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Abstract

Introduction: Dynamic predictors of fluid responsiveness have made automated management of fluid
resuscitation more practical. We present initial simulation data for a novel closed-loop fluid-management algorithm
(LIR, Learning Intravenous Resuscitator).

Methods: The performance of the closed-loop algorithm was tested in three phases by using a patient simulator
including a pulse-pressure variation output. In the first phase, LIR was tested in three different hemorrhage
scenarios and compared with no management. In the second phase, we compared LIR with 20 practicing
anesthesiologists for the management of a simulated hemorrhage scenario. In the third phase, LIR was tested
under conditions of noise and artifact in the dynamic predictor.

Results: In the first phase, we observed a significant difference between the unmanaged and the LIR groups in
moderate to large hemorrhages in heart rate (76 ± 8 versus 141 ± 29 beats/min), mean arterial pressure (91 ± 6
versus 59 ± 26 mm Hg), and cardiac output (CO; (6.4 ± 0.9 versus 3.2 ± 1.8 L/min) (P < 0.005 for all comparisons).
In the second phase, LIR intervened significantly earlier than the practitioners (16.0 ± 1.3 minutes versus 21.5 ± 5.6
minutes; P < 0.05) and gave more total fluid (2,675 ± 244 ml versus 1,968 ± 644 ml; P < 0.05). The mean CO was
higher in the LIR group than in the practitioner group (5.9 ± 0.2 versus 5.2 ± 0.6 L/min; P < 0.05). Finally, in the
third phase, despite the addition of noise to the pulse-pressure variation value, no significant difference was found
across conditions in mean, final, or minimum CO.

Conclusion: These data demonstrate that LIR is an effective volumetric resuscitator in simulated hemorrhage
scenarios and improved physician management of the simulated hemorrhages.

Introduction
Automation is ubiquitous in modern life but historically
has found limited application in medical care. However,
recent interest has led to the rapid growth of research
in automated controllers in areas ranging from glucose
management to sedation to mechanical ventilation (1-3).
Closed-loop (automated) controllers have been shown
to manage patients safely and more consistently than

clinicians for myriad applications [1-3], but a key
requirement for proper function is reliable feedback
data from systems being controlled. In the case of fluid
responsiveness, historical measures like urine output,
central venous pressure, and pulmonary capillary wedge
pressure are very poor predictors and thus unsuitable
for use in a closed-loop system [4].
Fortunately, great progress has been made in two

areas that now make automated fluid management prac-
tical [5]. The first is the description and characterization
of the dynamic predictors of fluid responsiveness. Para-
meters like pulse-pressure variation (PPV), stroke
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volume variation (SVV), or respiratory variations in the
plethysmographic waveform amplitude (ΔPOP) allow a
reliable determination of whether a mechanically venti-
lated patient is likely to respond to a fluid bolus with a
subsequent increase in cardiac output (CO) [6-8]. This
strong predictive relation can be used to guide resuscita-
tion, and fluid therapy based on the dynamic predictors
has suggested improved outcomes in recently published
prospective trials [8,9].
The second area is the rapid advancement in monitor-

ing technology; noninvasive and increasingly accurate
monitors can provide vital-signs data previously available
only through invasive approaches.
As one of the first steps in the development of an auto-

mation algorithm is testing under simulation [10-15], we
present data for a novel closed-loop fluid-management
algorithm (LIR: Learning Intravenous Resuscitator) in
simulation studies using heart rate (HR), mean arterial
pressure (MAP), CO, and PPV as the input variables. The
goals of the present study were (a) to assess the perfor-
mance of LIR in a spectrum of bleeding scenarios, (b) to
compare automated fluid management by LIR with stan-
dard fluid management by practitioners in simulation
cases, and finally (c) specifically to challenge the reliance
of LIR on the accuracy of PPV for effective resuscitation.

Materials and methods
The study was performed during October and November
of 2010 and February of 2011 at the UCI Medical Center
in Orange, California. IRB exemption was obtained for the
work done with faculty and residents.

Closed-loop algorithm design
The LIR algorithm is an adaptive controller that incorpo-
rates data from previous clinical trials in its decision
engine. It monitors a variety of patient hemodynamic
parameters (CO, dynamic predictors like PPV and stroke
volume variation, heart rate, and blood pressure) and uses
this information to control fluid administration. The
design of the algorithm is described in the following
sections.

