
Introduction

Pressure-support ventilation (PSV) is a widely used mode 

of assisted mechanical ventilation (MV), notably during 

the weaning phase [1,2]. Although PSV has been proven 

valuable in several acute clinical conditions [3,4], pre-

defi ned ventilator settings – for example, airway pressure 

(Paw) – that remain unchanged from breath to breath are 

unlikely to provide optimal assistance all of the time.

To improve the match between the patient’s needs and 

the assistance delivered by the ventilator, manufacturers 

have developed several new modes of MV [5,6]. Among 

these new modes we identifi ed proportional-assist 

ventilation (PAV) and neurally adjusted ventilatory assist 

(NAVA).

PAV is a mode of support in which the ventilator 

pressure is proportional to instantaneous fl ow and volume, 

and hence to pressure generated by the respiratory 

muscles [7]. Previous studies have demonstrated that 

PAV improves the synchrony between patient and 

ventilator, during several clinical conditions [8-12]. Based 

on the principles of the equation of motion, software 

(PAV+; Covidien, Boulder, Colorado, USA) has been 

developed that auto matically adjusts the fl ow assist and 

the volume assist so that they always represent constant 

unloading fractions of the measured values of resistance 

and elastance loadings of the respiratory system [13-15]. 

Recent studies demonstrated that PAV+ is a safe and 

effi  cient ventilator mode in critically ill intubated patients 

[16,17]. During PAV the ventilator provides support only 

during the remaining duration of inspiratory eff ort, 
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which can cause limitation when dynamic hyperinfl ation 

is present and when the inspiratory trigger is delayed due 

to intrinsic end-expiratory pressure.

Th e other support mode is NAVA, which will be 

discussed in this article. Th ere are several similarities 

between PAV and NAVA, but this fi rst round-table 

meeting focused on NAVA. A vast literature also exists 

concerning PAV, but this topic would require a whole 

chapter and will not be discussed in this current paper; 

hopefully PAV will be the topic of a diff erent round table.

Th e present article is based on an investigator-initiated 

round-table meeting. Th e article aims to review the 

available knowledge on the physiological rationale and 

feasibility of the recently introduced NAVA MV modality. 

Th roughout the article, we place emphasis on the most 

recent fi ndings concerning adjustment of the NAVA 

settings; on the one hand considering specifi c issues 

associated with assisted modes of MV, and on the other 

considering the expecta tions placed upon NAVA.

NAVA is an assist mode of MV that delivers a pressure 

proportional to the integral of the electrical activity of the 

diaphragm (EAdi) [18], and therefore proportional to the 

neural output of the patient’s central respiratory command. 

Th e level of pressure delivered is thus determined by the 

patient’s respiratory-center neural output. With NAVA, 

the ventilator is triggered and cycled-off  based on the 

EAdi value, which directly refl ects the activity of the 

neural respiratory command. Th e inspiratory airway 

pressure applied by the ventilator is determined by the 

following equation:

Paw = NAVA level × EAdi,

where Paw is the instantaneous airway pressure (cmH
2
O), 

EAdi is the instantaneous integral of the diaphragmatic 

electrical activity signal (μV), and the NAVA level 

(cmH
2
O/μV or per arbitrary unit) is a proportionality 

constant set by the clinician.

In February 2011, several European and Canadian 

investigators with clinical results about NAVA available 

in publication or in abstract format organized a round-

table discussion at the Geneva University Hospital to 

describe and discuss recent advances regarding NAVA. A 

representative of the company that commercializes the 

NAVA machine (Maquet Critical Care SA, Sölna, 

Sweden) was invited to attend the meeting in order to 

answer only technical questions. Maquet Critical Care 

SA agreed to sign a disclosure form before the meeting 

specifying that neither the minutes of the meeting nor 

the content of the report could be modifi ed and/or used 

for commercial purposes. Th e main purpose of this 

meeting was for all of the investigators and participants 

to expose their standpoint and questions about NAVA, 

and to share the main results of their studies. Maquet 

Critical Care SA agreed to provide fi nancial support for 

organiz ing the meeting, as detailed at the end of the 

manuscript, but was not responsible for choosing partici-

pants and did not take any part in the writing of this 

report. We here describe the content of the round-table 

discussion, focusing on a selection of the most recent 

studies [19-33] (Table 1).

