
Introduction

Over the past decade several investigators have applied 

microarray technology and related bioinformatic 

approaches to clinical sepsis and septic shock, thus 

allowing for an assessment of how, or if, this branch of 

genomic medicine has meaningfully impacted the sepsis 

fi eld. Th is review will fi rst provide an overview of the gene 

microarray approach, including limitations and study 

design considerations. Subsequently, the review will focus 

on the potential translational application of microarray 

data and genome-wide expression profi ling to the sepsis 

fi eld. Four broad areas will be discussed: genome-level 

understanding of sepsis, biomarker discovery, gene 

expression-based identifi cation of septic shock subclasses, 

and discovery of novel targets and pathways.

Technology, approaches, and limitations

Microarray-related technology, approaches, and limita-

tions have been extensively reviewed elsewhere [1-5], and 

will be summarized below. Notably, there is now an 

emerging technology, RNA sequencing (RNA-Seq) [6], 

that has potentially intriguing applications for the fi eld, 

but will not be further discussed as there are no RNA-Seq 

data specifi cally related to sepsis.

Th e fundamental technical innovation of microarray 

technology is the ability to simultaneously measure 

mRNA abundance of thousands of transcripts (transcrip-

tomics). Th e technique generally involves reverse trans-

cription of RNA into cDNA, with the inclusion of a label-

ing molecule for detection. Th e labeled cDNA (targets) is 

subsequently applied to a support surface arrayed with 

nucleotide sequences corresponding to specifi c genes 

(probes). Th e probes and targets hybridize via standard 

nucleic acid interactions and the amount of hybridization 

refl ects the abundance of a specifi c mRNA species. Th e 

supporting surface is subsequently washed and scanned 

to provide raw mRNA abundance data. An important 

limitation of transcriptomics is that it solely provides a 

‘snapshot’ of steady-state mRNA abundance. Th e degree 

of mRNA abundance is infl uenced by multiple factors, 

and does not provide any direct information about gene 

end products (proteins), nor post-translational modifi ers 

of protein function, such as phosphorylation or glycation.

One major consideration in designing a microarray 

experiment involves the RNA source. Ideally, the RNA 

source should be relatively homogenous and closely 

represent the disease/condition biology of interest. For 

example, the discovery of neutrophil gelatinase-asso-

ciated lipocalin as a biomarker for acute kidney injury 

included microarray-based analysis of kidneys from 
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rodents subjected to renal ischemia [7]. Most of the studies 

described below have used the blood compartment as the 

RNA source. Reliance on the blood compartment has 

obvious limitations with regard to specifi c organ pertur-

bations in clinical sepsis, but also refl ects the practical 

limitations of tissue sampling in clinical research and 

does provide a broad picture of a systemic response. 

Blood-derived RNA can come from either whole blood (a 

mixed population of blood cells), or following the 

isolation of specifi c blood cells. Th e whole-blood 

approach facilitates the procurement of samples from 

multiple centers, without the requirement for cell separa-

tion expertise, and has the potential to provide a compre-

hensive picture. However, the whole blood approach has 

the potential to confound data interpre ta tion due to 

heterogeneous blood cell populations. Th e cell-specifi c 

RNA approach provides a more homogenous RNA 

source, but has the potential to miss biologically relevant 

expression signatures from cells that are excluded from 

the experimental approach. For example, a study that 

focuses exclusively on peripheral blood mononuclear 

cells will not account for the potentially important 

response of neutrophils.

Another important consideration in designing a 

microarray experiment involves the reference (control) 

group to which gene expression in the population of 

interest will be compared. For example, if one is 

interested in studying gene expression patterns in sepsis, 

relative to a normal state, then comparisons to normal 

controls is appropriate. In contrast, if one is interested in 

discovering gene expression patterns that distinguish 

sepsis from ‘sterile infl ammation’, then a more appropriate 

control group would consist of patients who are not 

infected, but meet criteria for systemic infl ammatory 

response (SIRS).

Th e heterogeneity and complexity that characterize 

clinical sepsis present an important challenge to clinical 

microarray studies. From one perspective, one could say 

that the comprehensive nature of a microarray approach 

is ideally suited for studying such a heterogeneous and 

complex syndrome. From another perspective, the 

hetero geneity and complexity are potentially profound 

confounders for data interpretation. Accordingly, it is 

critical that microarray data be interpreted in the context 

of robust clinical/biological data that can infl uence gene 

expression patterns. Th ese include, but are not limited to, 

race, gender, age, co-morbidities, infecting pathogen 

class, state of immune competence, and therapy.

