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Abstract

Estrogen receptors are members of the nuclear receptor steroid family that exhibit specific
structural features, ligand-binding domain sequence identity and dimeric interactions, that
single them out. The crystal structures of their DNA-binding domains give some insight into
how nuclear receptors discriminate between DNA response elements. The various ligand-
binding domain crystal structures of the two known estrogen receptor isotypes (α and β)
allow one to interpret ligand specificity and reveal the interactions responsible for stabilizing
the activation helix H12 in the agonist and antagonist positions.
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Introduction
The physiological effects of estrogens have long been
considered mediated by a single nuclear receptor (estro-
gen receptor α [1,2]) through which the signal is trans-
duced to the transcriptional machinery and chromatin
template of target responsive genes. The cloning of a
second estrogen receptor (ER) isoform (ERβ) ([3–5] and
references cited therein) stimulated interest in the search
for differences in tissue distribution and functioning. The
ERs (ERα and ERβ) belong to the nuclear receptor (NR)
superfamily representing a large group of transcriptional
regulators that encompass receptors for steroid and
thyroid hormones, retinoids, vitamin D, peroxisome prolifer-
ator-activated receptors and orphan receptors for which
no ligand has until now been characterized.

The structural organization of NRs consists of six func-
tional regions (A–F) showing various degrees of sequence
conservation (Fig. 1a). The N-terminal A/B domain, not
well conserved among NRs, contains the autonomous
transactivation function AF-1. The size of the domain is
extremely variable, and large A/B domains, extending
beyond 550 residues in the case of the human androgen
receptor, characterize steroid receptors. This domain is
also poorly conserved between the two ER isoforms (with
little or no detectable similarity, 17% identity). No clear
secondary structure can be identified in these regions and
no structural data have until now been obtained. We will
thus focus on the better characterized parts, for which
functional and structural data are available, such as the
highly conserved C region harboring the DNA-binding
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domain (DBD) and the conserved E region containing the
ligand-binding domain (LBD). The two remaining regions,
D and F, are again of variable size and are not conserved:
D can be considered as a linker peptide between the DBD
and the LBD, whereas F is a C-terminal extension region
of the LBD.

Both ERα and ERβ share a modest overall sequence iden-
tity (47%) [3]. The conservation, however, is much higher
when considering the DBD and LBD domains (94 and
59%, respectively) (Fig. 1a) [3]. Ligand-binding experi-
ments revealed high affinity and specific binding of estra-
diol to both ERα and ERβ isotypes, which both stimulate
transcription of an ER responsive gene containing an
estrogen responsive element (Fig. 1b), in an estradiol
dependent manner [5]. No obvious differences between
the two isotypes alone or combined were observed in
estrogen responsive element transcriptional assays in the
presence of estradiol. Some synthetic or naturally occur-
ring ligands nevertheless have different relative affinities/
activities for ERα versus ERβ [5], which will be analyzed in
the light of the crystal structures.

The DNA-binding domains
The DBD of the two ER isoforms share the same
response elements. As DBD structures for only ERα are
available, the comparison will be made with other NRs,
especially with the glucocorticoid receptor (GR) [6].

Several three-dimensional structures (nuclear magnetic
resonance as well as X-ray investigations) are known for
ERα DBD alone and in complex with DNA [7•,8••,9,10].
The topology of ER DBDs (Fig. 2a) is characterized by a
zinc finger-like motif with eight cysteines that constitute
the tetrahedral coordination of two zinc ions. Residues
participating in the ‘D box’ have been shown to be
involved in the dimerization interface, whereas residues
present in the ‘P box’ are implicated in specific interaction
with DNA and are in contact with the central base pairs of
the palindromic response element (Fig. 2b). The structural
data now available from different nuclear receptors
provide clear insight into the response element discrimina-
tion problem. For the steroid receptors GR and ERα,
DBDs are monomers in solution and form dimers when
bound to their respective response elements. DNA thus
acts as a positive allosteric effector of its own recognition
for binding the second monomer to favor the binding site
with a correct spacer length [6,10]. The crystal structures
of GR DBD in complex with a cognate (spacer = 3) and a
nonspecific (spacer = 4) response element (glucocorti-
coid response element) [6,11] and that of ER DBD inter-
acting with a cognate estrogen responsive element [9,10]
evidenced amino acids in the ‘P box’ interacting with the
two discriminating bases (Fig. 2). Discrimination between
estrogen and glucocorticoid response elements are made
by the two central base pairs of the DNA response
element, interacting with residues of the first zinc finger
helix going across the DNA large groove [6,10].