Database construction for use in the controller
A dataset of 414 patients, which contained hemodynamic
parameters before and after a 500-ml bolus of hetastarch
6% or modified fluid gelatin given over a 10- to 20-minute
period, was used to derive population-based formulas for
guiding fluid therapy based on PPV and CO. This popula-
tion, the method used, and the way CO was measured
have been described elsewhere in detail [16]. Institutional
review board (Comité de Protection des Personnes Hos-
pices Civils de Lyon, Lyon, France, Comité de Protection
des Personnes Paris-Ile de France, France, Comité de Pro-
tection des Personnes Nord Ouest, Lille, France, and

Institutional Review Board Triemli City Hospital, Zurich,
Switzerland) approvals were obtained. As described pre-
viously, patients were included either as part of clinical
trials or as part of routine clinical care [16]. CO was mea-
sured in all patients (a) by thermodilution via a pulmonary
artery catheter (PAC; Swan-Ganz catheter, 7.5F; Edwards
LifeScience, Irvine, CA, USA), or (b) by the pulse-contour
method by using a 4F thermistor-tipped arterial catheter
(Pulsiocath thermodilution catheter) inserted into the left
femoral artery and connected to a stand-alone PiCCOplus
or PiCCO2 monitor (Pulsion Medical Systems, Munchen,
Germany); or (c) via transesophageal echocardiography
[16].

Controller characteristics
The controller uses the resulting database to calculate
when a patient is likely to respond to a fluid bolus and
with what degree of increase in CO. Patient hemodynamic
parameters (primarily PPV, but also CO, mean arterial
pressure (MAP), and HR) are compared with the dataset,
and a probability of positive response is assigned based on
the population data. This probability and the hemody-
namic data are then modified based on previous patient
responses to fluid administration and deviations from the
model predictions. The core rule-based component of the
system is shown in Figure 1. The net expected percentage
increase in CO predicted by the previous layers is used to
direct therapy. If little to no increase in CO is expected, no
fluid bolus is given; if an infusion is already being given, it
is halted. Conversely, if the expected percentage increase
is high, a fluid bolus is started (or quickened). In the mid-
dle range–the portion corresponding to the recently
described “gray zone” [16]–no actions are taken, and if a
bolus is already running, it will be allowed to continue.
Under some circumstances (for example, a downward
trend in CO), a test bolus may be given in this middle
range to assess the patient response [17].
As implied earlier, the algorithm was designed to be

adaptive. It uses a bolus-based approach to fluid manage-
ment (as opposed to continuous ongoing infusion) to
allow the algorithm to analyze the efficacy of its interven-
tions and to modify its own activity. As successive
boluses are given, the hemodynamic data before and after
each bolus are recorded by the algorithm. These data are
used to modify population predictions with regard to the
current patient, as well as the boundaries of the tree
shown in Figure 1. In the decision tree, for example, if a
patient falls into the indeterminate range of the decision
tree and a test bolus is given with no improvement in
CO, then the threshold required for a test bolus in the
indeterminate zone will be raised by the algorithm. Simi-
larly, if a bolus is given by the system and a much larger
increase in CO is noted than was expected, the threshold
for future boluses will be lowered.
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Simulator design
Because no commercial simulators currently include
dynamic predictors like PPV, we developed one to test the
closed-loop algorithm. The design and validation of the
simulator is included in Additional file 1. The software
was run on a PC during these studies, with simulated
patient data displayed on the PC monitor and the partici-
pants interacting through the mouse and keyboard.
Participants were able to control infusions (crystalloids

or colloids) and administer ephedrine, phenylephrine, epi-
nephrine, or fentanyl. As ventilator parameters (mode,
rate, tidal volume) were not of specific interest for this
study, they were excluded from the participant controls.
All the numeric parameters available to the LIR algorithm
(HR, MAP, CO, and PPV), in addition to others (SBP,
DBP, SPO2, CO2), were shown on the participants’ moni-
tor during the simulation. Blood products were not avail-
able for infusion; LIR was not designed to determine the
appropriate fluid to administer (this would be at the dis-
cretion of the supervising physician), but only the appro-
priate volumes. As such, the decision was made to allow
only crystalloids and colloids to keep the participant and
LIR conditions comparable.

Study protocol
As stated, the goals of this preliminary study were to (a) to
evaluate the performance of LIR in simulated hemorrhage
scenarios, (b) to compare fluid management by LIR with
standard fluid management by practitioners in those