Analysis of microarray data is an evolving and complex 

fi eld. A universal initial step involves data normalization, 

which allows valid comparisons across samples by reduc-

ing technical variations not directly related to biological 

variation [5]. A typical next step involves statistical com-

pari sons across groups of interest using either parametric 

or non-parametric analysis of variance. Unfortunately, 

there is no clear consensus as to which statistical test is 

most appropriate for a given data set, and it is particularly 

troubling that lists of ‘diff erentially regulated genes’, from 

the same data set, can substantially vary based on the 

statistical test [8,9]. Regardless of what statistical test one 

uses, it is imperative that the statistical test incorporates 

corrections for multiple comparisons to account for a 

substantially high risk of false positives. One common 

fi lter that is applied to microarray data involves an 

expression fi lter that compares mRNA abundance of 

specifi c gene probes in one cohort versus a reference 

cohort. Expression fi lters are useful to assess ‘magnitude 

of eff ect’ and to reduce the number of comparisons for a 

subsequent statistical test, but they are not valid 

substitutes for formal statistical testing. Finally, there is 

the issue of statistical power in microarray experiments, 

which can be calculated, but is dependent on assumptions 

that can be diffi  cult to derive objectively [10]. In general, 

a heterogeneous study cohort will require substantially 

more independent samples, compared to a more homo-

genous cohort.

Th e statistical tests described above typically yield large 

lists of diff erentially regulated genes, thus leaving one 

with the challenge of assigning biological meaning to 

these gene lists. One approach to data interpretation 

involves the generation of ‘heat maps’, which statistically 

cluster genes and samples based on similarity of 

expression. Heat maps provide a broad picture of gene 

expression patterns and allow for the discovery of disease 

‘subclasses’ based on diff erential gene expression [11]. 

Another approach to viewing large microarray data sets 

involves the generation of gene expression ‘mosaics’ 

based on a ‘self-organizing map’ algorithm [12,13]. Th ese 

gene expression mosaics provide microarray data with a 

‘face’ that is recognizable via intuitive pattern recognition, 

and were recently applied to allocate patients with septic 

shock into clinically relevant subclasses [14,15].

Beyond these global assessments of gene expression 

patterns there exist a number of public and proprietary 

databases allowing for the assignment of biological 

function to gene lists. Th ese databases examine uploaded 

gene lists and determine whether the gene list is enriched 

for genes that are biologically related, based on the 

established literature. Th e outputs from these databases 

range from generic (for example, ‘immune response’) to 

specifi c (for example, ‘antigen presentation’) biological 

processes. Furthermore, the outputs from these data-

bases provide an estimate of signifi cance (P-values) 

indicating how likely a gene list is enriched for a given 

biological function by chance alone. Th e level of 

signifi cance is directly proportional to the number of 

genes in the list that correspond to the given biological 

function, and indirectly proportional to the total number 
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of genes in the list. A related approach to assigning 

biological meaning to gene lists involves the generation 

of gene networks based on known, direct and indirect, 

interactions between genes [16,17].

Genome-level understanding of sepsis

Microarray-based expression profi ling has provided an 

unprecedented opportunity to gain a broader, genome-

level ‘picture’ of complex and heterogeneous clinical 

syndromes such as sepsis. In addition, this genome-level 

approach has the potential to reduce investigator bias, 

and thus increase discovery capability, in as much as all 

genes are potentially interrogated, rather than a specifi c 

set of genes chosen by the investigator based on a priori 

and potentially biased assumptions.

Many of the fundamental physiologic and biologic 

principles of the sepsis paradigms are derived from 

experiments involving human volunteers subjected to 

intravenous endotoxin challenge [18-21]. More recently, 

the genome-level response during experimental human 

endotoxemia has been studied using microarray tech-

nology [16,22,23]. Talwar and colleagues [22] compared 

eight volunteers challenged with intravenous endotoxin 

to four controls challenged with saline. Mononuclear 

cell-specifi c RNA was obtained at four diff erent time 

points after endotoxin challenge and analyzed via micro-

array. As expected, a large number of transcripts related 

to infl ammation and innate immunity were substantially 

up-regulated in response to endotoxin challenge. 

