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Abstract

Introduction: Critical care patients frequently receive blood transfusions. Some reports show an association
between aged or stored blood and increased morbidity and mortality, including the development of transfusion-
related acute lung injury (TRALI). However, the existence of conflicting data endorses the need for research to
either reject this association, or to confirm it and elucidate the underlying mechanisms.

Methods: Twenty-eight sheep were randomised into two groups, receiving saline or lipopolysaccharide (LPS).
Sheep were further randomised to also receive transfusion of pooled and heat-inactivated supernatant from fresh
(Day 1) or stored (Day 42) non-leucoreduced human packed red blood cells (PRBC) or an infusion of saline. TRALI
was defined by hypoxaemia during or within two hours of transfusion and histological evidence of pulmonary
oedema. Regression modelling compared physiology between groups, and to a previous study, using stored
platelet concentrates (PLT). Samples of the transfused blood products also underwent cytokine array and
biochemical analyses, and their neutrophil priming ability was measured in vitro.

Results: TRALI did not develop in sheep that first received saline-infusion. In contrast, 80% of sheep that first
received LPS-infusion developed TRALI following transfusion with “stored PRBC." The decreased mean arterial
pressure and cardiac output as well as increased central venous pressure and body temperature were more severe
for TRALI induced by “stored PRBC” than by “stored PLT.” Storage-related accumulation of several factors was
demonstrated in both “stored PRBC" and “stored PLT", and was associated with increased in vitro neutrophil
priming. Concentrations of several factors were higher in the “stored PRBC” than in the “stored PLT,” however,
there was no difference to neutrophil priming in vitro.

Conclusions: In this in vivo ovine model, both recipient and blood product factors contributed to the
development of TRALI. Sick (LPS infused) sheep rather than healthy (saline infused) sheep predominantly
developed TRALI when transfused with supernatant from stored but not fresh PRBC. “Stored PRBC" induced a more
severe injury than “stored PLT” and had a different storage lesion profile, suggesting that these outcomes may be
associated with storage lesion factors unique to each blood product type. Therefore, the transfusion of fresh rather
than stored PRBC may minimise the risk of TRALI.
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Introduction

There is currently heightened concern about the nega-
tive outcomes associated with transfusion of “older” or
stored blood products. Several studies have identified
the age of transfused packed red blood cell (PRBC)
units as an independent risk factor for increased mor-
bidity and mortality [1-4], including in the critical care
setting [5,6]. The existence of contradictory studies
[1,2,7,8], however, indicates that this is still a matter of
conjecture which necessitates further research.

Transfusion-related acute lung injury (TRALI) is a ser-
ious and potentially fatal adverse transfusion event that
has been associated with the transfusion of stored blood
products [9-12]. Similar to acute lung injury (ALI) and
acute respiratory distress syndrome (ARDS), TRALI
manifests as respiratory distress with symptoms of
hypoxaemia and pulmonary oedema [13-16]. However,
in the case of TRALI the onset of symptoms is tempo-
rally associated with transfusion (developing either dur-
ing or within six hours of transfusion) [13-16]. TRALI
has been reported by haemovigilance programs to be
the most frequent cause of transfusion-related mortality
in the US [17] and a leading cause of transfusion-related
morbidity and mortality elsewhere [18,19]. However,
TRALI is thought to be under-diagnosed and under-
reported, particularly in the busy critical care setting
where the development of symptoms may be attributed
to multiple other disease processes or therapeutic inter-
ventions (for example, post cardiopulmonary bypass)
rather than transfusion [20-22]. Indeed, a prospective
study, which was not limited by the under-diagnosis and
under-reporting inherent to haemo-vigilance programs,
described the incidence of TRALI in the critical care
setting as 8% [23], while a retrospective study described
an incidence of 5% [24]. Interestingly, another prospec-
tive study reported an incidence of TRALI of 29% in
end-stage liver disease (ESLD) patients admitted to criti-
cal care with gastrointestinal (GI) bleeding, suggesting
that particular patient groups within the critical care
setting may be at further risk of TRALI [25]. The nor-
mal rate of mortality in cases of TRALI is estimated to
be 5 to 10% [16]; however, it may be higher in critical
care patients as a mortality rate of 41% has been
reported, although this was not adjusted for the influ-
ence of other morbidities [23].

TRALI is postulated to develop as the result of two
separate clinical events [15,16]. The first or priming
event is due to the patient’s primary disease or condi-
tion which results in activation of the pulmonary
endothelium and the accumulation of primed, adherent
neutrophils in the lung [15,16]. The second event is the
subsequent blood transfusion, whereby the primed neu-
trophils are activated by either a leucocyte antibody or
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biological response modifiers (BRM) present in the
transfused blood product [15,16]. Activation of the
primed neutrophils results in augmented release of their
microbicidal arsenal, which causes collateral injury to
the pulmonary endothelium that manifests as capillary
leak, and clinically as TRALI [15,16]. Thus the two-
event mechanism proposes that both recipient and
blood product factors contribute to TRALI pathogenesis.
Critical care patients may, therefore, be particularly sus-
ceptible to the development of TRALI, first, because of
the severity of their underlying illness, and second,
because they are more likely to receive blood transfusion
[14,15,23,25].

Current risk reduction strategies (the preferential use
of plasma from male donors, or the screening of donors
for leucocyte antibodies) address the risk of TRALI
associated with transfusion of leucocyte antibodies
rather than BRM [17,26,27]. These BRM are thought to
accumulate as part of the storage lesion of cellular
blood products, such as packed red blood cell (PRBC)
and platelet concentrates (PLT) [28-31]. Data from in
vivo animal models as well as retrospective and in vitro
studies indicate that stored PRBC or PLT may pose a
greater risk of inducing TRALI than equivalent fresh
PRBC or PLT [9-12]. The role of blood product factors,
therefore, requires further elucidation. Using an estab-
lished in vivo ovine model, this study investigated the
hypotheses that: (i) both recipient factors (lipopolysac-
charide (LPS) infusion to approximate clinical infection)
and blood product factors (stored PRBC) would be
required to induce TRALI, and (ii) that differences in
the storage lesions of PRBC and PLT would result in
differences in the haemodynamic and respiratory
changes associated with the development of TRALL

Materials and methods

All experiments were approved by the University Ani-
mal Ethics Committee of the Queensland University of
Technology, the Health Sciences Animal Ethics Com-
mittee of the University of Queensland and the Ethics
Committee of the Australian Red Cross Blood Service,
and conducted in accordance with the Australian Code
of Practice for the Care and Use of Animals for Scienti-
fic Purposes.

