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Abstract

Introduction The ataxia telangiectasia mutated (ATM) gene is a
tumor suppressor gene with functions in cell cycle arrest,
apoptosis, and repair of DNA double-strand breaks. Based on
family studies, women heterozygous for mutations in the ATM
gene are reported to have a fourfold to fivefold increased risk of
breast cancer compared with noncarriers of the mutations,
although not all studies have confirmed this association.
Haplotype analysis has been suggested as an efficient method
for investigating the role of common variation in the ATM gene
and breast cancer. Five biallelic haplotype tagging single
nucleotide polymorphisms are estimated to capture 99% of the
haplotype diversity in Caucasian populations.

Methods We conducted a nested case—control study of breast
cancer within the Nurses' Health Study cohort to address the
role of common ATM haplotypes and breast cancer. Cases and

controls were genotyped for five haplotype tagging single
nucleotide polymorphisms. Haplotypes were predicted for 1309
cases and 1761 controls for which genotype information was
available.

Results Six unique haplotypes were predicted in this study, five
of which occur at a frequency of 5% or greater. The overall
distribution of haplotypes was not significantly different between
cases and controls (y2 = 3.43, five degrees of freedom, P =
0.63).

Conclusion There was no evidence that common haplotypes of
ATM are associated with breast cancer risk. Extensive single
nucleotide polymorphism detection using the entire genomic
sequence of ATM will be necessary to rule out less common
variation in ATM and sporadic breast cancer risk.
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Introduction

Ataxia telangiectasia (AT) is an autosomal recessive dis-
ease characterized by neurodegeneration, cerebral ataxia,
oculocutaneous telangiectasia, and sensitivity to radiation.
In addition, AT cases are estimated to have a 100-fold
increased risk of developing cancer compared with the
general population [1]. The most common cancers among
AT patients are lymphomas and leukemias, although solid
tumors including breast cancer are also found at higher
rates. Women heterozygous for mutations in the ataxia tel-
angiectasia mutated (ATM) gene, estimated to be about
1% of the population, are reported to have a fourfold to five-

fold increased risk of breast cancer compared with noncar-
riers of the mutations [1-3], although not all studies have
confirmed this association [4,5].

Epidemiologic studies examining sequence variation in the
ATM gene and breast cancer risk have been inconclusive.
ATM mutations have been reported to be associated with
increased breast cancer risk among women with a family
history of breast cancer [6,7] and/or early-onset breast
cancers [8,9], although not all studies confirm these results
[4,10,11]. In addition, two hospital-based studies reported
positive associations between ATM mutations and breast

AT = ataxia telangiectasia; ATM = ataxia telangiectasia mutated; htSNP = haplotype tagging single nucleotide polymorphism; HWE = Hardy-Wein-
berg equilibrium; PCR = polymerase chain reaction; SNP = single nucleotide polymorphism.
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cancer [12,13]. A recent population-based study provided
little support of a role for ATM mutations and breast cancer;
however, one variant was over-represented in breast can-
cers among African-American and Latina women [14].

ATM is a tumor suppressor gene with functions in cell cycle
arrest, apoptosis, and repair of DNA double-strand breaks.
AT cells are sensitive to agents that cause double-strand
breaks, due to their defective checkpoint control and inabil-
ity to repair DNA damage. /n vitro evidence indicates that
cells from AT heterozygotes are intermediate in their sensi-
tivity to X-rays [15]. More than 200 different disease-caus-
ing mutations in the ATM gene have been identified
throughout the coding sequence, most of which are trunca-
tion mutations [16,17]. In contrast, ATM mutations
observed in breast cancer patients are mostly missense
mutations postulated to have a dominant negative pheno-
type [17,18]. ATM also plays a role in the regulation of
BRCAT1, further evidence for a possible association with
breast cancer [19,20].

ATM is comprised of 66 exons, distributed over more than
150 kb genomic DNA. Sequence analysis of this gene
reveals that the coding sequence has very little nucleotide
diversity [21]. Using different methods to identify variations
in the gene and different study populations, two independ-
ent studies reported that a small number of ATM haplo-
types exist. Thorstenson and colleagues focused their
single nucleotide polymorphism (SNP) discovery on the
coding sequence, splice sites and 5' upstream sequences.
They predicted seven haplotypes in populations throughout
the world, only three of which are found in Europe and the
Americas [21]. In contrast, Bonnen and colleagues
sequenced randomly dispersed regions of the ATM gene
primarily in noncoding regions and identified 22 unique
haplotypes, seven of which appear in Caucasian popula-
tions of European descent [22]. Of those haplotypes
appearing in European Caucasian populations, there are
five common haplotypes estimated to occur at a frequency
greater than 5% [22].