The ligand-binding domain
The LBD is a globular domain that harbors a hormone
binding site, a dimerization interface (homo- and hetero-
dimerization), and a coactivator and corepressor interac-
tion function. Despite low sequence identity in LBDs of
the NR superfamily (Fig. 1a), the three-dimensional struc-
tures of the LBDs are similar.

The first reported crystal structure for a steroid receptor
was that of ERα [12••,13]. Crystals could be obtained
from a chemically modified protein that formed a complex
with the natural ligand 17β-estradiol. This structure
together with that of the raloxifene (antagonist) complex
presented concomitantly [12••] led to a structural proposal
to explain agonism and antagonism in NRs.

ER LBDs are arranged in an antiparallel α-helical ‘sand-
wich’ fold that was first described for the human RXRα
apolipoprotein LBD [14••]. This fold appears to be univer-
sal within the receptor superfamily. For the sake of com-
parison with RXR, helix H2, which does not exist in ER,
has been considered in the numbering scheme. The lig-
anded ER LBD (Fig. 3a) contains 11 α-helices (H1–H12)
organized in a three-layered sandwich structure with H4,
H5, H6, H8 and H9 flanked on one side by H1 and H3,
and on the other side by H7, H10, and H11. The ligand

Figure 1

(a) Schematic representation of the functional domain organization of
nuclear receptors. The percentages of identity with human ERα are
given for the DBD and LBD of human ERβ, human PR, and human
RXRα. (b) The consensus sequence for steroid nuclear receptors and
the ER response element.
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pocket is closed on one side by an antiparallel β-sheet
and on the other by H12, known to be directly involved in
the transactivation function AF-2 by mutagenesis studies
[15], and for which several conformations (‘agonist’ or
‘antagonist’ conformations) have been evidenced [16•].

The dimer interface
The ER LBDs form dimers within both agonist and antago-
nist complexes in a manner consistent with solution
studies [17,18]. The overall homodimeric arrangement is
the same whatever the class of the ligand or the ER iso-
types and is similar to that observed in the crystal struc-
ture of apolipoprotein RXRα [14••], being a symmetric
‘head-to-head’ arrangement where each protomer is
slightly tilted from the twofold dimer axis. The dimerization
interface involves residues from helix H8 up to helix H11,

but the most important contact surface is located on H10
through a hydrophobic leucine zipper-like interaction zone
and hydrophilic contacts (direct hydrogen bonds or via
water molecules). The dimer contacts in both ER isoforms
are constituted mainly by helices H10 and H11 [12••,19••],
which are also in contact with the ligand, providing the link
between ligand binding and dimerization. However, this
dimeric interface may not be universal in the steroid recep-
tor family, as indicated by the crystal structure of the prog-
esterone-bound LBD of the human progesterone receptor
(PR) [20•]. Unlike the ER, the PR LBD was crystallized
with its F region (residues 922–933) that is essential for
hormone binding by the PR [21], GR [22] and androgen
receptor [23,24]. The C-terminal extension adopts a β-
strand conformation tightly packed against the core
protein contacting helices H8, H9 and H10. This β-strand
then forms an antiparallel β-sheet with another β-strand
inserted between H8 and H9, and impinges on the dimer
interface seen in the ER. As the ER LBDs were not crystal-
lized with their C-terminal F region (residues 553–595),
we have to consider the possibility that the present ER
dimer interface could be an artifact. Indeed, as the C-ter-
minal end of the LBD of one protomer points towards the
other, it is conceivable that an extension after H12 could
interfere with the other protomer and perturb the dimeriza-
tion. Additional structural information will be necessary to
solve this problem.