scenarios, and (c) specifically to test the controller in the
absence of highly accurate PPV data. These objectives
were split into phases and are detailed in Table 1 for
reference.
Phase 1: Basic evaluation of the controller in hemorrhage
scenarios
The first phase evaluated the basic efficacy of the control-
ler and its ability to manage fluids during hemorrhage
scenarios. The simulator was run on one PC with vital
signs (HR, systolic and diastolic blood pressure, CO, and
PPV) being recorded over the network by a separate PC
running the LIR algorithm. Interventions (in the form of
fluid boluses) were communicated back to the simulator
over the network. Three simulation scenarios were run
during this phase: (a) mild hemorrhage of 500 ml over a
1.5-hour period; (b) moderate hemorrhage of 1,500 ml
over a 1.5-hour period, and (c) massive hemorrhage of
2,000 ml over a 20-minute period. Patient height, weight,
baseline HR, and baseline SBP/DBP were randomized
within preset ranges (Table 2) In each scenario, bleeding
began 30 minutes after the start of the simulation, and
the scenario ran for 2.5 hours before finishing. For each
scenario, two management groups were tested; 20 trials
were performed with no hemodynamic management (to
demonstrate the effects of the simulated hemorrhage sce-
narios on hemodynamic parameters), and 20 additional
trials received crystalloid infusions managed by the LIR
algorithm. Both groups received a steady infusion rate of
200 ml/hr of crystalloid.

% CO Increase from 
500ml fluid as Predicted 
by Model and Patient 
Adaptive Layers 

 16-20% 

No changes; test 250 ml bolus 
if never attempted or if SV is 
lower than recent trend 

< 8% Halt any active infusion, no 
action 

Start infusion of 250 ml over 
10 minutes, or continue active 
infusion 
  

8-15% 

>= 20% 
  

Start infusion of 500 ml over 
10 minutes, or make active 
one faster 
  

Figure 1 Rule-based component of the controller algorithm. The controller uses patient hemodynamic parameters (primarily pulse-pressure
variation, but also cardiac output, mean arterial pressure, and heart rate) that are compared with the dataset and a probability of positive
response assigned based on the population data. This probability and the hemodynamic data are then fed into the rule-based component of
the controller. CO, Cardiac output.
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Phase 2: Closed-loop system versus practitioner
management during simulated hemorrhage scenarios
The second phase of testing compared the fluid man-
agement of practitioners with that of the LIR algorithm
in simulated hemorrhage cases. After IRB exemption
was obtained, 20 academic anesthesiologists and resi-
dents were asked to manage fluids and medications for
a 1-hour simulated case of massive hemorrhage (2,000
ml blood loss over 20 minutes). The subjects were given
the following history:

“You are taking over management of an otherwise
healthy 40-year-old woman who is having a pelvic
tumor debulking. The surgery started 1 hour ago,
and anesthetic management has been uncomplicated.
Baseline chemistries were within normal ranges, and
the starting hematocrit was 39%.”

Subjects were allowed to ask questions, and responses
were standardized from a preset list of available informa-
tion. Simulator output was presented on the PC graphi-
cally similarly to the monitors used in the operating

rooms, showing HR, blood pressure, pulse oximetry, CO,
and PPV. The hemorrhage began 15 minutes into the
simulation and continued for 20 minutes. Five minutes
after the hemorrhage began, the subject managing the
scenario was told, “The surgical team tells you they’re
losing a lot of blood.” Five minutes after the hemorrhage
ended, they were told that the bleeding seemed to be
under control. The practitioners could give crystalloid,
ephedrine, 10 mg, phenylephrine, 100 mg, or fentanyl, 50
μg, during the management of the simulated patient. One
week later, the subjects repeated the simulation, but this
time the rate of crystalloid infusion was secretly managed
by the closed-loop system while practitioner fluid admin-
istrations were ignored and only the medications affected
the simulator. The simulation was also run 20 times with
only LIR managing crystalloids and 20 times with no
management. The same clinical scenario was run for
each practitioner, and the baseline characteristics of the
simulated patient were again randomized by the compu-
ter within a small range of preset parameters (Table 2).
The range of randomization was narrowed for this phase
so that differences in management would be highlighted,
as opposed to differences in the simulation.
Phase 3: Testing the controller’s dependence on accurate PPV
For the third phase of testing, the simulator was modi-
fied such that PPV was no longer as accurate a predictor
of fluid responsiveness. Four conditions were run during
this phase of testing:
1. Accurate PPV: the PPV was perfectly predictive of

the response to fluid;
2. Biased PPV: the PPV value was constantly biased ±

5% (absolute value) from the true value throughout the
entire scenario;
3. Fluctuating PPV: the PPV value fluctuated randomly

from ± 5% (absolute value) of the true value at random
during the scenario; and

Table 1 Study phases and groups

Phase Scenario(s) PPV condition Management

Phase 1: Testing of Massive hemorrhage Accurate PPV No management

stability
(2.5-hour simulation)

Moderate hemorrhage LIR management

Mild hemorrhage

Phase 2: Comparison with Massive hemorrhage Accurate PPV No management

practitioner management
(1-hour simulation)

Practitioner management

Practitioner meds/LIR Management

LIR management

Phase 3: noise and artifact Mild hemorrhage Accurate LIR management

tolerance
(2-hour simulation)

Biased

Fluctuating

biased and fluctuating

LIR, Learning Intravenous Resuscitator; PPV, pulse-pressure variation.

