the 

fi bers, improving mass transfer by reducing the diff usion 

path length compared to parallel fl ow. Modern 

membrane lungs achieve adequate gas exchange with 

surface areas of 1 to 3 m2 (Table 1).

The pump

Blood fl ow through ECCOR circuits can be achieved in 

one of two ways. In patients with suffi  cient arterial 

pressure, a pumpless system can be used where blood is 

driven out of an arterial cannula by high arterial pressures 

and returned through a venous cannula, often called 

arterio venous CO
2
 removal (AVCO2R). Pumpless systems 

result in less blood trauma, but require large bore arterial 

cannulas and an adequate cardiac output. Th e alternative 

is to use a mechanical pump.

Early devices used roller or peristaltic pumps. Although 

cheap and reliable, these pumps were prone to blood 

trau  ma - for example, hemolysis - from compression and 

heating of blood components. Blood trauma is less of a 

problem at lower blood fl ow rates - for example, those 

used in dialysis. Th e introduction of rotary pumps has 

resulted in simpler yet eff ective systems that cause less 

blood trauma. Two main types of rotary pumps are used 

in ECCOR devices, centrifugal and diagonal fl ow pumps. 

Figure 1. Diagram demonstrating essential components of an 

extracorporeal carbon dioxide removal circuit.
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Centrifugal pumps use a radial rotating impeller to create 

a suction vortex that draws blood into the center of the 

pump and spins it outwards, imparting centrifugal 

momentum, which is converted into driving pressure. In 

diagonal fl ow pumps, impellor design is a mix of radial 

and axial geometry. Centrifugal pumps tend to generate 

high pressures and low fl ows, whereas diagonal pumps 

produce both high fl ows and high pressures [28]. 

Impellors are connected to a drive shaft, requiring bear-

ings to support the rotational movement. Exposure of 

blood to typical bearings promotes clotting, causing 

depo sition of coagulation debris that can seize the bear-

ing. Some pumps use seals to protect the bearings, but 

these can wear out; other designs use biocompatible 

materials to construct the bearings. In the most advanced 

centrifugal pumps impellors are completely suspended in 

an electromagnetic fi eld, eliminating the need for a drive 

shaft or bearings and reducing heating, minimizing blood 

trauma and lowering the incidence of mechanical failure.

Access cannula

Early clinical trials placed separate drainage and return 

cannulas in the saphenous veins [29,30]. Modern cannulas 

are placed percutaneously in a femoral-femoral or femoral-

jugular orientation. To maintain fl ow and minimize blood 

trauma, heparin-coated wire-reinforced cannulas are 

used. Recently, a high fl ow, wire-reinforced double-

lumen catheter has been developed. It is placed via the 

right internal jugular vein and the drainage port (tip of 

the cannula) is advanced into the intra-hepatic inferior 

vena cava using ultrasound guidance [31]. In this 

orientation the return port aligns with the right atrium, 

minimizing recirculation. New ECCOR devices with fl ow 

rates comparable to those in dialysis use double-lumen 

cannulas similar to dialysis catheters [32,33].

ECCOR in practice

Th e fi rst clinica   l trial of extracorporeal respiratory 

support was published in 1979, and used the Kolobow 

spiral-coil membrane lung, a roller pump and veno-

arterial access to provide ECMO [34]. Th is trial found no 

diff erence between conventional treatment and ECMO. 

At about the same time Gattinoni and coworkers 

introduced ECCOR [35], but did not publish the fi rst 

clinical trial until 1986, where patients with severe ARDS 

were selected for LPV combined with ECCOR (Kolobow 

spiral-coil membrane lung, and a roller pump). Observed 

mortality was 51% using this technique [29]. Subsequent 

work was initially encouraging [36] but a randomized 

controlled study in 1994 concluded that ECCOR con-

ferred no survival advantage [30]. Importantly, compli-

cation rates were high with ECCOR, being discontinued 

in 33% of cases owing to bleeding, and 20% experiencing 

circuit clotting. Recently, new devices with lower compli-

cation rates have demonstrated improved survival when 

combined with ultra-protective ventilation [9]; some are 

already available whilst others are in advanced develop-

ment. Th ey can be broadly categorized into 

i)  arteriovenous devices, ii)  venovenous devices, iii) gas 

exchange catheters and iv) respiratory dialysis.