Interest ingly, the peak transcriptomic response to the 

single endotoxin challenge occurred within 6 hours and 

mRNA levels generally returned to control levels within 

24  hours. Th e investigators also reported endotoxin-

mediated diff erential regulation of over 100 genes not 

typically associated with acute infl ammation (for example, 

cathepsin H, sialidase 1, UDP-glucose dehydrogenase, 

zinc fi nger protein 266, homeo box B2). Finally, and of 

relevance to subsequent sections of this review, endo-

toxin challenge also led to repression of several gene 

programs directly related to adaptive immunity (for 

example, interleukin-7 receptor, T cell receptor α locus, 

zeta-chain T cell receptor associated protein kinase 

70 kDa, T cell receptor γ locus).

Calvano and colleagues [16] also studied normal 

volunteers subjected to a single endotoxin challenge, but 

applied a (then) novel approach to microarray data 

analysis centered on knowledge-based interactive gene 

networks. Again, the maximal up-regulation of gene 

networks corresponding to infl ammation and innate 

immunity occurred at approximately 6  hours after the 

endotoxin challenge, and generally returned to baseline 

by 24  hours. Perhaps the most interesting fi nding from 

this network-centered analysis, however, was the 

widespread and early repression of gene networks related 

to mitochondrial energy production (for example, NADH 

dehydrogenase 1, pyruvate dehydrogenase, ATP synthase) 

and protein synthesis (ribosomal protein L3, ribosomal 

protein S8, eukaryotic translation initiation factor). Tang 

and colleagues [24] have corroborated the repression of 

mitochondrial energy production-related genes in a 

study focused on neutrophil-specifi c gene expression in 

critically ill patients with sepsis.

Th e human endotoxemia studies described above 

provide a highly controlled and reproducible experimental 

setting to explore sepsis biology at the level of the entire 

transcriptome, but as with all sepsis models, this model 

does not fully replicate the complex and heterogeneous 

syndrome seen at the bedside following infection with 

live microbes [25]. Consequently, several investigators 

have attempted microarray-based studies in critically ill 

patients with sepsis and septic shock. Th ese studies 

present considerable experimental challenges due to the 

inherent heterogeneity of clinical sepsis and septic shock. 

Nonetheless, several studies have provided novel insight 

into the overall genome-level response to sepsis 

[9,17,24,26-34]. A common theme across many of these 

studies is the massive up-regulation of infl ammation- and 

innate immunity-related genes in patients with sepsis and 

septic shock. Th ese observations are not intrinsically 

novel, but they are consistent with the long-standing 

sepsis paradigms centered on a hyperactive infl ammatory 

response, and thus provide an important layer of 

biological plausibility with regard to overall microarray 

data output in the context of clinical sepsis.

Another common paradigm in the sepsis fi eld involves 

a two-phase model consisting of an initial hyper-infl am-

ma tory phase followed by a compensatory anti-infl am-

ma tory phase, but this has been recently challenged, in 

large part due to the multiple failures of interventional 

clinical trials founded on this paradigm [35-37]. Recently, 

Tang and colleagues [3] conducted a formal systematic 

review of a carefully selected group of microarray-based 

human sepsis studies. A major conclusion of this system-

atic review is that, in aggregate, the transcriptome-level 

data do not consistently separate sepsis into distinct pro- 

and anti-infl ammatory phases. Th is conclusion has been 

questioned [38], but is supported by several recent 

cytokine- and infl ammatory mediator-based studies in 

clinical and experimental sepsis [39-41].

Another prevailing paradigm in the sepsis fi eld involves 

the concept of immune-paralysis, which frames sepsis as 

more of an adaptive immune problem (rather than just an 

overactive innate immune system) and the inability to 

adequately clear infection [42,43]. Recently, this paradigm 

was elegantly corroborated in mice subjected to sepsis 

and rescued by administration of IL-7, an anti-apoptotic 

cytokine essential for lymphocyte survival and expansion 

[44,45]. As mentioned previously, studies in human 
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volun teers challenged with endotoxin revealed early 

repres sion of gene programs related to adaptive 

immunity [22]. In studies focused on mononuclear cell-

specifi c expression profi les, Tang and colleagues [30,31] 

have also reported early repression of adaptive immunity 

genes in patients with sepsis. Finally, multiple studies in 

children with septic shock have reported, and validated, 

early and persistent repression of adaptive immunity-

related gene programs (for example, genes corresponding 

to the T cell receptor) [9,11,14,15,17,32-34]. Th us, the 

concept of adaptive immune dysfunction as an early and 

prominent feature of clinical sepsis and septic shock 

seems to be well supported by the available genome-wide 

expression data.