Formation of ERα/ERβ heterodimers has been demon-
strated in vitro and in transfected cells [25], but the in vivo
physiological role of this cross-signaling is unclear. The
three-dimensional arrangement of the heterodimer is not
known, but it has been suggested [19••] that it would be
the same as in homodimers.

The coactivator recognition groove
Agonist binding induces a conformational rearrangement
in the LBD [14••,26••] resulting in the formation of a spe-
cific binding site for the helical NR-box module of nuclear
coactivators [16•,27,28,29••,30••]. This binding site is a
hydrophobic groove formed by residues from helices H3,
H4, H5 and H12, and the turn between helices H3 and
H4 (Fig. 3c). The coactivator LXXLL motif functions as a
hydrophobic docking module that binds on the surface of
the LBD. In the case of ERs [12••], both partial and pure
antagonists induce conformations of the AF-2 region that
are distinct from that observed in the presence of pure
agonists [12••,30••]. The binding of raloxifene and tamox-
ifen is accompanied by major structural reorganization in
the ternary structure in both ER isotypes [12••,19••,30••].
The large piperidine extension of this ligand provokes
steric clashes that prevent the transactivation helix H12 to
adopt its characteristic conformation. Instead, H12 lies
tightly in the coactivator recognition groove. Note that
H12 possesses a NR box-like sequence (LXXML versus
LXXLL) that perfectly mimics the interactions made by

Figure 2

(a) Schematic representation of the domain C of nuclear receptors,
formed by a zinc finger motif. The residues making the ‘P box’ and the
‘D box’ are shown. (b) The three-dimensional X-ray structure of a dimer
of ER DBD interacting with DNA. Helices 10 and 11 and some
residues of helices 8 and 9 are involved in the interface.



NR-box peptides in the ERα complex, whereas there is a
shift in the H12 position of between 1.9 and 3.2 Å in the
ERβ complex. This displacement does not affect the final
location of the two key leucine residues, which coincide
with the first and third NR-box leucines (Fig. 4). H12 in the
genestein/human ERβ complex surprisingly also adopts an
orientation that again exhibits fundamental differences in
the length, positioning and interactions compared with the
‘antagonist’ orientation.

Agonist and antagonist recognition by human
ERαα
The first crystal structure of an ERα LBD provided the
molecular basis of the interaction of the receptor with its
natural ligand 17β-estradiol (E2) [12••]. The E2 cavity is
completely shielded from the external environment and
buries the ligand in a highly hydrophibic environment
mostly defined by 22 residues. Two polar regions located
at opposite sides of the ligand-binding pocket can be
identified (Fig. 3b), and they are involved in the anchoring
of the E2 hydroxyl moiety at positions 3 and 17. The phe-
nolic hydroxyl group of the A-ring (3-OH) is hydrogen
bonded to Glu353 from H3, and to Arg394 from H5 and a

water molecule. The hydroxyl group of the D-ring
(17β-OH) forms a single hydrogen bond with His524
(H11). The cavity delimited by the protein exhibits a probe
accessible volume of 450 Å3, which is much larger than
the molecular volume of the natural ligand (250 Å3). The
probe occupied volume, expressed as the ratio of the two
volumes, is significantly higher in the retinoid family. This
observation is likely to be general to the steroid receptors
family as the PR, for which an LBD crystal structure is
available, presents an even larger cavity (603 Å3) [20•].
The ER and PR structures superimpose well (1.2 Å rmsd
over 191 Cα atoms), with the planes of the ligands, defined
by the A-, B-, C- and D-rings, almost exactly superimposed.