Main problems with conventional ventilation 

modalities in the ICU

Assisted modes generally aim at synchronizing the 

ventilator insuffl  ation to the patient’s eff ort, both to 

optimize comfort and to minimize the work of breathing. 

Th e price to pay for this strategy is a risk of patient–

ventilator asynchrony, which can be defi ned as a mis-

match between the patient’s neural output and the venti-

lator’s inspiratory and expiratory times [34-37]. Th ille 

and colleagues reported that one-quarter of patients had 

high rates of asynchrony during assisted ventilation [34]. 

Frequent asynchrony is associated with a longer duration 

of MV [34,38].

Compelling evidence accumulated over the last decade 

also supports the use of tidal volume (V
T
) values that are 

lower than those traditionally used. Lower V
T
 values than 

traditionally used have several main advantages: they 

diminish the risk of ventilator-induced lung injury 

[39-41]; they preserve spontaneous breathing by avoiding 

respiratory alkalosis, thus preventing diaphragmatic disuse 

atrophy associated with MV [42-48]; they diminish several 

types of patient–ventilator asynchrony [49]; and they may 

improve the effi  ciency of gas exchange [50]. Assisted 

modes of ventilation that maintain at least part of the 

patient’s spontaneous breathing activity contribute to 

preventing these pulmonary and muscular complications.

Th e new challenge in developing ventilation strategies 

thus consists of minimizing the risk of lung injury, 

avoiding disuse atrophy of the diaphragm, and improving 

the match between the patient’s needs and the assistance 

delivered by the ventilator [6]. New ventilation modes 

have been designed to meet this challenge [5], and NAVA 

is a pressure-assisted mode in which the pressure 

delivered by the ventilator is proportional to the electrical 

activity of the diaphragm recorded continuously through 

an esophageal probe [18]. NAVA theoretically delivers 

pressure proportional to the neural output of the patient’s 

central respiratory command. During NAVA, however, 

reliable positioning of the catheter is mandatory in order 

to obtain a representative EAdi signal from the dia-

phragm. Barwing and colleagues have evaluated whether 

a formula based on the measurement from nose to ear 

lobe to xiphoid process of the sternum (the NEX 

distance) modifi ed for the EAdi catheter (NEXmod) is 

adequate for predicting the accurate position of the 

esophageal probe [51]. Th ey observed in 18 of 25 patients 
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(72%) that at NEXmod the EAdi signal was suitable for 

running NAVA. Th e NAVA mode was possible at the 

optimal position in four patients – the optimal position 

being defi ned by checking three criteria: stable EAdi 

signals, electrical activity highlighted in central leads of 

the catheter positioning tool, and an absence of the p-

wave in the distal lead. Th e authors thus concluded that 

positioning the EAdi catheter using NEXmod gives a 

good approximation in most of the patients.

Moreover, the body position, positive end-expiratory 

pressure (PEEP) and intra-abdominal pressure are factors 

known to infl uence the position of the diaphragm. 

Barwing and colleagues therefore enrolled 20 patients in 

order to evaluate the eff ects of these factors on catheter 

position [52]. Th ey evaluated six diff erent situations 

regarding the PEEP, body position and intra-abdominal 

pressure. Th eir results demonstrated that these factors 

may modify the EAdi catheter optimal position, although 

not compromising a stable signal due to the wide 

electrode array. One can therefore conclude that the 

optimal catheter position should be adjusted after major 

changes in ventilator settings, clinical condition or 

patient positioning.

Management of patient–ventilator synchrony

Th e time lag between the neural inspiratory input and 

the occurrence of a ventilator breath aff ects all steps of 

the respiratory cycle (initiation, insuffl  ation, and cycling-

off  for expiration) [53]. Among the diff erent forms of 

asynchrony, ineff ective triggering (also known as wasted 

eff ort) is the most common during invasive MV. During 

noninvasive ventilation (NIV), leaks at the patient–

ventilator interface impair the function of the pneumatic 

trigger and cycling system [54], thus promoting specifi c 

asynchronies (autotriggering and prolonged insuffl  ation) 

[55].