Collection and preparation of supernatant pools for
transfusion

Seventy units of non-leucoreduced PRBC units were
prepared by the Australian Red Cross Blood Service
using standard procedures, including collection into
citrate phosphate dextrose (CPD) and the addition of
saline-adenine-glucose-mannitol (SAGM) additive solu-
tion. Thirty-five PRBC units were processed on Day 1 to
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obtain a “fresh PRBC” supernatant pool. The remaining
35 PRBC units were stored under standard conditions
(4°C) until expiry (Day 42), when they were processed
to obtain a “stored PRBC” supernatant pool. Superna-
tant pools were prepared by centrifugation as previously
described [10] and were similarly heat-inactivated (56°C
for 30 minutes) to eradicate the non-specific actions of
complement and fibrinogen [12]. Similar pools of heat-
inactivated Day 1 and Day 5 whole blood PLT superna-
tant were prepared in a previous study (d1-PLT-S/N or
“fresh PLT” and d5-PLT-S/N or “stored PLT”) [10], and
aliquots were stored for further analyses in the present
study.

Transfusion protocol

The in vivo transfusion protocol has been previously
described in detail [10]. Management of anaesthesia,
mechanical ventilation, supplemental oxygen, voluemia
and infusion/transfusion protocols were identical to the
previous study [10]. Briefly, 28 female sheep (Ovis aries)
received intravenous buprenorphine analgesia and keta-
mine/midazolam anaesthesia supplemented with butor-
phanol where required, and were mechanically ventilated
and instrumented [10]. A one-hour period of stabilisation
was allowed, after which hemodynamic monitoring and
baseline bloods were collected. Sheep were randomly
assigned into six groups to receive either saline or LPS as
a first event, and then either saline or “fresh PRBC” or
“stored PRBC” as a second event (Table 1). Either 30 ml
of saline or LPS from Escherichia coli serotype O55:B5
(15 pg/kg based upon previous titration studies [10];
Sigma-Aldrich, Castle Hill, NSW, Australia) were infused
intravenously into the sheep over 30 minutes (first
event), followed by monitoring for 1 hour. For the second

Table 1 Groups of sheep and incidence of TRALI
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event, either saline or “fresh PRBC” or “stored PRBC”
(10% of total blood volume) were infused into the sheep
(200 ml/hr). Since the majority of clinical cases of TRALI
develop within this time-frame [16], sheep were then
monitored for two hours, after which they were eutha-
nised with 12 ml pentobarbitone sodium (325 mg/ml;
Virbac Animal Health, Milpera, NSW, Australia).

Sample collection

Samples of venous blood were collected at baseline, post
first event infusion, post second event infusion, and pre-
mortem. Samples of arterial blood for arterial blood gas
(ABG) measurements were collected at 30-minute inter-
vals throughout the experiment.

Post-mortem tissue samples were collected from the
lower lobe of the left lung, for both histological and wet/
dry weight analyses. Samples for histology were immedi-
ately fixed in 10% formalin and then processed and
embedded in paraffin using routine methods. Histological
examination of lung sections was as previously described
[10]. In brief, 4 um sections of lung underwent haemotoxy-
lin and eosin staining before being semi-quantitatively
assessed for pulmonary oedema by two researchers blinded
to the experimental groupings. Twenty fields of lung histol-
ogy for each section were photographed and graded for
pulmonary oedema via a scoring system of 0- normal, 1-
mild oedema, 2- moderate oedema and 3- severe oedema.
Samples for wet/dry weight analysis were immediately
weighed (wet weight) and then dried in an oven at 50°C
until a stable weight was achieved (dry weight).

Assessment of TRALI and ALI
TRALI was assessed as previously described by both the
development of hypoxaemia during or within two hours

Group names 1°* event 2" event n Hypoxaemia Pulmonary oedema ALI/TRALI
Number positive (% positive)

Sham Saline Saline 5 0 0 0 (0%)

Saline-fresh Saline “Fresh PRBC” 4 0 0 0 (0%)

Saline-stored Saline “Stored PRBC” 3 1 0 0 (0%)

LPS-control LPS Saline 6 0 2 0 (0%)

LPS-fresh LPS “Fresh PRBC” 5 1 1 1 (20%)

LPS-stored LPS “Stored PRBC” 5 5 4 4 (80%)?

Previous study [10] LPS “Fresh PLT" (d1-PLT-S/N) 5 2 3 1 (20%)

Previous study [10] LPS “Stored PLT" (d5-PLT-S/N) 5 4 5 4 (80%)

AL, acute lung injury; d1-PLT-S/N, pooled heat-inactivated supernatant from Day 1 human platelet concentrates; d5-PLT-S/N, pooled heat-inactivated supernatant
from Day 5 human platelet concentrates; “fresh PLT”, pooled heat-inactivated supernatant from Day 1 human platelet concentrates; “fresh PRBC,” pooled heat-
inactivated supernatant from Day 1 human PRBC; LPS, lipopolysaccharide; n, number of sheep in group; “stored PLT”, pooled heat-inactivated supernatant from
Day 5 human platelet concentrates; “stored PRBC,” pooled heat-inactivated supernatant from day 42 human packed red blood cell concentrates; TRALI,
transfusion-related acute lung injury. Sheep were randomly assigned into the groups described above. Sheep were infused with either saline or LPS as a first
event. Sheep were subsequently infused with saline, or transfused with either “fresh PRBC” or “stored PRBC” as a second event. TRALI was defined by the
development of both hypoxaemia either during or within two hours of the second event transfusion, and pulmonary oedema upon blinded histological
assessment of post- mortem lung sections. ¢ LPS infusion as a first event followed by the subsequent transfusion of stored PRBC as the second event
predisposed the sheep towards the development of TRALI (by Fisher's exact test: P = 0.01 LPS-stored vs. saline-fresh, saline-stored and LPS-fresh without post hoc
exclusion, or P = 0.048 LPS-stored vs. LPS-fresh and P = 0.003 LPS-stored vs. saline-fresh, saline-stored and LPS-fresh with post hoc exclusion).
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of transfusion (second event) and histological evidence
of pulmonary oedema (average score > 1) [10]. Hypox-
aemia was defined as PaO,/FiO, < 300 on at least two
consecutive blood gas samples either during or following
infusion of the second event. Where PaO,/FiO, was
below 300 prior to transfusion, a positive result for
hypoxaemia was assessed by a worsening of PaO,/FiO,
for at least two consecutive blood gas samples either
during or following transfusion. Sheep infused with sal-
ine as a control for transfusion were assessed for acute
lung injury (ALI) rather than TRALL

Measurements and assays used

Physiological measurements were recorded continuously
throughout the experiments as described previously
[10]. Blood-gas analyses were performed on an auto-
mated blood gas analyser (ABL System 625, Radiometer,
Copenhagen, Denmark).