Developmental age is thought to be a major contributor 

to sepsis heterogeneity. Recently, a microarray-based 

study in children with septic shock corroborated this 

concept at the genomic level [46]. Four developmental 

age groups of children were compared based on whole-

blood-derived gene expression profi les. Children in the 

‘neonate’ group (<28 days of age) demonstrated a unique 

expression profi le relative to older children. For example, 

children in the neonate group demonstrated widespread 

repression of genes corresponding to the triggering 

receptor expressed on myeloid cells 1 (TREM1) pathway. 

TREM1 is critical for amplifi cation of the infl ammatory 

response to microbial products and there has been recent 

interest in blockade of the TREM1 signaling pathway in 

septic shock [47]. Th e observation that TREM1 signaling 

may not be relevant in neonates with septic shock 

illustrates how some potential therapeutic strategies for 

septic shock may not have biological plausibility in 

certain developmental age groups.

Biomarker discovery

A daily conundrum in the intensive care unit is the ability 

to distinguish which patients that meet criteria for SIRS 

are infected, and which patients with SIRS are not 

infected. Accordingly, there are ongoing eff orts to discover 

diagnostic biomarkers for sepsis (SIRS secondary to 

infection), and microarray approaches have the potential 

to enhance these eff orts. Several investigators have 

reported genome-level signatures that can distinguish 

patients with SIRS from patients with sepsis [26,29,31,48]. 

A substantial amount of work, including validation, 

remains to be done in order to leverage these datasets 

into clinically applicable diagnostic biomarkers, but the 

datasets nonetheless provide a foundation for the deriva-

tion and development of diagnostic biomarkers for sepsis.

Investigators have also applied microarray technology 

to address other important clinical challenges directly 

related to infection. Cobb and colleagues [49,50] have 

reported an expression signature (the ‘ribonucleogram’) 

having the potential to predict ventilator-associated 

pneumonia in critically ill blunt trauma patients up to 

4  days before traditional clinical recognition. Similarly, 

Ramilo and colleagues [51] have reported expression 

signatures that can distinguish infl uenza A infection from 

bacterial infection, and Escherichia coli infection from 

Staphylococcus aureus infection, in hospitalized febrile 

children. In contrast, Tang and colleagues [30] were unable 

to defi ne organism-specifi c gene expression signatures 

(Gram positive versus Gram negative bacteria) in 

critically ill adults with sepsis.

Another aspect of biomarker development in sepsis 

surrounds stratifi cation biomarkers, particularly to 

predict outcome. Th eoretically, any gene that is consis-

tently diff erentially regulated between survivors and non-

survivors in a microarray dataset may warrant further 

investigation as a potential outcome biomarker. For 

example, a microarray study by Pachot and colleagues 

[27,52] identifi ed CX3CR1 (fractalkine receptor) as a 

potential outcome biomarker in sepsis. Similarly, Nowak 

and colleagues [53] have leveraged microarray data to 

identify chemokine (C-C motif ) ligand 4 (CCL4) as an 

outcome biomarker in children with septic shock. Both 

candidate stratifi cation biomarkers, however, require 

further validation.

IL-8 has emerged as a robust stratifi cation biomarker in 

children with septic shock [54], and the rationale for 

pursuing it stemmed directly from microarray-based 

studies identifying IL-8 as one of the more highly 

expressed genes in pediatric non-survivors of septic 

shock, compared to survivors [34]. Subsequent studies 

demonstrated that serum IL-8 protein levels, measured 

within 24 hours of presentation to the intensive care unit 

with septic shock, could predict survival in pediatric 

septic shock with a probability of 95% [54]. Th e ability of 

IL-8 to serve as a stratifi cation biomarker was subse-

quently validated in a completely independent cohort of 

children with septic shock. Consequently, it has been 

proposed that IL-8 could be used in future pediatric 

septic shock interventional trials as a means to exclude 

patients having a high likelihood of survival with 

standard care, as a means of improving the risk-to-benefi t 

ratio of a given intervention. Th is type of stratifi cation 

strategy would be particularly applicable for an inter-

vention that carries more than minimal risk. Interestingly, 

it appears that IL-8-based stratifi cation may not perform 

in a similarly robust manner in adults with septic shock 

[55], thus providing another example of how develop-

mental age contributes to septic shock heterogeneity.