Ineff ective eff orts are explained both by patients’ 

characteristics and by ventilator settings. Th e presence of 

intrinsic PEEP increases the patient eff ort required to 

trigger the ventilator, thereby increasing the likelihood 

that the patient’s inspiratory eff ort will fail to trigger a 

ventilator breath [36,53,56]. A weak inspiratory eff ort, 

which may occur during situations of low respiratory 

drive such as excessive ventilation, is also a risk factor 

and is common in patients receiving high assist levels 

[22] or sedation [38]. An excessive level of pressure 

support is also associated with prolonged insuffl  ation, 

thus promoting hyperinfl ation and intrinsic PEEP. Reduc-

tion of ineff ective eff orts is often possible through a 

careful optimization of ventilator settings, at least in 

short-term studies. Reducing V
T
 during PSV can improve 

most factors contributing to ineff ective eff orts [49]. Th ille 

and colleagues showed that wasted eff orts could be 

decreased without increasing the patient’s work of T
a
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breath ing, with the main goal of decreasing the pressure-

support level to obtain V
T
 values of about 6 ml/kg 

predicted body weight [49]. Because high pressure-

support levels are associated with prolonged insuffl  ation 

beyond the end of the patient’s neural inspiratory time, 

another useful means of decreasing wasted eff orts 

consists of adjusting the inspiratory time by increasing 

the fl ow threshold of the cycling criterion [49,57].

Neurally adjusted ventilatory assist and asynchrony

NAVA involves the transesophageal recording of dia-

phrag matic electrical activity using specifi cally designed 

technology to minimize measurement errors. Th e EAdi 

signal reliably monitors and controls the ventilatory assist 

[58]. During NAVA, the EAdi triggers the assist when the 

patient initiates an inspiratory eff ort – even during 

expiration with intrinsic PEEP – and a decrease in EAdi 

terminates the assist. NAVA does not therefore depend 

on measurements of airway pressure or fl ow and keeps 

the assist synchronous with the inspiratory eff orts (inde-

pendent of the presence of leaks or intrinsic PEEP) 

[19,21,22,25,29,59]. NAVA thus has two important 

features: the delivered pressure is, in theory, synchronous 

with the diaphragmatic activity, and the V
T
 is completely 

controlled by the output of the patient’s respiratory 

control center [18].

A frequent form of minor patient–ventilator asyn-

chrony is a long inspiratory trigger delay (time lag 

between the onset of neural inspiration, then the 

detection of a breath initiated by the patient and, fi nally, 

the onset of ventilator pressurization). Several factors 

may increase the inspiratory trigger delay during PSV, 

including the presence of intrinsic PEEP and suboptimal 

ventilator performance [60]. Th e cycling-off  delay is the 

time diff erence between the end of the neural inspiratory 

ramp and the end of ventilator pressurization. Piquilloud 

and colleagues compared these delays and their conse-

quences between NAVA and PSV in a group of 22 

patients intubated for acute respiratory failure. Th e 

inspiratory trigger delay, the excess inspiratory time, and 

the frequency of patient–ventilator asynchrony were 

compared between the two modes [26]. Compared with 

PSV, NAVA substantially improved patient–ventilator 

synchrony by reducing the inspiratory trigger delay and 

the total number of asynchrony events, and by improving 

expiratory cycling-off .

Increasing the level of ventilatory assist with standard 

modes may expose the patient to potentially dangerous 

levels of volume and pressure, and to uncoupling between 

the patient’s neural output and ventilator assistance. In 

contrast to PSV, there is good evidence that NAVA off ers 

protection against excessive Paw and V
T
 values because 

there is a downregulation of EAdi in response to increas-

ing assistance levels: the net result is a decrease in the 

amount of assistance provided [20,21,61-63]. Th e absence 

of a V
T
 increase with increasing NAVA levels suggests 

that the Hering–Breuer refl ex is operative [64], stopping 

the output from the respiratory control center at the 

same V
T
 level, irrespective of the NAVA level. Unloading 

of the respiratory muscles is always partial, as some level 

of spontaneous activity is maintained, and patient–

ventilator synchrony is improved.

Several studies have evaluated the impact of increasing 

PSV levels versus NAVA levels using similar methods of 

setting the ventilator [20-22,25]. Inspiratory pressure 

support was titrated in order to obtain 6 to 8 ml/kg 

predicted body weight during active inspiration. During 

PSV, the ventilator function ‘NAVA Preview’ estimates 

the NAVA level that would achieve the same peak 

inspiratory pressure. All studies performed in the ICU 

consistently showed that NAVA, in contrast to PSV, 

averted the risk of overassistance when the assist level 

was increased gradually. NAVA also improved patient–

ventilator synchrony, in contrast to PSV, regardless of the 

underlying diagnosis. Very high levels of NAVA, however, 

might result in unstable periodic breathing patterns with 

delivery of high tidal volume followed by periods of 

apnea and signs of discomfort [65]. To separate the 

eff ects of neural triggering and those of proportional 

assis tance, Terzi and colleagues studied a selected popu-

la tion of patients recovering from acute respiratory distress 

syndrome, using NAVA with two inspiratory triggers: the 

EAdi signal and the inspiratory fl ow threshold used 

previously for PSV [25] (Figure  1a,b). Not only propor-

tional assistance but also neural triggering improved 

patient–ventilator synchrony in these patients during the 

weaning process.