Cytokine concentrations in the “fresh PRBC” and
“stored PRBC” prepared in this study as well as the
“fresh PLT” and “stored PLT” prepared previously [10],
were semi-quantitatively characterised with a commer-
cial microarray pre-loaded with 79 cytokines including
epidermal growth factor (EGEF), epithelial derived neu-
trophil activating 78 (ENA-78), growth related oncogene
alpha (GRO), insulin-like growth factor-binding protein
1 (IGFBP-1), insulin-like growth factor (IGF), interleukin
8 (IL-8), interleukin 16 (IL-16), homologous to lympho-
toxins, inducible expression, competes with HSV glyco-
protein D for HVEM, a receptor expressed on T-
lymphocytes (LIGHT), monocyte chemotactic protein 1
(MCP-1), macrophage inhibitory factor (MIF) and plate-
let-derived growth factor BB (PDGF-BB) (Human Cyto-
kine Array V, RayBiotech, Atlanta, GA, USA). Analysis
of the relative light intensity (RLI) of the corresponding
spots via PDQuest Basic 2-D Gel Analysis Software
(BioRad, Hercules, CA, USA) provided a relative mea-
surement of the concentration of each specific cytokine
or chemokine. Proteins that appeared to increase with
storage were then quantified by commercial ELISA kits
for EGF, ENA-78, GRO-a, IL-8, IL-16, and MCP-1
(R&D Systems, Minneapolis, MN, USA), and also for
soluble CD40 ligand (sCD40L) (Bender MedSystems,
Vienna, Austria) according to the manufacturers’
instructions. Where concentrations were above the
detection range of the kit, samples were diluted accord-
ing to the manufacturers’ instructions to obtain a value
within the detectable range, which was then multiplied
by the dilution factor to obtain the final concentration.

Using methods previously described [30-32], the abil-
ity of the PLT and PRBC supernatants to prime N-for-
mylmethionyl-leucyl-phenylalanine (fMLP) induced
respiratory burst function of human neutrophils was
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measured iz vitro and compared to that of buffer, fresh
autologous plasma and platelet-activating factor (PAF).

Statistical analyses

The clinical incidence of TRALI was compared using
two-way contingency tables and the Fisher’s exact test.
Physiological differences between groups were made
using a two-way ANOVA with Bonferroni’s multiple
comparisons adjustment. Physiological data were subse-
quently modelled using a mixed model with a random
intercept for each sheep in the R statistical package [33].
These models were used to examine differences between
groups over time whilst accounting for repeated data
[34]. Data from LPS-treated sheep that developed
TRALI due to either “stored PRBC” or “stored PLT”
transfusion were also compared using mixed modelling.
Neutrophil priming ability of the different supernatants
and controls was compared using a one-way ANOVA
with Bonferroni’s multiple comparisons adjustment. In
all cases statistical significance was determined at P <
0.05.

Results

TRALI did not develop in healthy sheep

The absence of ALI in the sham group demonstrated
that the anaesthetic, surgical and experimental protocols
did not induce lung injury (Table 1). Similarly, sheep
that were infused with saline as a control first event and
then transfused with either “fresh PRBC” or “stored
PRBC,” (that is, saline-fresh and saline-stored groups)
did not develop TRALI. A single sheep displayed evi-
dence of hypoxaemia that worsened following transfu-
sion of “stored PRBC.”

Transfusion of “stored PRBC” caused TRALI in LPS-primed
sheep

The dose of LPS, infused as a first event resulted in pro-
found neutropenia (mean *+ SD: 2.03 + 0.86 neutrophils
x 10°/L at baseline vs. 0.14 + 0.03 neutrophils x 10°/L
post-LPS; P < 0.0001 by paired t-test). The LPS-control
group of sheep confirmed that this dose of LPS was
insufficient to induce ALI (Table 1). One of the five
LPS-fresh sheep and four of the five sheep in the LPS-
stored group were diagnosed with TRALI (Table 1).
This demonstrated that TRALI predominantly devel-
oped in sheep that received LPS-infusion followed by
“stored PRBC” transfusion (P = 0.01 LPS-stored group
vs. saline-fresh, saline-stored and LPS-fresh groups).
Analysis of the lung section wet/dry weights (mean +
SD: sham = 5.33 + 0.21; saline-fresh = 5.53 + 0.37; sal-
ine-stored = 5.89 + 0.52; LPS-control = 5.84 + 0.96;
LPS-fresh = 5.38 + 0.73; LPS-stored = 6.99 + 1.2) con-
firmed this finding (P = 0.0038 LPS-stored group vs.
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saline-fresh, saline-stored and LPS-fresh groups by
unpaired t-test). There was evidence of widespread neu-
trophil infiltration in the lungs of LPS-stored sheep (Fig-
ure 1F) compared to those of sham sheep (Figure 1E).
Of the six sheep that were diagnosed with hypoxaemia,
five diagnoses (one in the LPS-fresh group and four in
the LPS-stored group) were based upon a sustained
worsening of hypoxaemia that was evident prior to
transfusion of “stored PRBC.”

Haemodynamic and respiratory changes associated with
the development of TRALI

Sheep in the LPS-stored group displayed changes to
haemodynamic and respiratory changes relative to both
sham and LPS-control groups’ lower mean arterial pres-
sure (MAP), cardiac output (CO), PaO,, and oxygen
saturation (O, sat) as well as higher pulmonary artery
pressure (PAP) relative to sham (Figure 2; P < 0.05 for
all comparisons). These sheep also displayed lower static
pulmonary compliance (Cg,), CO, PaO, and O,sat
(oxygen saturation) as well as higher PAP relative to
LPS-control (P < 0.05 for all comparisons). There were
also differences between the saline-stored and sham
groups, demonstrated in an increased PAP relative to
sham (Figure 2; P < 0.05), and while there was also a
trend towards decreased PaQO,, the increased PAP was
the only significant change observed in the saline-stored
and LPS-fresh groups.