Figure 2. Diagram showing the basic principle of a membrane lung. Sweep gas passes through the hollow fi bres. Hollow fi bers are arranged in 

a complex mat. Image courtesy of Medos Medizintechnik AG (Stolberg, Germany).
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Arteriovenous carbon dioxide removal

AVCO2R is commercially available through Novalung 

(GmbH, Hechingen, Germany) and marketed as the 

interventional lung assist (iLA) membrane ventilator 

(Figure  3). Th e membrane lung, frequently called the 

‘Novalung’, utilizes a low resistance design allowing blood 

fl ow using the patient’s own arteriovenous pressure 

gradient. Cannulas are placed percutaneously in the 

femoral artery and vein [37,38]. A similar system has 

been developed in the United States using the Affi  nity 

NT (Medtronic, Minneapolis, MN) [39,40].

Pumpless systems require an arteriovenous pressure 

gradient ≥60 mmHg, which is unsuitable for hemo dynami-

cally unstable patients. Further, cannulation of a major 

artery can result in distal ischemia [37], although measuring 

the artery diameter with ultrasound and selecting a cannula 

that occupies no more than 70% of the lumen reduces this 

risk [38]. AVCO2R has been successfully used to facilitate 

LPV in patients with ARDS [41-43], severe asthma [44] and 

as a bridge to lung trans plantation [45].

Venovenous carbon dioxide removal

Venovenous carbon dioxide removal (VVCO2R) requires 

a mechanical pump to propel blood through the circuit 

and   can be broadly divided depending on whether the 

pump and membrane lung are separate components or 

incorporated into a single console. When separate 

components are used, the circuit is set up as described in 

Figure 1. Table 1 shows some of the diff erent components 

that can be used. Th ese circuits are more complicated to 

operate, often need fl ow rates >1  L.minute-1 and may 

need multidisciplinary support. Th e growth of programs 

in more general settings has provided impetus to simplify 

ECCOR, resulting in several devices where the pump and 

membrane lung are combined into one console.

iLA Activve

Th e iLA Activve mounts the Novalung and a diagonal 

fl ow pump together in one device. At higher blood fl ow 

rates this device can provide venovenous ECMO. 

Conceptually, this is the simplest method of providing 

ECCOR via a console, and although it does not provide 

any special benefi ts over separate components, the pump 

is designed to provide reliable fl ows throughout a large 

range of fl ow rates.

Decap/Decapsmart

Th e Decap system (Hemodec, Salerno, Italy) uses a 

membrane lung in series with a hemodialysis fi lter and 

roller pump (Figure 4). Th e hemodialysis fi lter serves two 

purposes with regard to CO
2
 removal. First, it reduces 

the chance of bubble formation by increasing resistance 

within the membrane lung. Second, ultrafi ltrate from the 

fi lter is returned to the blood stream prior to the mem-

brane lung infl ow. Since ultrafi ltrate contains dissolved 

CO
2
, recirculating in this way allows additional CO

2
 

removal by creating a greater fl ow rate through the 

membrane lung than the fl ow from the patient. Conse-

quently, smaller membrane lungs can be used (0.3 to 

1.35  m2) with lower fl ow rates (<500  ml.minute-1) than 

conventional ECCOR [33], resulting in similar anti coagu-

lation requirements to continuous venovenous hemo-

dialysis [46]. Th e Decap has been successfully used in 

adults and children [9,47,48].

Hemolung

Th e Hemolung (Alung Technologies, Pittsburgh, USA) is 

the latest device to enter the ECCOR arena. In this device 

the membrane lung and centrifugal pump are combined 

together, acting as one unit (Figure  5). Blood is drawn 

into the unit via a rotating impeller. Th e center contains a 

rotating core that accelerates blood towards a surround-

ing stationary fi ber bundle. Th is is called active mixing; 

the rotating core generates disturbed blood fl ow patterns 

subjacent to the fi ber membrane, reducing diff usional 

resistance and increasing gas exchange. As a result, CO
2
 

removal is more effi  cient and achieved with a smaller mem-

brane surface area and fl ows of 400 to 600  ml.minute-1, 

Table 1. Extracorporeal carbon dioxide removal circuit components

Component Name Special features Manufacturer

Pump Centrimag Impeller elevated in electromagnetic fi eld Levotronix LLC Waltham, MA, USA

 RotaFlow Impeller driven by electromagnetic fi eld and has single  Maquet, Rastatt, Germany

  sapphire bearing

 Biomedicus Impeller drive shaft supported by sealed bearings Medtronic, Eden Praire, MN, USA

 Deltastream Diagonally streamed impeller, sealed bearings Medos Medizintechnik AG, Stolberg, Germany