All of the available studies of NAVA in ICU patients 

have limitations regarding the clinical applicability of the 

results. Except for two studies [19,25], the patient popu-

lation was heterogeneous in terms of the cause of respira-

tory failure. Th e evaluation time was relatively short in 

eight studies, but not for two studies [24,27].

Matching alveolar ventilation to metabolic 

demand: role for the neural controller – variability

Interestingly, and for reasons that are not yet fully 

understood, NAVA compared with PSV seemed to im-

prove the partial pressure of oxygen in arterial blood in 

some studies independent of changes in the partial 

pressure of carbon dioxide in arterial blood (PaCO
2
)

 

[25,27]. One hypo thesis is that the continuous spon ta-

neous inspira tory activity during NAVA improves the 

matching between ventilation and perfusion. Earlier 

studies had established that partial ventilatory support 

allowing some degree of spontaneous breathing activity 

using modes of ventilation other than NAVA improved 

the ventilation/perfusion relationship compared with 
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fully controlled MV [66]. In addition, NAVA allows a 

more natural breathing pattern characterized by greater 

variability, which may also contribute to improve gas 

exchange [67] (see below).

According to the principle of homeostasis, the closed 

loop that regulates PaCO
2
 comprises: sensors (or detec-

tors), which are chemoreceptors; a controller (or com-

para tor), which is the central respiratory command; and 

Figure 1. Example of recording during neurally adjusted ventilatory assist and pressure-support ventilation. (a) Neurally adjusted 

ventilatory assist using the neural trigger: no asynchrony was observed. (b) Pressure-support ventilation: wasted eff orts are underscored. Each 

wasted eff ort is identifi ed by a blue rectangle.
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eff ectors, which are the respiratory muscles. Each com-

po nent controls the next component in the loop, and the 

eff ectors change their activity (that is, adapt) to keep the 

PaCO
2
 value relatively constant. In other words, EAdi 

and therefore the breathing pattern must adapt to a 

variety of conditions to maintain PaCO
2
 within the 

normal range. Another regulatory mechanism is optimi-

za tion of the work of breathing. For example, the rate 

and/or the depth of breathing can be adjusted to mini-

mize the energy expenditure at a given respiratory eff ort 

and/or to minimize the stretch on the lungs.

Any strategy based on automated feedback control of 

ventilatory support should ideally require neural infor-

mation on the lung volume, rate of lung volume change, 

and transpulmonary pressure, which are provided by 

mechano receptors in the lungs and chest wall. Finally, the 

varia bility and complexity of the breathing pattern are 

infl u enced by several factors, including the load–capacity 

relationship of the respiratory system [68-70], vagal aff er-

ent traffi  c to the brain [71], and the activity of the central 

pattern generators [72].

Ventilatory activity is nonlinear in nature and exhibits 

chaos-like mathematical complexity [72,73]. Variability is 

a mathematically complex notion, often expressed using 

the coeffi  cient of variation, which is the ratio of the 

standard deviation over the mean. However, the com-

plexity of fl ow and EAdi variability can also be described 

using noise titration, the largest Lyapunov exponent, 

Kolmogorov–Sinai entropy, and three-dimensional phase 

portraits [74,75]. Schmidt and colleagues used these 

methods to compare respiratory variability and com-

plexity during PSV and NAVA [23]. Compared with PSV, 

NAVA increased breathing pattern variability and fl ow 

complexity without changing EAdi complexity. Accord-

ingly, when the NAVA level was increased from zero to a 

high level in healthy individuals, they adapted their 

inspiratory activity to the NAVA level in order to control 

V
T
 and to regulate PaCO

2
 over a broad range of NAVA 

settings [63]. In contrast, during high-level PSV, V
T
 

became almost entirely determined by the ventilator and 

hypocapnia developed as previously shown in healthy 

subjects [76,77]. Th ese diff erences between NAVA and 

PSV establish that with NAVA, even at a high level of 

assis tance, V
T
 is not imposed by the ventilator but remains 

under the control of the patient’s central respiratory 

command. NAVA therefore decreases the risk of over-

assistance. Th e extent to which the preserved variability 

associated with NAVA is benefi cial remains to be estab-

lished. Whether variability restoration could be used to 

adapt NAVA settings also warrants further studies, as 

well as the development of specifi c tools for assessing 

variability at the bedside.