Because the ATM gene is very large, but only a relatively
small number of SNPs are required to construct the major
haplotypes, a haplotype approach may be a useful method
for investigating the role of common variation in ATM and
breast cancer risk. In the present study, we found no evi-
dence that common ATM haplotypes are associated with
breast cancer risk.

Materials and methods

We conducted a case—control study nested within the
Nurses' Health Study cohort. This cohort was initiated in
1976, when 121,700 US-registered nurses aged 30-55
years returned an initial questionnaire. Information on repro-
ductive variables, cigarette smoking, and exogenous hor-

mone use are updated every 2 years. Incident breast
cancer cases were identified through self-report and were
confirmed by medical record review. Between 1989 and
1990, blood samples were collected from 32,826 women.

Eligible cases in the present study consist of all women
with medical record-confirmed incident breast cancer
(both in situ and invasive) from the subcohort of women
who returned a blood sample and were diagnosed before
1 June 2000. Cases were excluded if they had any other
prior cancer diagnosis except for nonmelanoma skin can-
cer. Controls were randomly selected from the cohort of
women returning a blood sample and with no diagnosis of
cancer before the case reference date (except for non-
melanoma skin cancer). Controls were matched to cases
on year of birth, menopausal status, postmenopausal hor-
mone use at time of blood draw, time of day, month and
fasting status at time of blood draw. Although blood draw
and menopausal characteristics are unlikely to confound
the ATM-breast cancer relationship, matching on these
characteristics is necessary for analyses involving plasma
hormones.

To maximize the efficiency of the overall study design, the
selection of breast cancer cases and controls included in
this study is identical to those involved in plasma hormone
analyses. The study was approved by the Committee on
Human Subjects at Brigham and Women's Hospital. This
nested case—control study consists of a total of 1318 inci-
dent breast cancer cases and 1771 controls. Genotype
data were unavailable for nine cases and for 10 controls,
and thus results are based on 1309 cases and 1761
controls.

Haplotype tagging single nucleotide polymorphisms
(htSNPs) were determined using the BEST program http:/
/genomethods.org/best/[23]. BEST uses an exact method
to identify the minimum number of tagging SNPs necessary
to capture the haplotype variation in a population. Using the
17 SNPs identified in Bonnen and colleagues' study [22],
BEST identified five htSNPs necessary to capture all of the
haplotypes occurring in a European Caucasian population
at a frequency of greater than 1%.

DNA was extracted from buffy coat fractions using the Qia-
gen QlAamp Blood kit (Qiagen, Chatsworth, CA, USA). All
cases and controls were genotyped for the five ATM
htSNPs identified in Table 1 using Tagman® technology
(Applied Biosystems, Foster City, CA, USA) with an ABI
Prism 7900HT Sequence Detection system (Applied Bio-
systems). PCR amplification was carried out on 5-20 ng
DNA using 1 x TagMan® universal PCR master mix (No
Amp-erase UNG), 900 nM forward and reverse primers,
200 nM FAM-labeled probe and 200 nM VIC-labeled
probe in a 5 pl reaction (see Table 2 for primer and probe
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Location and description of five haplotype tagging single nucleotide polymorphisms (SNPs) used to tag haplotypes in ATM in

genomic sequence with GenBank Accession number U82828

SNP Gene location Change Location in genomic RS numbera
sequence

1 Prior to 5' UTR T—>A 10182 228589

2 IVS46-257 A-C 112721 3092992

3 IVS62+60 G-oA 142789 664143

4 IVS63-973 A—C 151964 170548

5 IVS63-694 C—A 152243 3092993

UTR, untranslated region. 2 Reference SNP number in the NCBI database.

Table 2

PCR primer sequences and allele specific probe sequences used to genotype the five haplotypes tagging SNPs

Single nucleotide polymorphism

Primer/Probe sequence

Primers used for PCR
SNP1, F1
SNP1, R1
SNP2, F2
SNP2, R2
SNPS3, F5
SNP3, R5
SNP4, F3
SNP4, R3
SNP5, F4
SNP5, R4
FAM-labeled allele-specific probes
SNP1
SNP2
SNP3
SNP4
SNP5
VIC-labeled allele-specific probes
SNP1
SNP2
SNP3
SNP4
SNP5