To account for differences both in individual sheep
and in groups of sheep, mixed modelling was used to
further characterise the haemodynamic and respiratory
changes associated with the development of TRALI
(Table 2). Sheep in the LPS-stored group displayed
changes relative to sham, LPS-control and LPS-fresh
groups (Table 2; by mixed models: P < 0.001 for all
comparisons).

“Stored PRBC” caused more severe injury than “stored
PLT”

To investigate whether TRALI induced by “stored
PRBC” was more severe than that induced by “stored
PLT” in a previous study [10], data from the four sheep
that developed TRALI in each of these two groups were
used to create new mixed models (Table 3). These ana-
lyses indicated that TRALI induced by “stored PRBC”
resulted in lower MAP (P < 0.0001) and CO (P =
0.0145), as well as higher CVP (P < 0.0001) and body
temperature (P < 0.0001) relative to that induced by
“stored PLT”. There were also trends towards lower
PaO, and increased PAP, although these did not reach
significance in this study. These changes indicate that
TRALI induced by “stored PRBC” results in more severe
haemodynamic changes than that induced by “stored
PLT”.
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Differences in the composition of these products may
explain the differing injury observed

We hypothesised that the observed haemodynamic dif-
ferences may be related to differences in the composi-
tion of the different blood products. Biochemical
changes related to storage in the “stored PRBC” and
“stored PLT” were normal for stored blood products
(Table 4).

Soluble CD40L levels were measured because this
molecule has been associated with TRALI pathogenesis
[29,35]. Storage resulted in accumulation of sCD40L in
both “stored PRBC” and in “stored PLT,” with the for-
mer having higher levels (Table 4). However, these levels
were much lower than those previously reported in
units of Day 42 PRBC or Day 5 PLT [29,35]. To investi-
gate whether heat-inactivation may also have reduced
levels of sCD40L, we measured levels in equivalent non-
heat-inactivated supernatant pools: PLT (Day 1: 1.85 ng/
ml vs. Day 5: 9.25 ng/ml) and PRBC (Day 1: 0.40 ng/ml
vs. Day 42: 8.36 ng/ml). This confirmed that heat-inacti-
vation was responsible for the reduced levels of sCD40L
evident in both “stored PRBC” and “stored PLT.”

In contrast to sCD40L, no significant differences
resulting from heat-inactivation were found in the con-
centrations of EGF, ENA-78, GRO-a, IL-8, IL-16 and
MCP-1 (data not shown). As shown in Table 4 the con-
centrations of the EGF, ENA-78 and GRO-a, were
increased in both the “stored PRBC” and the “stored
PLT” compared to the respective fresh product ("fresh
PRBC” and “fresh PLT”). However, concentrations of IL-
8, IL-16 and MCP-1 were only increased in “stored
PRBC” (Table 4). Hence, there were more storage-
related changes in cytokine concentration in “stored
PRBC” than in “stored PLT.” Comparison of the two
stored products also revealed that “stored PRBC” con-
tained higher concentrations of EGF, IL-8, IL-16 and
MCP-1, while “stored PLT” contained higher concentra-
tions of ENA-78 (Table 4). Together these results
demonstrate that there were storage-related changes,
which were different depending on the blood product
type (that is, “stored PRBC” vs. “stored PLT”).

Differing composition did not result in differences in
neutrophil priming

Because the neutrophil respiratory burst function plays a
key role in the pathogenesis of TRALI [36], we com-
pared the ability of “stored PRBC” and “stored PLT” to
prime fMLP-induced activation of the respiratory burst
in human neutrophils in vitro. In accordance with pre-
vious studies [31,37], “stored PRBC” and “stored PLT”
both demonstrated greater priming ability than equiva-
lent fresh supernatants (P < 0.001 in both cases; Figure
3). However, no difference was observed between the
“stored PRBC” and the “stored PLT” (Figure 3).
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Figure 1 Representative histology. Representative haemotoxylin and eosin stained lung sections analysed histologically for pulmonary
oedema. These range from no pulmonary oedema (A) through to mild (B), moderate (C) and severe (D) pulmonary oedema. Neutrophils were
identified by morphological assessment and are indicated by the blue arrows (E and F). In contrast to sham sheep (E), there was widespread