Patients with respiratory failure probably adjust their 

breathing activity to achieve the best compromise 

between the muscular eff ort needed to breathe and the 

sensory cost of tolerating elevated PaCO
2
 levels. NAVA 

acts as an additional external cost-free muscle controlled 

by the central respiratory command. NAVA therefore 

does not seem to alter the closed loop that controls the 

PaCO
2
 and respiratory pattern optimization. Accordingly, 

when introducing NAVA in patients with respiratory 

failure, progressively increasing the NAVA level allows 

the PaCO
2
 (that is, V

T
) to improve to the optimal value. 

Further NAVA level increases then lead to respiratory 

eff ort adjustments aimed at maintaining this optimal 

PaCO
2
 value, but do not change V

T
 [20].

Moreover, Karagiannidis and colleagues intended 

recently to evaluate the physiological eff ect of extra cor-

poreal membrane oxygenation on the pattern of 

breathing in patients with severe lung failure treated with 

NAVA [78]. Th ey demonstrated that a downregulation of 

extra corporeal exchange gas transfer caused an imme-

diate upregulation of ventilation. Eucapnia under NAVA 

was preserved because the patients adjusted their minute 

ventilation to their needs. Th ese interesting data high-

lighted once again that the ventilatory adaptation to 

maintain normocapnia remains under NAVA.

How can the optimal NAVA level be determined?

Determining the optimal NAVA level remains challeng-

ing, and several methods have been suggested. Contrary 

to PSV and as already described, NAVA generates V
T
 

levels that can remain constant independent of the assist 

level once the patient’s ventilation needs appear to be 

satisfi ed [20]. Consequently, NAVA settings cannot be 

adjusted based solely on V
T
 (and/or the corresponding 

PaCO
2
 target).

Brander and colleagues tried to fi nd the best NAVA 

level using breathing pattern analysis during a titration 

procedure [20]. Titration consisted of starting at a 

minimal assist level of around 3  cmH
2
O and then 

increasing the NAVA level every 3  minutes in steps of 

1  cmH
2
O per arbitrary unit (the amount of microvolts 

recorded from the EAdi signal). Th e response in terms of 

V
T
 and Paw was biphasic. During the fi rst phase, V

T
 and 

Paw increased while the esophageal pressure–time 

product (that is, inspiratory muscle eff ort) and EAdi 

decreased. Further increases in the NAVA level (second 

phase) did not signifi cantly change Paw or V
T
 but 

continued to decrease the esophageal pressure–time 

product and EAdi. Th e fi rst phase may thus indicate an 

insuffi  cient NAVA level to supplement the patient’s weak 

breathing eff ort, while the beginning of the second phase 

may correspond to the minimal assist level that satisfi es 

the patient’s respiratory demand. Th e optimal (or 

adequate) NAVA level may thus be indicated by the 

infl ection point of the airway pressure trend graph during 

a stepwise increase in the NAVA level (Figure 2). In this 
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study the patients were ventilated with these settings for 

3  hours without experiencing adverse hemodynamic or 

respira tory events [20]. Interestingly, the optimal NAVA 

level occurred at about 75% of the highest EAdi obtained 

with the minimal NAVA level and PEEP [20].

As suggested, titration of the NAVA level may be 

performed by systematically increasing the NAVA level 

to determine the optimal setting with regard to unloading 

patient’s respiratory muscles [20,61,79]. During a recent 

observational study, transferring patients to NAVA was 

uneventful and the NAVA level contributed to adjust-

ments of the preset NAVA level [80]. Interpretation of 

several interacting physiological parameters might be 

diffi  cult in cases in which there is no marked decrease in 

EAdi during NAVA titration [80]. An automated 

approach enabled faster identifi cation of the best NAVA 

level with a good accuracy [81].