Currently, there is an ongoing eff ort to derive and 

validate a multi-biomarker sepsis outcome risk model in 

pediatric septic shock. Th e foundation of this eff ort is the 

relatively unbiased selection of a panel of candidate 

outcome biomarkers using microarray data from a large 

cohort of children with septic shock [56,57].
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Gene-expression-based identifi cation of septic 

shock subclasses

Viewing septic shock as a highly heterogeneous syn-

drome implies the existence of ‘disease subclasses’, in an 

analogous manner to that encountered in the oncology 

fi eld [37]. Recently, there has been an attempt to identify 

septic shock subclasses in children based on genome-

wide expression profi ling [11]. Complete microarray data 

from a large cohort of children with septic shock, 

representing the fi rst 24 hours of admission, were used to 

identify septic shock subclasses. A heat map of over 6,000 

diff erentially regulated genes was generated using an 

unsupervised clustering algorithm. Patients were then 

classifi ed into one of three subclasses (subclasses ‘A’, ‘B’, or 

‘C’) based on statistically similar gene expression 

patterns, as determined by the fi rst and second order 

branching patterns of the heat map. Subsequently, the 

clinical database was mined to determine if there were 

any phenotypic diff erences between the three subclasses. 

Patients in subclass A had a signifi cantly higher level of 

illness severity as measured by mortality, organ failure, 

and illness severity score.

Th e gene expression patterns that distinguished the 

subclasses were distilled to a 100-gene expression signa-

ture by conducting a leave-one-out cross-validation 

procedure and selecting the 100 genes having the greatest 

subclass prediction capability. Th ese 100 genes were then 

uploaded to a gene expression database that identifi ed 

enrichment for genes corresponding to adaptive immunity, 

glucocorticoid receptor signaling, and the peroxisome 

proliferator-activated receptor-α signaling pathway. Of 

note, the genes corresponding to these functional 

annotations were generally repressed in the subclass of 

patients with the higher level of illness severity (that is, 

subclass A patients).

In a subsequent study, the expression patterns of the 

100 subclass-defi ning genes were depicted using visually 

intuitive gene expression mosaics and shown to a panel 

of clinicians with no formal bioinformatic training and 

blinded to the actual patient subclasses (Figure  1). Th e 

clinicians were able to allocate patients into the respec-

tive subclasses with a high degree of sensitivity and 

specifi city [15]. Th e ability to identify a subclass of 

children with a higher illness severity was further corro-

bor ated when the gene-expression-based subclassi fi -

cation strategy was applied to a separate validation 

cohort of children with septic shock [14]. Collectively, 

these studies demonstrate the feasibility of subclassifying 

patients with septic shock, in a clinically relevant manner, 

based on the expression patterns of a discrete set of genes 

having relevance to sepsis biology. Th e availability of 

clinical microfl uidics [58] and digital mRNA measure-

ment technology [59] may allow for clinical feasibility of 

measuring the 100 class-defi ning genes in a timely 

manner that is suitable to direct patient care or for 

clinical trial stratifi cation.

Discovery of novel targets and pathways

Th e potential to interrogate the entire genome in a 

relatively unbiased manner provides an opportunity to 

discover previously unrecognized, or unconsidered, 

targets and pathways relevant to sepsis biology. Th is is a 

daunting task in the context of a highly heterogeneous 

syndrome such as clinical sepsis, and the many un-

avoidable confounding factors inherent to clinical sepsis 

microarray studies. Nonetheless, several studies illustrate 

Figure 1. Examples of gene expression mosaics for individual patients in septic shock subclasses A, B, and C, respectively [14,15]. The 

expression mosaics represent the expression patterns of the same 100 class-defi ning genes corresponding to adaptive immunity, glucocorticoid 

receptor signaling, and the peroxisome proliferator-activated receptor-α signaling pathway. The color bar on the right depicts the relative intensity 

of gene expression. These individual patient mosaics have not been previously published.
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the potential of genome-wide expression profi ling in the 

discovery of novel targets and pathways.