Table 2 Baseline parameter ranges for study phases

Phase 1 Phase 2 Phase 3

Min Max Min Max Min Max

Weight (kg) 60 100 70 85 70 85

Height (in) 62 72 65 68 65 68

HR (beats/min) 55 85 65 75 65 75

SBP (mm Hg) 105 145 110 130 110 130

DBP (mmHg) 60 90 70 80 70 80

LVEDV (ml) 130 150 130 150 130 150

LVESV (ml) 42 58 42 58 42 58

DBP, diastolic blood pressure; LVEDV, left ventricular end-diastolic blood
pressure; LVESV, left ventricular end-systolic volume; SBP, systolic blood
pressure.
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4. Biased and fluctuating PPV: the PPV had both a
steady bias within ± 5% (absolute value) and an addi-
tional fluctuating component of ± 5% (absolute value).
Thus, in the final condition, the PPV reported by the
simulator may have been up 10% different from the true
value; a “true” PPV of 15% might have been reported as
anywhere from 5% to 25%). The closed loop was then
used to manage crystalloid infusions for a 2-hour, 1,000-
ml blood-loss scenario under each of these four condi-
tions, with bleeding starting 30 minutes into the simula-
tion. A longer and slower hemorrhage scenario than was
used in Phase 2 was intentionally simulated for this
phase to accentuate the differences in the accuracy of
the PPV across groups; a massive hemorrhage might
have hidden small differences.

Statistical analysis
Data are presented as mean ± SD. For Phase 1, data
between the no intervention group and the LIR manage-
ment group were compared by using a Mann-Whitney
test. For Phases 2 and 3, data were compared by using
analysis of variance for repeated measurements
(ANOVA). If significant differences were found, post hoc
testing was performed by using Tukey’s honest significant
difference. A P value < 0.05 was considered statistically
significant. All statistic analysis was performed by using
SPSS 13.0 for Windows, SPSS, Chicago, IL, USA.

Results
Phase 1
Basic evaluation of the controller in hemorrhage scenarios
Mean CO, HR, and blood pressure were similar across
groups at baseline (6.5 ± 1.1 L/min, 71 ± 9 beats/min, and
90 ± 8 mm Hg, respectively). In the massive hemorrhage

scenario, a significant difference was noted between the
unmanaged and the closed-loop managed conditions in
HR, MAP, and CO throughout the case and at the end of
the simulation (Table 3). Likewise, in the moderate-
hemorrhage scenario, a significant difference was found
between the unmanaged and the closed-loop managed
groups in HR, MAP, and CO throughout the case and at
the end of the simulation (Table 3). No significant differ-
ence existed between management groups in the mild-
hemorrhage scenario (Table 3). The closed-loop adminis-
tered fluid before clinical evidence of hemorrhage was
apparent from CO, HR, or MAP. In the massive-hemor-
rhage scenario, for example, the average time to show a
10% decrease from baseline CO and MAP was 14 ± 4 min-
utes and 16 ± 3 minutes, respectively, from the start of the
hemorrhage, and HR increased to 10% over baseline at 13
± 3 minutes. LIR, meanwhile, began administering fluid
on average at 7 ± 2 minutes. PPV was the earliest indicator
of hemorrhage, increasing to 10% within 7 ± 2 minutes
and 15% within 8 ± 2 minutes in this scenario.

Phase 2
Closed-loop system versus practitioner management during
simulated-hemorrhage scenarios
Eleven residents and nine attending anesthesiologists
participated in the simulation. The residents were PGY-
2 to PGY-4, aged 28 to 34 years, with seven men and
four women. Attendings consisted of five men and four
women, and had been practicing a median of 5 years
(range, 1 to 15 years). Simulated patient HR, MAP, and
CO values were similar at baseline across all four man-
agement groups (6.5 ± 0.2 L/min, 68 ± 2 beats/min, and
85 ± 2 mm Hg, respectively). Once the hemorrhage
began, the LIR-managed groups intervened significantly