5'-AGCATAGCCGGGTCCAATAA-3'
5'-CCCGGCTTGTATTGGGTAAG-3'
5'-CAGAAGAGTATTTAGAAGGGCTGCTT-3'
5'-AGGTCACAGATGACAAACATCAAAA-3'
5'-GGAAGACTTTATTTTTTTTCTTACCAGGTA-3'
5'-AGCAGTGCTCTTCACATCAGTGA-3'
5'-GGAGGACACTCAAAACAGCATTAAA-3'
5'-TTAGCAGATTTAGTTTCAGGACACGTA-3'
5'-CCAGAGCAGTTAGCTGTTCTGAACT-3'
5'-GAGCAAGTAGCTTTAGGTCGTAAATTTT-3'

CCTCCATCCCGCG
TGTCAGCGTATTAAA
TTCCTGATGAGATACAC
AATAGAGAGATTTTGGTTCT
CATGAIGAATTTCTG

CCCTCCITCCCGC
TGTCAGAGTATTAAAAAT
TTCCTGACGAGATACA
AATAGAGCGATTTTGG
CATGAGGAATTTC

sequences). Amplification conditions on an ABI 9700 duall
plate thermal cycler (Applied Biosystems) were as follows:
one cycle of 95°C for 10 min, followed by 50 cycles of

92°C for 15 s and 58°C for 1 min. TagMan® primers and
probes were designed using the Primer Express® Oligo
Design software version 2.0 (Applied Biosystem). Approxi-
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mately 10% of the samples were included as duplicates to
serve as quality control samples. Quality control samples
served as internal controls to validate the genotyping
method; there was 100% concordance of the quality con-
trol samples. Laboratory personnel were blinded to the sta-
tus (case, control or quality control) of samples.

Conditional logistic regression models were used to
assess the relative risk and 95% confidence intervals of
individual htSNPs for the risk of developing breast cancer.

Employing an expectation—maximization algorithm for multi-
locus data when the phase was unknown, we utilized
PROC HAPLOTYPE in the SAS/Genetics Software (SAS
Institute, Cary, NC, USA) to estimate haplotypes. Because
the algorithm is capable of handling missing data, our pri-
mary analysis included all cases and controls for which
genotype data on at least one of the five SNPs were avail-
able. Haplotype prediction relied on 1309 cases and 1761
controls, which were estimated as separate populations.
Haplotypes predicted at frequencies less than 1% were
excluded from further analyses. A secondary analysis, in
which haplotype estimation was restricted to individuals
with only complete genotype data across all five SNPs
(1199 cases and 1535 controls), gave essentially similar
frequencies. Haplotype estimation restricted to cases with
invasive breast cancer (excluding in situ cancers) (n =
1056) also demonstrated almost identical case frequen-
cies. Using an expectation substitution [24,25] approach,
we also examined haplotype interactions with family history
of breast cancer and menopausal status at diagnosis.

The International HapMap Project has genotyped 29 SNPs
in the ATM gene in 60 individuals from the CEPH-30-trios
panel http://www.hapmap.org. Using these data and the
Haploview software http://www.broad.mit.edu/personal/
jcbarret/haploview/, we predicted the number of haplotype
blocks and the number of common haplotypes across the
ATM gene.

Results and discussion

ATM genotype data were available for 1309 cases and
1761 controls. At the time of blood collection, 596 women
(272 cases) were premenopausal with a mean age of 48.6
years (standard deviation = 3.3) and 2185 women (901
cases) were postmenopausal with a mean age of 60.8
years (standard deviation = 5.1). The median age of the
breast cancer cases was 63 years (range, 44-79 years).

Compared with controls, cases tended to have an earlier
age at menarche (P < 0.05), a later age at first birth, a later
age at menopause, lower mean parity (P < 0.05), a lower
body mass index and a greater weight gain since age 18.
Cases were significantly more likely to have a history of
benign breast disease as compared with controls (64%

versus 51%, P < 0.001), and were also more likely to have
a family history of breast cancer (21% versus 15%, P <
0.001).

Among controls, genotypes for SNP2, SNP3, SNP4, and
SNP5 were consistent with Hardy—Weinberg equilibrium
(HWE). In both the controls and the cases there was evi-
dence that SNP1 may diverge from HWE (P=0.03 and P
= 0.008, respectively). Among the cases, there was also
evidence that SNP3 may diverge from HWE (P = 0.006).
SNP1 and SNP3 are in high linkage disequilibrium (P <
0.001) [22]. It is thus not surprising that both SNPs would
perform similarly in the test for HWE. In addition, the geno-
type distributions in cases are similar to those observed in
controls, and there was 100% genotype concordance
between duplicate quality control samples, suggesting that
the divergence from HWE for these SNPs is not likely to be
due to genotyping error.