evidence of neutrophil infiltration in the lungs of LPS-stored sheep (F). LPS, lipopolysaccharide.
. J
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Figure 2 Haemodynamic and respiratory changes. Averaged data over 30-minute periods for each of the six groups of sheep. The first event
(either saline or LPS) was infused from 0 to 30 minutes and the second event (either saline, “fresh PRBC" or “stored PRBC") was infused from 90
to 150 minutes. The left column represents sheep receiving saline-infusion as a first event (that is, sham, saline-fresh and saline-stored groups),
and the right column represents sheep receiving LPS-infusion as a first event (that is, LPS-control, LPS-fresh and LPS-stored groups). Dashed lines
at Oysat = 90% and PaO, = 125 mmHg (FiO, was 40%, therefore PaO,/FiO, = 300) represent clinical cut-offs for hypoxaemia. LPS-stored sheep
developed lower MAP, CO, Pa0,, and O, sat as well as higher PAP relative to sham sheep. Also, saline-stored sheep displayed increased PAP
relative to sham sheep. # P < 0.05 vs. sham group using a two-way ANOVA with Bonferroni's multiple comparisons adjustment. LPS-stored sheep
developed lower static pulmonary compliance, CO, PaO,, and O, sat as well as higher PAP relative to the LPS-control group. * P < 0.05 vs. LPS-
control using a two-way ANOVA with Bonferroni's multiple comparisons adjustment. ANOVA, analysis of variance; CO, continuous cardiac output;
FiO,, fraction of inspired oxygen; “fresh PRBC,” pooled heat-inactivated supernatant from Day 1 human PRBC; LPS, lipopolysaccharide; MAP, mean
arterial pressure; O,sat, oxygen saturation; PaO,, arterial partial pressure of oxygen; PAP, pulmonary artery pressure; “stored PRBC,” pooled heat-
inactivated supernatant from Day 42 human PRBC; TRALI, transfusion-related acute lung injury.
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Table 2 Haemodynamic changes
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Sham Saline-fresh Saline-stored LPS-control LPS-fresh LPS-stored
(n=15) (n=4) (n=3) (n=6) (n=15) (n=15)
PAP (mmHg) 147 + 0.7 184 + 0.7 247 £ 0.7 270 £ 06 30.7 £ 0.7 370+ 079 %€
(10 to 19) (4 10 28) (9 1o 60) (5 to 47) (6 t0 62) (13 to 89)
MAP (mmHg) 1083 + 22 1073 + 23 1106 + 2.3 900 £ 20 890 £ 23 98.1 +23% ¢
(67 to 146) (64 to 172) (55 to 155) (37 to 130) (44 to 169) (30 to 149)
CVP (mmHg) 60+ 06 51+06 55+ 06 57 +£06 48 £ 06 52+ 067
(1 to 20) (0to 13) (0 to 20) (0to 17) (0 to 18) (1to 18)
Heart rate (bpm) 1025 £ 29 1129 + 30 1137 £ 30 M4 +£27 1218 £ 30 1226 + 3.0°
(65 to 147) (60 to 132) (70 to 192) (52 to 210) (57 to 182) (65 to 166)
O,sat (%) 972 £ 06 977 £ 0.7 9.8 £ 0.7 949 £ 06 954 + 0.7 945 + 0.77
(81 to 100) (80 to 100) (86 to 100) (69 to 100) (73 to 100) (71 to 100)
EtCO, (mmHg) 329+£12 325+£12 306 £12 340 £ 12 33612 317 £12
(20 to 47) (23 to 39) (10 to 44) (13 to 54) (17 to 52) (15 to 55)
CO (L/min) 46 +02 46+ 02 37+02 45+02 45+02 36+ 0270 ¢
(3.1 to 6.6) (3.5 to 6.0) (18t0 7.2) (11t 7.1) (1.1 t0 5.8) (14 to 5.0)
SVO; (%) 702 £15 733 €15 659+ 15 725+ 14 756 £ 15 683 + 1.57
(44 to 82) (33 to 81) (38 to 84) (48 to 91) (48 to 86) (22 to 77)
Body temperature (°C) 387+ 0.1 385+ 0.1 387+ 0.1 387 £ 0.1 385+ 0.1 387 £ 0.1
(38.1 to 39.8) (37.2 t0 40.2) (38.0 to 394) (380 to 414) (37.1 to 41.5) (37.7 to 41.1)
PaO, (mmHg) 1848 + 119 1932 + 130 1526 + 131 1311+ 74 1395 + 132 989 + 132% v ¢
(122 to 216) (76.5 to 210) (72.2 to 205) (94.8 to 215) (64.8 to 233) (50.0 to 210)
PaCO, (mmHag) 377 £ 20 370+ 22 393 +£22 398 £ 14 391 £ 2.1 414 227
(305 to 42.3) (24.9 to 40.6) (22.7 to 51.5) (285 to 54.5) (23.7 to 51.9) (27.7 to 70.6)
Cear (L/kPa) 384 +37 351 +£40 304 +£ 40 274 + 25 241 +40 194 + 40% b €
(26.3 to 63.6) (22.3 to 39.0) (15.9 to 43.6) (14.2 to 73.3) (12,0 to 65.0) (9.3 to 66.7)
PaO,/FiO, (FIO, = 40%) 4620 £ 119 4830 £ 130 3815+ 131 3278+ 74 3488 + 132 2473 +132% b ¢
(305 to 540) (191 to 525) (181 to 513) (237 to 537) (162 to 583) (125 to 525)

CO, cardiac output; Cgay, Static pulmonary compliance; CVP, central venous pressure; EtCO,, end tidal carbon dioxide; FiO,, fraction of inspired oxygen; “fresh
PRBC”, pooled heat-inactivated supernatant from day 1 human packed red blood cell concentrates; LPS, lipopolysaccharide; LPS-control, group of sheep that
received LPS followed by saline; LPS-fresh, group of sheep that received LPS followed by “fresh PRBC"; LPS-stored, group of sheep that received LPS followed by
“stored PRBC"; MAP, mean arterial pressure; O,sat, oxygen saturation; PaCO,, arterial partial pressure of carbon dioxide; PaO,, arterial partial pressure of oxygen;
saline-fresh, group of sheep that received saline followed by “fresh PRBC"; saline-stored, group of sheep that received saline followed by “stored PRBC"; PAP,
pulmonary artery pressure; SEM, standard error of the mean; sham, group of sheep that received saline followed by saline; “stored PRBC”, pooled heat-inactivated
supernatant from day 42 human packed red blood cell concentrates; SvO,, mixed venous oxygen saturation; TRALI, transfusion-related acute lung injury.
Averages + SEM (minimum-maximum) for each group are shown. Averages and SEM were calculated using mixed models. Minimum and maximum values were

from recorded data. @ P < 0.05 vs. sham. ® P < 0.05 vs. LPS -control. € P < 0.05 vs. LPS-fresh.

Discussion

The development of respiratory dysfunction compro-
mises the recovery of severely ill patients and may con-
tribute to their morbidity and death. While some
patients may progress to either ALI or ARDS, the asso-
ciation with recent blood transfusion may be overlooked
[20-22]. Thus, many cases of ALI/ARDS may in fact
represent TRALI, and the true scale of the risks posed
by TRALI in the critical care setting are likely to be
under-appreciated. Prospective studies have revealed an
incidence of TRALI ranging from 5 to 8% in general cri-
tical care patients [23,24] and up to 29% in ELSD criti-
cal care patients admitted with GI bleeding [25]. This
study provides additional evidence that both patient and
blood product factors contribute to the development of

TRALI and that the type of blood product influences
the severity of injury.

Patients with severe illness are hypothesised to be
more likely to develop TRALI, thus critically ill patients
may be particularly susceptible to the development of
TRALI [14,22]. In this study, TRALI only developed in
“ilI” sheep and did not develop in any of the “healthy”
sheep, even following transfusion of “stored PRBC.” This
is consistent with previous TRALI models, in which
both a clinical first event, either LPS-infusion or, in the
case of mice, their exposure to a germ environment, and
an appropriate second event (that is, stored blood or
leucocyte antibody) were required for TRALI to develop
[9,10,12,38,39]. Thus, this study reaffirms the impor-
tance of patient factors in the development of TRALIL
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Table 3 Comparison of haemodynamic changes in TRALI
induced by either “stored PLT” or “stored PRBC”