Table 3 Final hemodynamic parameters in Phase 1 groups

No intervention (n = 20) Closed-loop management (n = 20) P value

Massive hemorrhage

Fluid given (ml) 300 ± 0 3,420 ± 117

HR (beats/min) 141 ± 29 76 ± 8 < 0.001

MAP (mm Hg) 59 ± 26 91 ± 6 < 0.001

CO (L/min) 3.2 ± 1.8 6.4 ± 0.9 < 0.001

Moderate hemorrhage

Fluid given (ml) 300 ± 0 1,543 ± 54

HR (beats/min) 119 ± 32 73 ± 9 < 0.001

MAP (mm Hg) 76 ± 10 88 ± 7 < 0.005

CO (L/min) 5.0 ± 1.1 6.9 ± 0.8 < 0.001

Mild hemorrhage

Fluid given (ml) 300 ± 0 653 ± 44

HR (beats/min) 77 ± 10 72 ± 9 0.08

MAP (mm Hg) 85 ± 7 87 ± 8.8 0.3

CO (L/min) 6.6 ± 1.0 6.5 ± 1.0 0.73

Data are presented as mean ± SD. CO, cardiac output; HR, heart rate; MAP, mean arterial pressure.
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earlier than the practitioner group and gave more total
fluid (Table 4). The mean, minimum, and final CO
values were higher in both LIR-managed groups than in
the practitioners group (Figure 2), and the coefficient of
variance was lower (Table 4 and Figure 2). No difference
in MAP was found between intervention groups, but all
were significantly higher than the unmanaged group

(Figure 3). No significant difference appeared between
attending and resident performance in final CO, HR, or
MAP values in the practitioner-management group (4.5
± 1.2 L/min, 95 ± 13 beats/min, and 76 ± 10 mm Hg
for attendings, and 4.9 ± 1.7 L/min, 91 ± 28 beats/min,
and 75 ± 19 mm Hg for residents). Finally, a significant
reduction in vasopressor use was noted in the

Table 4 Fluid management: anesthesiologists versus closed loop

No
management
(1)

Anesthesiologist
managed
(2)

Anesthesiologist, pressors;
closed-loop, fluids
(3)

Closed-loop
managed
(4)

Time window until the application of first bolus from
start of hemorrhage (min)

- 21.5 ± 5.6a 15.6 ± 1.1 16.0 ± 1.3

Total fluid given (ml) - 1,968 + 644a 2,875 ± 275 2,675 ± 244

Mean arterial pressure (mm Hg) 61 ± 6.9 76 ± 4.2 79 ± 2.0 79 + 1.1

Mean cardiac output (L/min) 3.8 ± 0.4 5.2 ± 0.6a 5.8 ± 0.2b 5.9 ± 0.2b

Minimum cardiac output (L/min) 1.4 ± 0.8 3.6 ± 1.3a 4.8 ± 0.5b 4.8 ± 0.4b

Final cardiac output (L/min) 1.7 ± 0.9 4.8 ± 1.5a 5.6 ± 0.5b 5.7 ± 0.4b

Cardiac output during case, coefficient of variance (%) 89 ± 29 36.7 ± 23a 16.6 ± 9b 16.3 ± 8b

n = 20 in each group. Data are reported as mean ± standard deviation. aP < 0.05 versus groups 2, 3, and 4. bP < 0.05 versus groups 1 and 4.

Figure 2 Cardiac output in Phase 2 groups; closed-loop system versus practitioner management during a simulated hemorrhage
scenario. Each line represents a single case. Once the hemorrhage began, the LIR-managed groups intervened significantly earlier than the
practitioner group and gave more total fluid. The mean, minimum, and final cardiac output was higher in both LIR-managed groups than in the
practitioner group, and the coefficient of variance was lower. LIR, Learning Intravenous Resuscitator.
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Practitioners with LIR group versus the Practitioners
group (Table 5).

Phase 3. Testing the controller’s dependence on accurate
PPV
Baseline CO, HR, and MAP values across all trial condi-
tions were similar at baseline in this phase (6.6 ± 0.4 L/
min, 70 ± 1 beats/min, and 87 ± 2 mm Hg, respectively).
No significant difference was found in mean, minimum,
or final CO across PPV conditions, regardless of the type

of artifact induced in the PPV signal (Table 6). Time to
first fluid bolus and total volume infused were likewise
nonsignificant. Although the coefficient of variance of
the CO during the case did increase from 5.4% ± 1.3% in
the perfect PPV condition to 7.0% ± 3.2% in the biased
and fluctuating PPV condition, this difference was also
not significant (P = 0.06).