Membrane lung Quadrox D 1.8 m2 surface area, 250 ml priming volume Maquet, Rastatt, Germany

 iLA membrane ventilator 1.3 m2 surface area, 175 ml priming volume Novalung GmbH, Heilbronn, Germany

 hilite 7000LT 1.9 m3 surface area, 275 ml priming volume Medos Medizintechnik AG, Stolberg, Germany

 Affi  nity NT 2.5 m2 surface area, 270 ml priming volume Medtronic, Eden Praire, MN, USA

This list is not exhaustive, but demonstrates the range of products available. iLA, interventional lung assist.
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which allows use of smaller double-lumen catheters. Th e 

smaller membrane surface area, siloxane coating for 

plasma resistance and covalently bound heparin result in 

lower anticoagulation requirements [32]. Gas fl ow 

through the membrane lung is supplied under negative 

pressure, a safety feature preventing air embolism if the 

membrane is disrupted. Th e Hemolung enabled a 50% 

reduction in minute ventilation in animal trials and was 

recently successfully used in a clinical case series of fi ve 

adults [49].

Gas-exchange catheters

Several gas-exchange catheters have been developed but 

only one, the intravenocaval oxygenator and carbon 

dioxide removal device (IVOX), has been used clinically. 

Th ese devices package hollow fi ber membrane lungs into 

a catheter that is small enough to be placed in the vena 

cava, that is, <15 mm in diameter. Intracorporeal catheters 

are conceptually attractive because they are exposed to 2 

to 3 L.minute-1 of blood fl ow and therefore CO
2
 removal 

is not fl ow limited.

Th e IVOX was designed for both oxygenation and CO
2
 

removal. Orienting ‘crimped’ membrane fi bers in a spiral 

arrangement maximized gas exchange by increasing 

surface area and creating disturbed blood fl ow patterns 

over the membrane [50]. Disturbed blood fl ow provides 

convection velocity towards the fi ber surfaces, reducing 

diff usional resistance. Th e membrane surface of the 

IVOX ranged from 0.2 to 0.5  m2 [51] and gas fl ow was 

applied under negative pressure; an important safety 

feature in intracorporeal devices since there is no other 

opportunity to prevent air embolism if the membrane is 

disrupted.

In animal trials the IVOX consistently removed 

40  ml.minute-1 of CO
2
, but oxygen delivery was less 

reliable. Clinical experience was mixed; the IVOX 

facilitated lower ventilator settings in some studies [52], 

but made no diff erence in others [53,54]. On the whole, 

gas exchange was too limited and placement associated 

with high complication rates from bleeding and throm bosis 

[52]. Commercial development has subsequently ceased.

Future directions and devices in development

Several of the above devices are undergoing clinical trials, 

often in combination with LPV (Table 2). Other promis-

ing approaches are still in development, in particular 

more effi  cient gas exchange catheters and respiratory 

dialysis. Novel methods to maximize CO
2
 removal, such 

as blood acidifi cation, are also under investigation [55].

Gas-exchange catheters in development

Following the IVOX, attention has focused on developing 

a catheter that meets 50% of adult gas exchange require-

ment. Several ingenious approaches are being studied. 

Th e fi rst approach is generation of active mixing within 

the catheter. Th is was initially attempted using an intra-

aortic balloon pump close to the shaft of the IVOX 

catheter [56]. However, the membrane fi bers were not 

fi xed and fi ber movement opposed active mixing. Th e 

Hattler catheter solved this using a rigid fi ber mat 

constructed around a central balloon [57] (Figure  6). 

Rapid pulsation of the balloon directed blood fl ow over 

the membrane fi bers, causing active mixing. In this 

design membrane fi bers do not occupy the whole lumen 

of the vein, causing less fi ber drag on blood fl ow. In 

animal trials the Hattler catheter exchanged CO
2
 at 

305  ml.minute-1.m-2, almost double the IVOX rate at 

similar CO
2
 concentrations [58,59].

Figure 3. Image of the interventional lung assist (iLA), blood is 

propelled through the circuit by arterial pressure. Image courtesy 

of Novolung (GmbH, Hechingen, Germany).
Figure 4. Diagram showing the basic circuit design of the Decap 

(Hemodec, Salerno, Italy). Blood is pumped through a membrane 

lung in series with a dialysis fi lter, and ultrafi ltrate is returned to the 

blood prior to the membrane. UF, ultrafi ltrate.
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Active mixing can also be achieved by rotating the fi ber 

bundle; a strategy used in the dynamic intravascular lung 

assist device (D-ILAD) [60]. Although the D-ILAD was 

almost twice as effi  cient as balloon-pulsating catheters, 

rotating fi bers could damage vessel walls upon contact. 