Instead of stepwise titration, Rozé and colleagues tried 

to fi nd the best NAVA level using an EAdi target of 60% 

of the highest EAdi value recorded during spontaneous 

breathing [24]. Th is measurement was reassessed daily 

using a spontaneous breathing trial with a pressure-

support level of 7 cmH
2
O and no PEEP. Th is method 

proved feasible and well tolerated until extubation 

(Figure 3). Th e 60% of the highest EAdi value threshold 

was based on a muscular rehabilitation protocol developed 

using data on diaphragmatic electromyogram activation 

during exercise [82]. Whether this approach is also 

optimal during assisted ventilation needs further evalu-

ation. It is worth noting that EAdi measured during the 

daily spontaneous breathing trial increased steadily over 

time in all patients until successful extubation [24]. Th is 

improvement probably originated in multiple factors, 

including discontinuation of sedative agents and gradual 

restoration of the functional electrophysiologic activity of 

the diaphragm. Monitoring diaphragmatic activity may 

be of clinical interest and could be achieved using the 

NAVA electrode.

Using EAdi analysis to titrate NAVA is an interesting 

approach that could potentially be easier to use than the 

breathing pattern analysis method of Brander and 

colleagues (V
T
 change during titration) [20]. Th e EAdi 

target of 60% of the highest EAdi value with 7 cmH
2
O of 

PSV proposed by Rozé and colleagues should be used 

cautiously [24], as Brander and colleagues found that the 

EAdi at the optimal NAVA level was equal to 75% of the 

highest EAdi value recorded with minimal NAVA 

(inspiratory Paw above PEEP  = 3  cmH
2
O) [20]. Further 

studies are clearly needed to better determine the optimal 

EAdi target.

Noninvasive ventilation, sleep and NAVA

NIV is a specifi c clinical situation during which the 

occurrence of leaks may greatly aff ect patient–ventilator 

interactions, thereby complicating the determination of 

optimal ventilator settings. In a study by Vignaux and 

colleagues, more than 40% of patients experienced 

various types of asynchrony during conventional NIV 

and the asynchrony rate correlated with the level of 

leakage [83]. With NAVA, assistance is delivered based 

on neural triggering, which is not aff ected by leakage. 

NAVA may thus, in theory, diminish asynchrony events, 

thereby improving the tolerance of NIV. New software 

for NIV has been developed using NAVA technology. 

With this specifi cally designed algorithm, NIV assistance 

is triggered and cycled-off  by the neural diaphragmatic 

activity, which would be expected to improve patient–

ventilator synchrony during NIV. Th is hypothesis has not 

yet been fully investigated.

A study of NIV–PSV with a helmet interface in healthy 

volunteers compared asynchrony with a neural trigger 

and a conventional pneumatic trigger [59]. Increasing 

PSV levels and respiratory rates applied with neural 

trigger ing and cycling-off  produced signifi cantly less 

impair ment of synchrony, trigger eff ort, and breathing 

Figure 2. Titration of the neurally adjusted ventilatory assist 

level according to Brander and colleagues’ procedure. The 

neurally adjusted ventilatory assist (NAVA) level is increased step by 

step. V
T
, tidal volume; Paw, airway pressure; cmH

2
O/AU, cmH

2
O per 

arbitrary unit (the amount of microvolts recorded from the electrical 

activity of the diaphragm signal).
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comfort, compared with conventional pneumatic trigger-

ing and cycling-off .

Cammarotta and colleagues recently compared NAVA 

and NIV–PSV delivered through a helmet interface in 

postextubation hypoxemic patients [32]. Ten patients 

underwent three 20-minute trials of helmet NIV in PSV, 

NAVA, and PSV again. Th e authors demonstrated that 

there was less asynchrony during NAVA than during PSV 

and no diff erence in gas exchange, although there were 

more leaks during NAVA. Moreover it is important to 

underline that the PSV mode chosen was specifi cally 

dedicated to NIV, whereas the NAVA mode dedicated to 

NIV that is now currently available did not exist at the 

time of this study.

Recent data obtained in low-birth-weight infants 

indicate that NAVA can maintain synchrony – both in 

terms of timing and proportionality – even after extu-

bation in patients with an excessively leaky interface 

under NIV (all infants in this study were ventilated using 

a single nasal prong) [29].