Discussion
As simulation studies are a standard step in the testing
of new controllers [10-15], these data represent the first
step in the development of an automated fluid-manage-
ment system for clinical use. Overall, the results suggest
that (a) the LIR algorithm is capable of performing fluid
resuscitations, at least in simulation; (b) the controller
performs comparably to practitioners in this setting and
maintains a higher and more stable CO; and (c) the
controller is not dependent on a highly predictive PPV
value to function.
The first phase of our simulation study was to show

that LIR is capable of adequately resuscitating patients

Table 5 Ephedrine and phenylephrine use in Phase 2 of
the study

Ephedrine (mg) Phenylephrine (μg)

No management 0 ± 0 0 ± 0

LIR alone 0 ± 0 0 ± 0

Practitioners alone 0 ± 0 100 ± 132a

Practitioners with LIR 0.3 ± 1.1b 40 ± 94b

Data are presented as mean ± SD. a P < 0.05 for practitioners alone versus LIR
alone. bP < 0.05 for practitioners with LIR versus practitioners alone. LIR,
Learning Intravenous Resuscitator.

Figure 3 Mean arterial pressure in Phase 2 groups: closed-loop system versus practitioner management during a simulated
hemorrhage scenario. Each line represents a single case. We observed no difference in mean arterial pressure between intervention groups,
but all were significantly higher than those in the unmanaged group.
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during blood-loss scenarios. Although it was perhaps
not surprising that the controller was superior to a low-
rate steady crystalloid infusion, this was nevertheless an
essential step in the development of the algorithm. One
of the key results of this phase is the low standard
deviation of the fluid infusions within scenarios;
although this is not an engineering test of stability, this
suggests at the minimum, consistency of the algorithm
in its management. Another important observation from
this portion of the study is that LIR did not over-resus-
citate; the controller stopped administering fluid when
the CO began to level off.
In comparison to practitioners in the second phase of

the study, LIR detected the need for resuscitation earlier
and was more consistent in management. Some indivi-
dual practitioners maintained CO in the same range
that LIR did throughout the case, but a huge interpracti-
tioner variability occurred (Figure 2). This is one of the
biggest offerings of closed-loop management: reduction
of interpersonal variability and bias in management.
Another interesting observation from this phase of the
study is that whereas the differences in CO were signifi-
cant, the differences in MAP between practitioner and
LIR groups were not (Figure 3). Still a larger variability
in MAP was noted in the practitioner group, but overall,
the clinicians maintained MAP closer to baseline than
CO. This is consistent with the historical trend in clini-
cal management to focus on blood pressure in hemody-
namic management, although evidence now suggests
that CO and oxygen delivery should also be central to
management.
Although no significant difference was found between

attendings and residents in hemodynamic parameters,
this study was not designed to look for such differences
and was not sufficiently powered toward that end. Inter-
estingly, however, although the means were similar
between the two subgroups, the standard deviations for
HR, MAP, and CO were much wider in the resident
management subgroup versus the attending manage-
ment subgroup. One would expect that the lesser level
of expertise of the resident subgroup might lead to
greater variation in management.

Finally, a reduction in vasopressor use by practitioners
occurred when LIR was managing fluids (although the
practitioners did not know that the closed-loop was
actually in use) (Table 5). Interestingly, phenylephrine
was chosen almost exclusively over ephedrine during
this simulation by the practitioners, despite their having
access to both agents at all times. This is just a conjec-
ture, but it seems likely that practitioners chose pheny-
lephrine because the heart rate was already elevated
because of hemorrhage when vasopressors were being
given.
The final phase of the study demonstrates that LIR is

not completely dependent on a highly predictive PPV
value to function effectively. In the tests, the greater the
uncertainty introduced, the larger the variance in manage-
ment becomes, but even when the PPV value was off by
up to 10% of the true value, the resulting difference in
fluid given was less than 75 ml per hour, and represented
less than 5% of the total volume administered (Table 4). If
closed-loop systems are to be deployed in clinical use, they
must be equipped to handle noise, artifact, and the uncer-
tainty present in all clinical work and still operate safely
and effectively, and although the controller will certainly
need more-definitive tests of robustness, this is a reassur-
ing early result. However, limitations to the use of
dynamic parameters of fluid responsiveness will still have
to be respected (limitations include spontaneous ventila-
tion, low tidal volume equal to or less than 7 ml/kg,
arrhythmia, open-chest procedures, and HR/respiratory
rate ratio < 3.6). For this reason, the LIR algorithm is also
designed for conducting stroke-volume optimization alone
when PPV and SVV are not available [18] and, inversely,
to conduct PPV or SVV minimization when stroke volume
is not monitored [6]. However, the present study does not
test these features, and these results cannot be extrapo-
lated. The same kind of study testing the ability of LIR to
handle noise or artifacts for stroke-volume maximization
alone or PPV/SVV minimization alone is warranted.
The same patient database was used in the design of

both the LIR algorithm and the PPV portion of the
simulator with which it was tested, possibly creating a
bias that favored the performance of the algorithm. This