“stored PLT” (n =  “stored PRBC" (n= P

4) 4)
PAP (mmHg) 244 + 2.1 287 £ 24 0.0946
MAP (mmHg) 879 £55 745+ 56 <
0.0001
CVP (mmHg) 30+ 12 78+ 12 <
0.0001
Heart rate 112.7 + 4.7 1173 +£54 0.5262
(bpm)
O5sat (%) 926 + 28 89.5 + 3.1 0.3598
EtCO, (mmHg) 388 + 3.0 333+ 56 0.2253
CO (L/min) 49+ 03 37+ 04 < 0.05
SVO, (%) 706 + 59 623 £ 68 0.3499
Body temp (°C) 39.1. + 0.3 403 £ 03 <
0.0001
PaO, (mmHg)  103.9 + 143 685 + 164 0.1086
PaCO, (mmHg) 427 +33 410 + 3.7 0.7228
Cyar (L/kPa) 175 £ 30 157 £ 24 0.6305
PaO,/FiO, 2598 + 143 1713 + 164 0.1086

CO, cardiac output; Cg,y, static pulmonary compliance; CVP, central venous
pressure; EtCO,, end tidal carbon dioxide; n, number of sheep in group; FiO,,
fraction of inspired oxygen (= 40%); LPS, lipopolysaccharide; MAP, mean
arterial pressure; Osat, oxygen saturation; PaCO,, arterial partial pressure of
carbon dioxide; PaO,, arterial partial pressure of oxygen; PAP, pulmonary
artery pressure; “stored PLT”, pooled heat-inactivated supernatant from Day 5
non-leucoreduced human platelet concentrates; “stored PRBC”, pooled heat-
inactivated supernatant from Day 42 non-leucoreduced human packed red
blood cell concentrates; SEM, standard error of the mean; SvO,, mixed venous
oxygen saturation; TRALI, transfusion-related acute lung injury. Averages +
SEM for each group are shown. Data and P-values were calculated using
mixed modelling.

The age of the transfused blood product was also
found to be crucial to the development of TRALI as it
predominantly developed in LPS-primed sheep trans-
fused with “stored PRBC” and not “fresh PRBC.” This
adds to findings from previous in vivo models in which
TRALI has been described subsequent to transfusion
with supernatant from stored human PRBC in rats [12]
or stored human PLT in both rats [40] and in sheep
[10]. During routine storage of PRBC and PLT, proteins
and lipids (or their metabolites) are released by cells
into the storage medium [28-31,41,42]. These soluble
factors are retained in the supernatant and are thought
to contribute to the development of TRALI
[1-3,5,6,11,12,28-31,43-45], although some studies have
also implicated the transfused cells [44,46]. In this study,
cytokine array and ELISA analyses were used to identify
the soluble factors that may have contributed to the
development of TRALI in the sheep. It was demon-
strated that “stored PRBC” contained higher levels of
EGF, ENA-78, GRO-a, IL-8, IL-16 and MCP-1 relative
to “fresh PRBC”, while levels of lactate and potassium
increased and levels of sodium decreased. Since neutro-
phils are key effector cells in TRALI pathogenesis, the
biological relevance of these changes was confirmed by
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Table 4 Supernatant composition

PRBC PLT

“fresh “stored “fresh “stored

PRBC” PRBC” PLT” PLT”
Hb (g/dL) 0.01 033 0.01 0.02
K* (mmol/L) 20 444 39 44
Na™ (mmol/L) 143 105 157 158
CI" (mmol/L) 112 103 74 77
Glucose (mmol/ 280 143 7.0 00
D
Lactate (mmol/ 6.5 296 4.6 18.0
D
sCD40L (ng/ml) 024 1.50 048 0.73
EGF (pg/ml) 0 298 5 69
ENA-78 (pg/ml) 63 1,555 226 6,333
GRO-at (pg/ml) 352 662 110.1 692
IL-8 (pg/ml) 28 10,004 323 379
IL-16 (pg/ml) 50 19,754 225 260
MCP-1 (pg/ml) 0 422 0 0

CI', chlorine anion; EGF, epidermal growth factor; ENA-78, epithelial derived
neutrophil activating 78; “fresh PLT”, pooled heat-inactivated supernatant from
Day 1 non-leucoreduced human platelet concentrates; “fresh PRBC”, pooled
heat-inactivated supernatant from Day 1 non-leucoreduced human packed
red blood cell concentrates; GRO-a,, growth related oncogene alpha; Hb,
haemoglobin; IL-8, interleukin 8; IL-16, interleukin 16; K*, potassium cation;
MCP-1, monocyte chemotactic protein 1; Na*, sodium anion; PLT; platelet
concentrates; PRBC; packed red blood cell concentrates; sCD40L, soluble CD40
ligand; “stored PLT", pooled heat-inactivated supernatant from Day 5 non-
leucoreduced human platelet concentrates; “stored PRBC”, pooled heat-
inactivated supernatant from Day 42 non-leucoreduced human packed red
blood cell concentrates. Both “stored PRBC” and “stored PLT” demonstrated
increased levels of lactate and sCD40L as well as decreased pH and glucose
levels compared to fresh equivalents. Additionally “stored PRBC”
demonstrated increased haemoglobin and potassium levels compared to
“fresh PRBC” and to “stored PLT". Higher concentrations of EGF, ENA-78 and
GRO-a, were present in both “stored PLT” and “stored PRBC” relative to fresh
equivalents. However the concentrations of IL-8, IL-16 and MCP-1 were only
increased only “stored PRBC”". Additionally, concentrations of EGF, IL-8, IL-16
and MCP-1 were all higher in “stored PRBC” than in “stored PLT". Conversely,
concentrations of ENA-78 and GRO-a. were higher in “stored PLT” than in
“stored PRBC".