For example, using a combination of expression 

profi ling and in vitro approaches, Pathan and colleagues 

[60] have identifi ed interleukin-6 as a major contributor 

to myocardial depression in patients with meningococcal 

sepsis. Th is is a particularly intriguing and robust study 

because the study population is relatively homogeneous 

(that is, exclusively patients with meningococcal) com-

pared to the majority of sepsis microarray studies that 

have enrolled patients with heterogeneous sepsis 

etiologies.

In one of the earliest clinical sepsis microarray studies, 

Pachot and colleagues [27] identifi ed a set of genes diff er-

en tially regulated between survivors and non-survivors. 

Th e gene most highly expressed in survivors, relative to 

non-survivors, was that encoding the chemokine recep-

tor CX3CR1 (fractalkine receptor). In a subsequent valida-

tion study, these same investigators provided further 

evidence supporting the novel concept that dys regu lation 

of CX3CR1 in monocytes contributes to immune-

paralysis in human sepsis [52]. Th ese studies further 

demonstrate the potential to discover novel pathways 

through discovery-oriented expression profi ling.

Several studies in children with septic shock have 

documented early and persistent repression of gene 

programs directly related to zinc homeostasis, in combi-

na tion with low serum zinc concentrations [9,11,17, 

32,34]. Since normal zinc homeostasis is absolutely 

critical to normal immune function [61], these obser va-

tions have raised the possibility of zinc supplementation 

as a potentially safe and low cost therapeutic strategy in 

clinical septic shock and other forms of critical illness 

[62-64]. Importantly, Knoell and colleagues [65,66] have 

independently corroborated that zinc supplementation is 

a highly benefi cial strategy in experimental sepsis. 

Additional studies by Knoell and colleagues [67] have 

corroborated decreased plasma zinc concentrations in 

patients with sepsis, and that low plasma zinc concen tra-

tions correlate with higher illness severity. Furthermore, 

plasma zinc concentrations correlate inversely with 

mono cyte expression of the zinc transporter gene 

SLC39A8 (also know as ZIP8) [67,68]. Interestingly, 

microarray-based studies in children with septic shock 

have reported high levels of SLC39A8 expression in non-

survivors, relative to survivors [34]. Despite the intriguing 

convergence of these data from independent laboratories, 

the safety and effi  cacy of zinc supplementation in clinical 

sepsis remains to be directly demonstrated and is a 

current area of active investigation. One consideration 

for these studies will be the incorporation of trancrip-

tomic analyses to determine if zinc supplementation 

infl uences the zinc-related gene repression patterns 

described above.

In the aforementioned studies involving children with 

septic shock, metalloproteinase (MMP)-8 has consis-

tently been the highest expressed gene in patients with 

septic shock, relative to normal controls [9,11,17, 32-34, 

46]. In addition, MMP-8 is more highly expressed in 

patients with septic shock compared to patients with 

sepsis, and in septic shock non-survivors compared to 

septic shock survivors [69]. MMP-8 is also known as 

neutrophil collagenase because it is a neutrophil-derived 

protease that cleaves collagen in the extracellular matrix, 

but MMP-8 is also known to have other cellular sources 

and non-extracellular matrix substrates, including chemo-

kines and cytokines [70]. Th e consistently high level of 

expression of MMP-8 in clinical septic shock recently 

stimulated the formal study of MMP-8 in experimental 

sepsis. Th ese studies demonstrated that either genetic 

abla tion of MMP-8 or pharmacologic inhibition of MMP-8 

activity confers a signifi cant survival advantage in a murine 

model of sepsis [69]. While these studies require further 

development and validation, the fi ndings are intriguing 

given that there exist a number of drugs to eff ectively 

inhibit MMP-8 activity in the clinical setting [71].

Conclusion

Despite the tremendous methodological challenges that 

come with translational research involving humans with 

sepsis, microarray technology and complex bioinformatic 

approaches are beginning to provide novel insights into 

this complex syndrome. Progress, albeit slow, has been 

realized with regard to our understanding of the genome-

level response during sepsis, the identifi cation of 

potential novel targets and pathways, discovery of candi-

date diagnostic and stratifi cation biomarkers, and the 

possibility of clinically relevant and clinically feasible 

gene-expression-based subclassifi cation. Th e challenges 

ahead include robust validation studies, standardization 

of technical approaches, standardization and further 

development of analytical algorithms, and large scale 

collaborations.
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