None of the htSNPs were significantly associated with
breast cancer risk (Table 3). Six unique haplotypes were
estimated from the control population, revealing five com-
mon haplotypes occurring at a frequency of 5% or more
(Table 4). Haplotypes 1, 3, 4, 5, and 6 in Table 4 are con-
cordant with the five common haplotypes predicted by
Bonnen and colleagues in Caucasian populations at rela-
tively similar frequencies (Table 4) [22]. The overall distribu-
tion of haplotypes was not significantly different between
cases and controls (x2= 3.43, five degrees of freedom, P
= 0.63).

Haplotypes 1, 4 and 5 represent > 80% of the haplotypes
in the study population. These results are consistent with
previous studies identifying three major ATM haplotypes
[13,21,22]. In addition, Haploview analysis of 29 SNPs
across the ATM gene in a CEPH (Centre d'Etude du Poly-
morphisme Humain) panel of 60 individuals also revealed
three major haplotypes and one haplotype block. Together,
these data suggest that the majority of ATM variation can
be explained by three major haplotypes.

There was no evidence that any of the five common haplo-
types (haplotypes 1, 3, 4, 5 and 6) were associated with
breast cancer risk (Table 4). In contrast, Angele and col-
leagues identified three SNPs that were associated with
three major haplotypes, and one major haplotype that was
significantly associated with breast cancer risk [13]. The
Angele and colleagues' study recruited cases (n = 254)
from a radiotherapy clinic and controls from blood donors
in the hospital's catchment area.

Our results are consistent with a recent population-based
case—control study that examined the relationship between
20 missense mutations and polymorphisms and breast
cancer [14]. In that study, only one variant was associated
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Relative risk of breast cancer and 95% confidence intervals according to genotype of ATM haplotype tagging single nucleotide

polymorphisms (SNPs) in the Nurses' Health Study (1989-2000)

Relative riskP

Relative riske

SNP Genotype Cases? Controls2
SNP1 T 450 (35.3) 556 (33.9)
T/A 575 (45.1) 762 (46.4)
A/A 249 (19.5) 324 (19.7)
SNP2 A/A 1158 (90.5) 1495 (90.5)
A/C 118 (9.2) 154 (9.3)
C/C 4(0.3) 3(0.2)
SNP3 G/G 455 (35.8) 553 (34.3)
G/A 570 (44.9) 755 (46.8)
A/A 245 (19.3) 306 (19.0)
SNP4 A/A 164 (12.7) 189 (11.0)
A/C 565 (43.9) 759 (44.0)
C/C 559 (43.4) 778 (45.1)
SNP5 c/IC 970 (75.7) 1207 (73.1)
C/A 292 (22.8) 417 (25.2)
A/A 20 (1.6) 28 (1.7)

1.00 (Reference)
0.94 (0.79-1.11)
0.95 (0.77-1.17)
1.00 (Reference)
1.00 (0.77-1.30)
1.64 (0.36-7.45)
1.00 (Reference)

1.03 (0.83-1.28)
1.00 (Reference)
0.88 (0.69-1.12)
0.86 (0.67-1.09)
1.00 (Reference)
0.87 (0.73-1.04)

1.00 (Reference)
0.94 (0.79-1.12)
0.94 (0.75-1.17)
1.00 (Reference)
1.02 (0.78-1.34)
2.07 (0.42-10.26)
1.00 (Reference)

1.03 (0.82-1.29)
1.00 (Reference)
0.87 (0.68-1.12)
0.85 (0.66-1.09)
1.00 (Reference)

( (
( (
( (
( (
( (
( (
( (
0.99 (0.83-1.17) 0.99 (0.83-1.18)
( (
( (
( (
( (
( (
( (
( (

0.86 (0.72-1.04)
)

0.81 (0.45-1.47) 0.81 (0.44-1.50

aData presented as n (%). Numbers may not add to totals due to missing genotype data. b Relative risks are crude odds ratios from conditional
logistic regression models (95% confidence interval). ¢ Relative risks (95% confidence interval) are from conditional logistic regression models
adjusted for age at menarche (< 12 years, 12 years, 13 years, > 13 years), age at menopause (< 45 years, 46-50 years, 51-60 years), first-
degree family history of breast cancer (yes/no), personal history of benign breast disease (yes/no), weight gain since age 18 (< 5 kg, > 5 to < 20
kg, = 20 kg), body mass index at age 18 (continuous), age at first birth/parity (nulliparous, one to four children/age at first birth < 24 years, one to
four children/age at first birth > 24 years, five or more children/age at first birth < 24 years, five or more children/age at first birth > 24 years), and
duration of postmenopausal hormone use (premenopausal, never, past user < 5 years duration, past user > 5 years duration, current user < 5

years duration, current user > 5 years duration).
with increased risk of breast cancer, and this was among
African-American women only. This variant was only
present in African-American and Latina women, and
therefore could not be addressed in the current study com-
prised of primarily Caucasian women.