Table 6 Closed-Loop Fluid Management - Uncertain PPV Conditions

Perfect PPV Biased PPV Fluctuating PPV Biased & Fluctuating PPV

First Bolus (min) 52.6 ± 0.9 53.4 ± 1.4 51.9 ± 4 52.6 ± 3.9

Total Fluid Given (ml) 2476 ± 85 2466 ± 80 2428 ± 159 2435 ± 131

Mean Arterial Pressure (mmHg) 82.1 ± 0.7 82.1 ± 0.6 82 ± 1.2 82 ± 1.6

Mean Cardiac Output (L/min) 6.3 ± 0.1 6.3 ± 0.1 6.2 ± 0.2 6.2 ± 0.2

Minimum Cardiac Output (L/min) 5.8 ± 0.2 5.9 ± 0.2 5.7 ± 0.3 5.6 ± 0.4

Final Cardiac Output (L/min) 6.4 ± 0.1 6.4 ± 0.1 6.4 ± 0.1 6.3 ± 0.2

Cardiac Output During Case, Coefficient of Variance (%) 5.4 ± 1.3 5.4 ± 1.1 6.4 ± 2.0 7.0 ± 3.2

n = 20 each group. Data are reported as mean +/- standard deviation. p > 0.05 for all comparisons. PPV: pulse pressure variation.
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is a valid concern, but one that was both unavoidable
and in part addressed in the third phase of the study.
This was unavoidable because both the algorithm and
the simulator were designed, to the best of the authors’
skill, by using the best available information on how
PPV predicts response to fluid in human subjects (see
Additional file 1). Because of this, and regardless of how
it had actually been accomplished, the systems would
have been built by using the same underlying principles
governing the dynamic predictors or else, by definition,
one (or both) would have included inferior operational
information. In this case, the most extensive information
available was the data set collected by Cannesson et al.
[16]. The caveat, of course, is that if the data are erro-
neous, the closed loop may nevertheless function in the
artificial simulation environment because it is partially
based on those same data. The third phase of the study
was intended in part to examine this possible bias in the
design by making the reported PPV an imprecise predic-
tor to see what impact, if any, this had on the LIR algo-
rithm. As demonstrated, the controller continues to
function even when PPV varies widely from the “true”
value generated from the incorporation of the database
into the simulator. Although this suggests that the
appropriate operation of LIR is not dependent on the
included PPV dataset alone, only further study indepen-
dent of the simulator will adequately address this
concern.
Good evidence indicates that maximizing SV in the

perioperative period will reduce complications and
improve outcomes for moderate- to high-risk surgical
patients [19-24]. Thermodilution with a pulmonary
artery catheter remains the clinical standard, but alter-
native CO monitoring devices (like esophageal Doppler)
have also been used to guide therapy with positive
effects [25]. With the proliferation of noninvasive and
minimally invasive CO devices in recent years, goal-
directed CO monitoring is readily achievable in a broad
patient population. Hemodynamic management of this
type requires frequent interventions, protocol-driven
decision making, and high levels of attention to be effec-
tive and repeatable. Given these requirements, it may be
difficult to gain acceptance for standardized protocols.
The more complex a protocol becomes, the harder it is
to implement correctly and consistently, and even in the
best of cases, errors in implementation are common
because of care-provider time constraints [26]. Addition-
ally, health care providers work in an environment full
of distractions [27] and are susceptible to fatigue, lapses
in attention, and stress, all of which can have a negative
impact on work performance [28]. Furthermore, studies
have shown that when management protocols are imple-
mented in clinical care, adherence rates are only 40% to
50%, and this remains true across a variety of disciplines

from ICU glucose control to trauma assessment and
even outpatient screening guidelines [26,29-32].
Closed-loop systems are a bridge across this imple-

mentation gap, allowing the closed loop to perform the
often tedious tasks of the protocols and intervening
when needed, which then allows clinical care providers
to focus on other aspects of management. Moreover, the
closed loop is not susceptible to distraction, fatigue, or
personal bias. This means that a clinical protocol or
algorithm can be followed exactly and improved on over
time. Once a closed loop is shown to be effective in
management of a given clinical scenario, it can be used
repeatedly and will produce consistent results in that
scenario.
A great deal of automation is already being integrated

into clinical care. Closed-loop ventilators that adapt
breath-to-breath in response to changes in oxygenation
and lung compliance are commonplace in modern ICUs
[3,33]. Insulin therapy systems are being actively investi-
gated for both inpatient and outpatient use [34]. A
closed-loop propofol and remifentanil administration
system based on BIS (processed EEG) was recently
reported on in a large clinical trial [35]. Closed loops
like these are demonstrating the possible uses and bene-
fits of automation in medicine.