Another consideration for NIV that deserves attention 

in the near future is the impact on swallowing, phonation, 

and sleep quality, most notably when NIV is used for 

several days. Improvements in swallowing performance 

have been reported in neuromuscular patients receiving 

MV compared with spontaneous breathing [84,85]. Th e 

close relationship between the muscles involved in 

swallowing and those contributing to inspiration was 

evidenced by Orlikowski and colleagues using an original 

method of tongue-strength measurement. Th e signifi cant 

tongue weakness observed in 16 weak patients with 

Guillain–Barré syndrome correlated with the alterations 

in respiratory parameters [86]. Additional physiological 

studies are required to document the potential benefi ts of 

NAVA on swallowing–breathing interactions during NIV.

Sleep quality during NIV has been shown to be a 

predictor of success or failure [87]. Sleep quality can also 

be improved compared with standard NIV settings by 

careful physiological titration of the ventilator settings 

[88]. Patient–ventilator asynchrony can cause sleep dis-

rup tion. Bosma and colleagues demonstrated that PAV, a 

mode of partial ventilatory support in which the venti-

lator applies pressure in proportion to the inspiratory 

load, was more eff ective than PSV in matching the 

ventilatory requirements to the level of ventilator assis-

tance, thereby resulting in fewer patient–ventilator 

asynchronies and better quality of sleep [11]. Delisle and 

colleagues recently obtained sleep recordings during a 

Figure 3. Change in neurally adjusted ventilatory assist according to maximum diaphragmatic electrical activity during spontaneous 

breathing. Electrical activity of the diaphragm (EAdi) values during 1 hour, each point representing the mean value over 1 minute. EAdi variations 

occurred before, during, and after a spontaneous breathing trial (SBT). Maximum EAdi was 21 μV after a SBT of 3 minutes and allowed a reduction 

in the neurally adjusted ventilatory assist (NAVA) level from 2.4 to 2.2 cmH
2
O/μV in order to obtain EAdi values after the SBT of about 13 μV (60% of 

maximum EAdi). Arterial blood gases were not changed by the NAVA level modifi cation.
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crossover study comparing NAVA and PSV in 14 mecha-

nically ventilated patients [89]. Each condition was 

studied for 4 hours, and recordings were obtained over 

19 consecutive hours in all. Patient–ventilator asyn-

chrony varied signifi cantly across sleep stages, and no 

asynchrony occurred with NAVA. Overassistance occur-

red only with PSV, which probably explained the 

improvements in physiological indices of sleep quality 

observed with NAVA.

Neurally adjusted ventilatory assist in children and 

infants

MV in children and in low-birth-weight infants is more 

diffi  cult to apply than in adults and has several speci-

icities. First infants take a very small tidal volume, have a 

rapid respiratory rate, have a limited chest wall muscu-

lature, and have variable and fl uctuating lung compliance. 

Second, most neonatal units use uncuff ed tracheal tubes 

for fears of pressure necrosis and air leak is always 

present, making reliable measurements and triggering 

problematic. Th ird, ventilators that are effi  cient in adults 

are not systematically effi  cient in children and infants, 

mainly because the inspiratory triggers are not suffi  ci-

ently sensitive for early detection of infants’/children’s 

inspiratory eff ort [90].

Whether or not the respiratory drive of the preterm 

infant is suitable to control MV is unknown. Beck and 

colleagues fi rst evaluated patient–ventilator interaction 

with NAVA in seven very-low-birth-weight infants [29]. 

As suggested by previous animal studies [91], they 

demonstrated that NAVA could be implemented for a 

short-term period, both invasively and noninvasively, in 

infants with body weight as low as 640 g up to 3 years old. 

During invasive ventilation with NAVA, EAdi and venti-

lator pressure were correlated and patient–ventilator 

synchrony was improved compared with the other mode. 

Moreover, this synchrony persisted after extubation while 

ventilating the patient with an excessively leaky interface. 

After this fi rst physiological demonstration, Bengtsson 

and Edberg demonstrated the clinical feasibility and 

safety with use of NAVA in pediatric patients [30]. 

Similarly, Breatnach and colleagues compared NAVA 

(with a neural trigger) and PSV (with a pneumatic trigger) 

in 16 ventilated infants [31]. Th is prospective crossover 

comparison demonstrated that ventilation with NAVA 

improved patient–ventilator synchrony.