A large amount of data has been accumulated on the
binding of synthetic agonist ligands to ERα [31,32]. The
crystal structure of the complex of ERα bound to the nons-
teroidal ligand diethylstilbestrol (DES) revealed how a syn-
thetic ligand accommodates in the ligand binding cavity
[30••]. The interactions of DES with ERα are similar to
those of E2. The ligand is completely encased in a pre-
dominantly hydrophobic cavity with one of the phenolic
rings nicely superimposed to the A-ring of E2 and the
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Figure 3

(a) Three-dimensional structure of the wild-type ER LBD monomer, with the β-sheet colored in blue. (b) Anchoring of the estradiol in the active site.
The 3-hydroxyl group is hydrogen-bonded to Arg 394 and Glu 353 and a structural water molecule represented in green. The 17-β hydroxyl group
forms a hydrogen bond with His 524. (c) Superposition of the three-dimensional structure of ERα LBD complexed with estradiol (green
conformation), raloxifen and tamoxifen (red and blue conformations). (d) The ligand pocket of human ERβ showing the residues that are different in
human ERα. The ERβ residue names and numbers are shown in black, the ERα residue names are in grey.



other phenolic ring shifted 1.7 Å from the position of the
17β-hydroxyl group of the E2 D-ring. DES contacts two
regions of the ligand binding pocket not occupied by E2,
located at the 7-α and 11-β positions of E2, and filled by
the two ethyl groups of DES.

Crystal structures of antagonist bound ERα complexes
(raloxifen, tamoxifen) showed that the position of the
antagonist ligand in the binding pocket is dictated by the
hydrogen bonds to the 3-hydroxyl group corresponding to
that of the E2 A-ring and the bulky chain of the ligand that
displaces H12 [12••,30••]. Note that additional structural
changes occur near the N-terminus of the H3 region, in
the loop connecting H1 to H3 and in the loop connecting
H6 to H7. These changes are not imposed by the pres-

ence of the bulky chain in antagonist ligands and thus
could also be induced by agonist ligands. These structural
differences induced by the ligands highlight the intrinsic
ERα LBD plasticity.

ERββ specificity
The crystal structure of the human ERβ complex bound to
genistein [19••], an isoflavonoid phytoestrogen [33], is
also reminiscent of the E2 complex, especially for the
hydrogen bond network around the two hydroxyl groups at
the opposite sites of the ligand [19••]. The flavone portion
of genistein adopts a position similar to the C- and D-ring
of E2 in human ERα, with the distal hydroxyl group forming
a hydrogen bond to His475 (His524 in human ERα). The
remaining flavone moieties exhibit no contact with the
protein. The binding cavity of the β-isoform overall is
smaller (390 Å3 versus 450 Å3, of which genistein occu-
pies 236 Å3) compared with the ligand-binding cavity in
the E2/human ERα complex. Among the residues lining
the binding pocket, two differ significantly (Fig. 3d): on the
β-side of E2, Leu384 in H5 of ERα is replaced by Met336
in ERβ; and on the α-side, below the E2 D-ring, Met421 in
loop 6–7 of ERα is replaced by Ile373 in ERβ. These two
residues are most probably responsible for the higher
affinity of genistein for ERβ.

Together with the genistein/human ERβ LBD complex, the
crystal structure of another complex with raloxifene bound
to the rat ERβ LBD (raloxifene/rat ERβ LBD) has been
reported [19••]. In this new complex, raloxifene binds in a
position similar to that observed in the human ERα
complex (0.52 rmsd between the two ligands once the
proteins are superimposed). The major difference is
observed in the phenolic ring, where the distal hydroxyl
moieties in the two isotypes are 1.4 Å apart. The result of
the different position of raloxifene in the beta-isotype is
that the piperidine ring pointing outside the cavity is
shifted outward (0.9–1.5 Å) and prevents H12 from
adopting its agonist position [19••]. This shift is most prob-
ably responsible for the pure antagonist character of ralox-
ifene on ERβ.
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