the increased in vitro neutrophil priming ability present
in “stored PRBC” compared to “fresh PRBC”.
Heat-inactivation of the human blood product super-
natant used in this and in previous studies
[9,10,12,28,39] was necessary to prevent widespread
thrombus formation and mortality due to non-specific
actions of complement and fibrinogen [9,12,39]; how-
ever, represents a limitation of these models. As was
demonstrated for sCD40L, heat-inactivation may reduce
the concentration of some protein BRMs; however,
levels of EGF, ENA-78, GRO-a,, IL-8, IL-16 and MCP-1
were all unaffected by heat-inactivation. It remains pos-
sible that heat-inactivation may have affected other
parameters not investigated, and may have influenced
the development of TRALIL The alternative approach of
transfusing homologous ovine with PRBC rather than
with heat-inactivated supernatant from human PRBC
was not used in this study because of the limitations of
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Figure 3 Neutrophil priming ability. Ability to prime fMLP-induced human neutrophil respiratory burst function is shown as mean of n = 4
experiments. Error bars indicate SEM. Both “stored PRBC" and “stored PLT” display increased ability to prime fMLP-induced neutrophil respiratory
burst than the equivalent fresh product. There was no difference between the ability of “stored PRBC” and “stored PLT" to prime fMLP-induced
neutrophil respiratory burst. # P < 0.001 “stored PLT" vs. “fresh PLT" using a one-way ANOVA with Bonferroni’s multiple comparisons adjustment.
* P <0001 “stored PRBC" vs. “fresh PRBC" using a one-way ANOVA with Bonferroni's multiple comparisons adjustment. ns P > 0.05 “stored PRBC"
vs. “stored PLT" using a one-way ANOVA with Bonferroni’s multiple comparisons adjustment. ANOVA, analysis of variance; fMLP, N-
formylmethionyl-leucyl-phenylalanine; “fresh PLT", pooled heat-inactivated supernatant from Day 1 non-leucoreduced human platelet
concentrates; “fresh PRBC", pooled heat-inactivated supernatant from Day 1 non-leucoreduced human packed red blood cell concentrates; min,
minute; O,, superoxide anion; PAF, platelet activating factor; PLT, platelet concentrate, PRBC packed red blood cells; “stored PLT", pooled heat-
inactivated supernatant from Day 5 non-leucoreduced human platelet concentrates; “stored PRBC’, pooled heat-inactivated supernatant from day
42 non-leucoreduced human packed red blood cell concentrates; SEM, standard error of the mean.

this alternative approach. First, while the preparation of
ovine PRBC is not technically difficult, this process
requires standardisation and validation to ensure that
the ovine PRBC provide a suitable model of human
PRBC. Second, as has been demonstrated in small ani-
mal models [45,47-49], there are likely to be differences
between the storage lesions of ovine and human PRBC.
Detailed comparative data comparing the storage lesions
of ovine PRBC and human PRBC are, therefore, essen-
tial to validate an ovine model of homologous transfu-
sion for the study of effects related to the age of blood.
While future studies are planned to address these limita-
tions of homologous transfusion models, it was felt that,
at the present time, the transfusion of heat-inactivated
supernatant from human blood products, provided a
more relevant clinical model of TRALL

PRBC that have not undergone pre-storage leucore-
duction comprise a significant proportion of the PRBC
used in the USA (approximately 20% of the approxi-
mately 17 million PRBC transfused in 2009) [50].
Hence, the findings of this study are of particular clini-
cal relevance to the USA and other countries in which

universal pre-storage leucoreduction of blood products
has not yet been implemented. Leucoreduction has
been shown to reduce the concentration of leucocyte-
derived factors in the storage lesion of cellular blood
products [41]; however, whether it also reduces the
risk of TRALI remains a matter of conjecture based
upon current evidence [7,12,18,51]. Of note, analyses
of 89 TRALI cases from two tertiary care medical cen-
tres in the USA [7] and of 60 TRALI cases in The
Netherlands [8] failed to demonstrate any association
between the length of storage of leucoreduced PRBC
and TRALI, although these analyses may have been
confounded by the presence of leucocyte antibodies in
a proportion of leucoreduced PRBC. Hence, the impor-
tance of the present study, and the ovine model, as a
historical marker allowing for further investigation of
the effects of leucoreduction upon TRALI pathogen-
esis. Accordingly, follow-up studies using equivalent
leucoreduced PRBC have been planned to identify
common BRM and to elucidate the effects that trans-
fusion of supernatant from stored leucoreduced human
PRBC may have upon TRALI pathogenesis in the
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ovine model. These effects may then be compared to
those reported in the present study.

The definition of TRALI used in this study included
cases in which a sustained worsening of pre-existing
hypoxaemia was evident following transfusion. This was
justified because the control groups and detailed moni-
toring used in the experimental setting make it possible
to clearly define such cases. Two separate analyses con-
firmed the robustness of these data. First, analyses of
averaged data demonstrated that the LPS-stored group
had lower PaO, values post-transfusion compared to the
LPS-control group (Figure 2). Second, analyses using
mixed modelling demonstrated that the LPS-stored
group had lower PaO, values post-transfusion compared
to both the LPS-control and LPS-fresh groups (Table 2).
Thus, it was possible to conclude that the worsening
hypoxaemia was related to the transfusion of “stored
PRBC” rather than the continued effects of LPS-infu-
sion. In contrast to the experimental setting, defining
worsening hypoxaemia related to transfusion is proble-
matic in the clinical setting. Therefore, more restrictive
criteria, in which TRALI is only defined by the onset of
new hypoxaemia, are used clinically [52,53]. However,
Koch et al. have demonstrated that, regardless of trans-
fusion history, over 60% of cardiac surgical patients
were hypoxaemic upon admission to ICU, this highlight-
ing the difficulty in applying current TRALI definitions
in the critical care setting [54].

The relative similarity in pulmonary anatomy and phy-
siology between sheep and humans [55-59] represents a
significant advantage of this ovine model over existing
small animal rodent models of TRALI. Another distinct
advantage is the larger size of the sheep relative to the
rats and mice used for other TRALI models. This
enabled detailed monitoring of the respiratory and hae-
modynamic changes associated with TRALI. In sheep
that developed TRALI, the observed reduction in Cg,,
and decrement in oxygenation represents a physiological
manifestation of the loss of the open alveolar structure
evident upon post-mortem histological analysis. The
continuous physiological monitoring also revealed that
TRALI was associated with development of pulmonary
arterial hypertension, further increasing the workload on
the right heart, which may lead to poorer tissue oxyge-
nation, with increased venous pressures and reduced
cardiac output. Hence, TRALI worsens oxygenation at
the arterio-alveolar interphase, as well as diminishing
tissue oxygen delivery, due to the cardiovascular pertur-
bations. In addition to predisposing the development of
TRALL it is possible that by worsening tissue dysoxia in
other organs the transfusion of stored blood might also
contribute to the development of multiple organ dys-
function syndrome (MODS) [21,60], although further
studies would be required to investigate this hypothesis.
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This study provides further evidence that both recipi-
ent (first event) and blood product (second event) fac-
tors contribute to the development of TRALI Such a
two-event mechanism was first postulated for some
instances of ARDS [61], then was adapted for TRALI
[15], and recently has been re-stated as a threshold
mechanism for TRALI [14]. This proposes that the
development of TRALI is associated with both the
severity of underlying illness and the strength of blood
product factors [14]. This interaction may provide an
explanation for both the unexpected lack of TRALI in a
single LPS-infused sheep transfused with “stored PRBC”
as well as the unexpected development of TRALI in a
single LPS-infused sheep transfused with “fresh PRBC.”
In the former case, it is possible that recipient factors
were protective against TRALI. Genetic factors have
been implicated in the development of ALI [62], and it
is possible that they may also play a role in TRALI as
only some patients transfused with stored PRBC go on
to develop TRALI In the latter case, post hoc analyses
revealed that abnormal baseline respiratory data were
indicative of pre-existing lung injury (initial PaO,/FiO,
was 277.5, which recovered to 452.5 at the start of the
experiment). Therefore, we speculate that pre-existing
injury in combination with LPS-infusion may have ren-
dered this sheep more susceptible to the development of
TRALI such that a weaker second event stimulus
("fresh PRBC”) was sufficient to induce TRALI. This
would be consistent with the proposed threshold
mechanism. Thus, critical care patients may be particu-
larly susceptible to the development of TRALI because
of the severity of their illness. In addition, the risk of
developing TRALI may be further increased if they are
transfused with stored blood products which have a
higher BRM content [1-3,5,6,11,12,28-31,43-45].