Furthermore, Alander and colleagues recently compared 

NAVA with pressure-controlled ventilation for newborns 

and with pressure-regulated controlled ventilation for 

children older than 3 months (with conventional trigger 

modes: pressure and fl ow trigger) [92]. In this prospective 

cross-over study, 18 patients requiring MV were random-

ized for 10 minutes with the diff erent modes. During 

NAVA, the peak airway pressure was lower, the 

respira tory rate was 10 breaths/minute higher than in the 

pressure group, and patient–ventilator synchronization 

was improved. However, there were no diff erences in 

tidal volume and in oxygen saturation.

To evaluate the eff ects of the neural trigger on trigger 

delay, ventilator response time, or work of breathing, 

Clement and colleagues conducted a study in 23 pediatric 

patients aged 0 to 24  months with a diagnosis of bron-

chio litis presenting respiratory failure requiring MV [33]. 

Th e authors compared the neural trigger and the 

pneumatic trigger using similar NAVA assistance, and 

observed that the trigger delay, the ventilator response 

time, and the work of breathing were reduced by the 

neural trigger.

Finally, all of these studies seem to demonstrate the 

feasibility of and a potential advantage for NAVA in 

children compared with the other assisted ventilatory 

modes. Because patient–ventilator synchrony is improved 

with NAVA, the children may require lower doses of 

sedation with this mode of MV [93], which could reduce 

the time of MV.

Future research

Clinical studies obtained in critically ill patients confi rm 

many of the expected short-term physiological benefi ts 

associated with NAVA, as discussed above.

Particularly, NAVA seems to markedly improve the 

problems of nonsynchronization between the patient and 

the ventilator and the problems of risk of overventilation – 

including the risk of ineff ective or missed inspiratory 

eff orts due to intrinsic PEEP observed in chronic 

obstructive pulmonary disease patients, or to a rapid 

breathing frequency with a very small tidal volume 

observed in pediatric patients.

In addition, NAVA minimizes the risk of overinfl ation 

because the duration and level of pressurization remain 

under respiratory-center control, and minimizes the risk 

of diaphragmatic inactivity because the presence of 

pressure assistance requires the presence of this inspira-

tory activity.

A preserved respiratory muscle function is pivotal for 

weaning from MV [44]. By using NAVA, which out-

performs the previous modes of MV for adequately 

assisting the patient’s inspiratory eff ort without inducing 

patient/ventilator dyssynchrony, a reduction in the dura-

tion of MV could be expected. Studies are needed to 

evaluate the best time to begin the weaning process with 

NAVA.

Th e NAVA setting is an important question not yet 

fully resolved. If clinicians are accustomed to set a PSV 

level, this is not the case for NAVA. Furthermore, because 

the breathing pattern is less modifi ed by the NAVA 

setting than during PSV, it is much less informative for 

NAVA adjustment. As described above, the literature 
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suggests that the adjustment should consider the electro-

myographic activity of the diaphragm, but this method is 

not simple. As recently proposed, a direct evalu ation of 

patient comfort and sense of dyspnea for the NAVA 

setting should be evaluated [23].

Finally, the next research step will be to evaluate NAVA 

over longer periods, in order to know whether this mode 

can replace the modes usually used during MV and the 

weaning period, like PSV. Appreciating the safety, the 

feasibility and the constraints of this technology will be 

useful. It is therefore necessary to test, during the total 

weaning period, the eff ectiveness of the esophageal probe 

and to know whether it is regularly necessary to adjust 

the probe position. One of the most diffi  cult questions to 

address, however, is in which situations it is not desirable 

to let the respiratory centers drive the ventilation. 

Situations of severe metabolic acidosis, of high 

respiratory drive and of high catecholamine levels may 

induce situations of extreme hyperventilation, which may 

be dangerous for the lungs. When sedation and/or paralysis 

become necessary is therefore an important question to 

address before widespread use of this mode [94].

Conclusion

NAVA, which is based on an original physiological 

concept, adds new knowledge on patient–ventilator 

interactions during spontaneous breathing, thus helping 

to unravel the complex mechanisms involved in breathing 

control during MV. Th ere is compelling evidence that 

NAVA, as well as the PAV+ software, improves patient–

ventilator interactions and increases respiratory varia-

bility in comparison with PSV. Th is advantage holds 

potential for many applications. Th e short-term and 

long-term experi ence with NAVA, however, remains 

scant. Further clinical studies are needed to assess the 

feasibility and safety of NAVA. A key challenge is how to 

determine the best NAVA settings according to the 

patient’s ventilatory needs and the acceptable level of 

work of breathing.
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