Study limitations
Although the LIR algorithm proved effective in manage-
ment of the simulated hemorrhage scenarios, some lim-
itations exist with the current study. First, the simulator
was designed with as accurate a hemodynamic model as
possible, given the current understanding of the
dynamic predictors of fluid responsiveness, but generali-
zations about the possible efficacy of this controller in
clinical practice would be premature based on this initial
work. In terms of the algorithm design, the controller
has not been rigorously studied for stability and robust-
ness from an engineering standpoint and will need this
testing before clinical studies can commence. The
patient database used to seed the population-based algo-
rithm is our own, which may limit applicability. Finally,
the third phase of our study (in which the tolerance of
the algorithm for error in the PPV signal was examined)
suggests that the algorithm will still function well in the
face of moderate levels of noise and error, but whether
this is sufficient to tolerate the noise and uncertainty
actually present in clinical monitoring of patients
remains to be tested.
A limitation in the comparison with practitioners is

the obvious difference between simulation and clinical
care. It may well be that clinical cues and observations
are available to practitioners in the OR or ICU setting,
not available in simulation, that may limit the applicabil-
ity of the second phase of our study to true clinical
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practice. Only further testing and clinical trials can ade-
quately address this issue.
Additionally, the decision specifically to exclude

blood-product administration may have limited the
application of these simulation results to real-world
hemorrhage and resuscitation. As previously mentioned,
LIR was designed to determine the appropriate volumes
for resuscitation, but not the appropriate fluid to give in
a particular situation. This decision would be left to the
supervising physician, who could hang any fluids or pro-
ducts desired and allow the algorithm to determine the
rate and timings of administrations. As this was not a
part of the algorithm, we sought to limit the study to
the question of volumetric appropriateness only by
removing the option of blood products from both
groups. A system like LIR would never be deployed in
the absence of some form of direct supervision for
exactly this reason. The supervising physician would
need to determine when blood products were needed;
otherwise, in a slow but steady hemorrhage, the control-
ler would continue to give fluids to maintain intravascu-
lar volume until the patient died of anemia. A
supervising physician would recognize the need for pro-
ducts and could hang them instead of a fluid bag when
appropriate. An “anemia risk” alarm could be integrated
that tracked parameters like volume given, time span,
and patient weight, but this would only be an adjunct to
supervision. Moreover, the ongoing development and
improvement of continuous, noninvasive hemoglobin
sensors represents another possible safety feature and
enhancement for future integration [36].
Because of the nature of the scenarios, we limited the

patient parameter randomization process in the simula-
tor to narrower ranges than might be found in the real
patient population. The reason for this was to keep the
scenarios more consistent in their evolution (for exam-
ple, a 2,000-ml blood loss would have been catastrophic
in a 45-kg patient versus a 100-kg patient). This kept
the scenarios more consistent across trials, but the
restricted range may limit applicability of the efficacy of
the LIR algorithm to a large and variable patient
population.
Finally, this study did not seek to answer a host of

questions regarding this system. For example, how
would the system cope with a significant change in
patient condition like the onset of atrial fibrillation, or a
change from volume control to assisted or spontaneous
ventilation? What about a new-onset myocardial infarc-
tion? The LIR algorithm was designed to detect when
patient responses are not matched by expectations,
especially when a sudden change in responses or overall
patient condition occurs, and adjust future interventions
accordingly, but clearly this is out of the scope of the
current study and requires much more testing. Further

studies testing the ability of the system to work by using
SV optimization alone or PPV/SVV optimization alone
are needed.

Conclusion
The current study demonstrates that the LIR algorithm
effectively resuscitates simulated patients in the tested
scenarios and significantly improved physician manage-
ment in the second phase of the study. Future studies
will focus on the stability of the controller and testing in
a broader range of scenarios, including in other
simulators.

Key Messages
• This study is the first to describe an automated
system for hemodynamic optimization based on car-
diac output and pulse-pressure variation optimiza-
tion. These data demonstrate that the learning
intravenous resuscitator (LIR) is an effective volu-
metric resuscitator in simulated hemorrhage scenar-
ios and improved physician management.
• The controller performs comparably to practi-
tioners in this setting and maintains a higher and
more stable cardiac output
• The controller is not dependent on a highly pre-
dictive pulse-pressure variation value to function
• This system is designed to optimize hemodynamics
based on pulse-pressure variation and/or stroke-
volume variation and/or stroke volume alone
• Engineering testing and simulation studies are the
first required steps before any testing of a closed-
loop system in a living system

Additional material

Additional file 1: Hemodynamic Simulator Design. This document
describes how the hemodynamic simulator was design. It provides an in-
depth description of the mathematical and physiological models used to
build the hemodynamic simulator used in the present study.
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