Finally, this study demonstrated that the injury profile
of TRALI induced by “stored PRBC” was more severe
than that previously described by “stored PLT” [10].
Data re-modelling confirmed a reduction in MAP and
CO as well as higher CVP and temperature in TRALI
induced by “stored PRBC.” The strength of the recipient
factors was consistent, as the same dose of LPS was
used in both studies [10]. Therefore, the difference in
symptoms may be attributable to a difference in blood
product factors. This is supported by the higher concen-
trations of EGF, IL-8, IL-16, MCP-1, lactate and potas-
sium measured in “stored PRBC” than in “stored PLT.”
The observation that these higher concentrations, pre-
sent in the transfused blood product were associated
with more severe symptoms is suggestive of a dose-
response relationship; however, further research would
be required to confirm this hypothesis. Also, the
mechanism by which each of these potential BRM may
act requires further elucidation. As no differences were
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observed in the in vitro neutrophil priming ability of
“stored PRBC” and “stored PLT,” direct actions of these
potential BRMs upon neutrophils are unlikely to contri-
bute to the differences observed in vivo. It is possible
that other cells, such as platelets [38], T-lymphocytes
[63] and endothelial cells [16], which also contribute to
the pathophysiology of TRALI may have contributed to
the observed haemodynamic differences and this war-
rants further investigation.

Conclusions

This study has confirmed that the transfusion of solu-
ble factors present in stored blood products (that is,
PRBC) presents a significantly increased risk of TRALI
compared to equivalent fresh products. Symptoms
associated with TRALI induced by “stored PRBC”
were more severe than for TRALI induced by “stored
PLT,” possibly due to an increased range and concen-
tration of cytokines and other factors present in the
“stored PRBC,” and is suggestive of a dose-response
relationship. Improved understanding of the injurious
soluble factors present in stored blood products is
required to direct the manufacture of safer blood
components. This study has also reaffirmed the
importance of recipient (patient) factors in the devel-
opment of TRALI as only LPS-primed sheep went on
to develop TRALI. Hence, severely ill patients, such as
those in critical care units, may be at increased risk of
developing TRALI. This study reaffirms the fact that
blood transfusion has associated risk and should be
prescribed with prudence, particularly in the critical
care setting.

Key messages
« In an in vivo ovine model, sick sheep (that is,
infused with LPS: 15 ug/kg i.v.) transfused with
“stored PRBC” predominantly developed TRALI (P =
0.01 vs. control groups).
« Development of TRALI induced by “stored PRBC”
was associated with haemodynamic changes that
were more severe than in TRALI induced by “stored
PLT” in a previous study [10], and may be because
of differences in the storage lesions of “stored
PRBC” and “stored PLT.”
» The age of the blood product transfused (that is,
fresh vs. date-of-expiry), the type of blood product
transfused (that is, PRBC vs. WB-PLTs) and the
health of the recipient (that is, saline vs. LPS as a
first event), therefore, all contributed to determine
the severity of TRALI in the ovine model.
« Critical care patients may, therefore, be particularly
susceptible to development of TRALI because of the
severity of their illness and their increased reliance
upon transfusion of blood products, and this
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susceptibility may be further increased with the
transfusion of stored blood products.
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ABG: arterial blood gas; ALl: acute lung injury; ARDS: acute respiratory
distress syndrome; BRM: biological response modifier; CO: cardiac output;
CPD: citrate phosphate dextrose; Cq: static pulmonary compliance; CVP:
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from Day 1 non-leucoreduced human whole blood platelet concentrates;
d5-PLT-S/N: pooled heat-inactivated supernatant from Day 5 non-
leucoreduced human whole blood platelet concentrates; EGF: epidermal
growth factor; ENA-78: epithelial derived neutrophil activating 78; EtCO,: end
tidal carbon dioxide; ESLD: end-stage liver disease; FFP: fresh frozen plasma;
FiO,: fraction of inspired oxygen; fMLP: N-formylmethionyl-leucyl-
phenylalanine; “fresh PLT": pooled heat-inactivated supernatant from Day 1
non-leucoreduced human platelet concentrates; “fresh PRBC": pooled heat-
inactivated supernatant from Day 1 non-leucoreduced human packed red
blood cell concentrates; Gl: gastrointestinal; GRO-a: growth related
oncogene alpha; HETE: hydroxy! eicosotetranoic acid; IGFBP-1: insulin-like
growth factor-binding protein 1; IL-8: interleukin 8; IL-16: interleukin 16; LPS:
lipopolysaccharide; MAP: mean arterial pressure; MCP-1: monocyte
chemotactic protein 1; MIF: macrophage inhibitory factor; MODS: multiple
organ dysfunction syndrome; N/A: not applicable; O, superoxide anion;
O,sat: oxygen saturation; PaCO,: arterial partial pressure of carbon dioxide;
PAF: platelet activating factor; PaO,: arterial partial pressure of oxygen; PAP:
pulmonary artery pressure; PDGF-BB: platelet-derived growth factor BB; PLT:
platelet concentrate; PRBC: packed red blood cells; RLI: relative light
intensity; SAGM: saline-adenine-glucose-mannitol; sCD40L: soluble CD40
ligand; “stored PLT": pooled heat-inactivated supernatant from Day 5 non-
leucoreduced human platelet concentrates; “stored PRBC": pooled heat-
inactivated supernatant from Day 42 non-leucoreduced human packed red
blood cell concentrates; SvO,: mixed venous oxygen saturation; TRALI:
transfusion-related acute lung injury.
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