The objective of the present study was to assess the role of
common variation in ATM and breast cancer risk. Based on
these results, it does not appear that any common haplo-
types are associated with breast cancer. In addition, there
were no significant interactions between common haplo-
types and family history (P=0.51) or menopausal status (P
= 0.29). The AT syndrome is caused by multiple rare muta-
tions, and our data do not exclude the possibility that rare
mutations of this gene may alter breast cancer risk.

The accuracy of the estimated haplotypes relies heavily on
the precision with which the five htSNPs are able to cor-
rectly identify common haplotypes in this mainly Caucasian
population. The two groups that undertook the task of iden-
tifying variation in the ATM gene employed two different
methods: one relying on coding sequence and splice sites,
and the other focusing on intronic sequences. Bonnen and
colleagues resequenced approximately 13.5 kb genomic

DNA from 29 regions randomly dispersed across the gene,
containing regions of minimal repetitive sequence [22].
Thorstenson and colleagues resequenced all 62 coding
exons as well as 14.6 kb noncoding sequence [21]. There
was 25% overlap in the sequence covered by the two
groups [21]. These two independent methods used for
SNP discovery and subsequent haplotype prediction came
to similar conclusions regarding the number of common
haplotypes. Because neither of these groups or any other
groups have resequenced this gene entirely, it is still possi-
ble that other common haplotypes of ATM exist.

The expectation—maximization algorithm utilized to estimate
haplotypes assumes that both case and control genotypes
are in HWE. Among the controls the htSNPs were in HWE
except for SNP1, and SNP1 and SNP3 diverged from
HWE among the case population. Because the haplotypes
predicted among the cases are, in general, identical to
those in the controls and those predicted by Bonnen and
colleagues, it does not appear that this violation of the
assumption results in misspecified haplotypes. In addition,
the accuracy of the expectation—maximization estimation is
reported to be very high even when the loci are not in HWE
if the population size is moderately large [26].
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Table 4

Estimated case and control frequencies of predicted ATM haplotypes in the Nurses' Health Study (1989-2000) in comparison with

ATM haplotypes in Bonnen and colleagues' study [22]

Haplotype Sequence? Previously published?

Current study®

White European American (n=154) CEPH (n=70) Controls (h=38522) Cases (n=2618) Pvalue
1 A A A C C 0.292 0.394 0.367 0.359 0.51
2 A A G C C o0.013 0.015 0.015 0.014 0.83
3 A C A C C 0.065 0.061 0.048 0.049 0.85
4 T A G A C 0351 0.273 0.324 0.340 0.22
5 T A G C A 0175 0.227 0.142 0.130 0.16
6 T A G C C 0.097 0.015 0.096 0.101 0.50

-, the haplotype was not predicted in that population; CEPH (Centre d'Etude du Polymorphisme Humain). 2 Sequence corresponds to the nucleotide
at haplotype tagging single nucleotide polymorphisms 1-5. ® From Bonnen and colleagues' study [22]. ¢ Frequencies do not add to 1.0 because

rare haplotypes of frequencies less than 0.01 were excluded.

The individual htSNPs and the haplotypes they define in the
present study were not associated with breast cancer,
although it is possible that unidentified functional SNPs not
in linkage disequilibrium with the selected htSNPs exist and
could be associated with breast cancer risk. The efficiency
of the haplotype tagging approach depends on the density
of the markers used to choose the tagging SNPs. In this
case, we used the markers from Bonnen and colleagues,
which had an average density of about one SNP per 10 kb.
This may not be sufficient to tag all common variants in
ATM. For example, Letrero and colleagues demonstrated
that carriers of the S49C SNP, a nonconservative SNP in
the ATM coding region, were just as likely to be carriers of
one of the common Bonnen and colleagues' haplotypes as
noncarriers of the SNP, suggesting that it is possible for
association studies to miss functional SNPs [27].

In addition, it is possible that ATM may play a more impor-
tant role in specific subsets of breast cancer such as famil-
ial, early-onset or radiosensitive breast cancers. This study
is not designed to examine these hypotheses.

Conclusion

We observed no evidence that common ATM haplotypes
are associated with breast cancer risk. Extensive SNP
detection using the entire genomic sequence of ATM will
be necessary to rule out less common variation in ATM and
sporadic breast cancer risk.
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