Recently, the Hattler catheter has been modifi ed by 

replacing the balloon with a series of small impellers. It 

has been successfully used in animals and has CO
2
 

exchange rates similar to the D-ILAD [61].

Finally, in addition to active mixing, CO
2
 exchange has 

been improved by covalent immobilization of carbonic 

anhydrase to the surface of the hollow fi ber membrane 

[62]. As a result, CO
2
 is more rapidly generated from 

bicarbonate, facilitating removal.

Respiratory dialysis

In the 1980s, several groups reported the results of 

animal experiments using dialysis to remove CO
2
 in the 

form of bicarbonate. Th is approach is appealing because 

CO
2
 is transported in the form of bicarbonate, which 

moves freely across dialysis membranes. Conventional 

hemodialysis uses bicarbonate-containing dialysates to 

correct the metabolic acidosis accompanying renal failure, 

but bicarbonate-free dialysates can remove enough CO
2
 

to replace pulmonary ventilation in dog models [63]. 

Currently, respiratory dialysis is limited by the inability to 

maintain electrolyte concentrations and pH whilst 

removing bicarbonate. Several approaches to replace bi-

carbonate have been attempted using sodium hydroxide, 

tromethamine (THAM), and organic anions. However, 

fl uid gain, hyperchloremic acidosis, hemolysis, cardiac 

arrhythmias and acid-base derangements have prevented 

successful long-term use [64,65].

Recently, hemofi ltration has been used to remove 

bicarbonate. One group used sodium hydroxide in a 

post-fi lter replacement fl uid and maintained pH and CO
2
 

Figure 5. Cross sectional diagram of Hemolung (Alung Technologies, Pittsburgh, USA) showing rotating core that accelerate blood to the 

surrounding fi ber bundle. Adjacent image shows the Hemolung console. Courtesy of Alung Technologies (Pittsburgh, USA).

Table 2. Current active trials from clinicaltrials.gov accessed April 2012

Study title Device Sponsor Status

Extracorporeal CO
2
 removal in COPD (DECOPD) Decap Smart University of Turin, Italy Recruiting

Pulmonary and Renal Support during Acute  Neonatal membrane lung (HiLite 800 LT,  Hopital Ambroise Pare, France Recruiting

Respiratory Distress Syndrome (PARSA) Medos) within dialysis circuit (Multifi ltrate kit 7, 

 CVVH 1000, Fresenius)

Low-fl ow ECCO2-R and 4 ml/kg Tidal Volume  Not specifi ed University of Turin, Italy Not yet recruiting

vs. 6 ml/kg Tidal Volume to Enhance Protection 

From Ventilator Induced Lung Injury in Acute 

Lung Injury (ELP)
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within physiological range for 18 hours in hypoventilated 

sheep. However, hyperchloremic acidosis developed and 

blood fl ow rates exceeding 500  ml.minute-1 would be 

needed to remove suffi  cient CO
2
 in humans [66]. Another 

group removed bicarbonate by using pre-fi lter replace-

ment fl uid containing THAM. Physiologic CO
2
 levels and 

pH were maintained for 1.5 hours, but it was not deter-

mined whether THAM had the same long-term problems 

seen in the hemodialysis models [67]. Nonetheless, 

respiratory dialysis holds much promise if the problems 

of electrolyte and acid-base disturbances can be solved.

Conclusion

Several modalities of providing ECCOR are now either 

available or in development. As evidence favoring low-

volume, low-pressure ventilation in ARDS accumulates, 

the argument for applying these ventilation strategies in 

all critically ill patients will gather momentum. However, 

successful application is dependent upon a safe, reliable 

approach for CO
2
 removal.

Simpler more effi  cient ECCOR devices requiring lower 

blood fl ow rates and smaller access cannulas promise to 

improve safety and ease of use. Novel designs, such as the 

Decap, can serve the dual purpose of renal support and 

ECCOR. However, other solutions currently in develop-

ment, gas exchange catheters and respiratory dialysis, 

promise to be minimally invasive, easy to initiate and well 

tolerated. Th ey may even eliminate the need for intuba-

tion in some forms of respiratory failure, where CO
2
 is 

the primary problem [68]. Familiarity with devices already 

available can change our approach to ARDS and prime 

the ICU for the arrival of devices that may revolutionize 

our approach to respiratory failure.
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