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Epithelial/mesenchymal cell interactions are necessary for proper ductal morphogenesis throughout all
stages of mammary gland development. Besides the well-established stromal components, such as
adipocytes and fibroblasts, the mammary stroma is also infiltrated with migrating blood cells, mostly
macrophages and eosinophils. The focus of this review is on the role of macrophages and their growth
factor colony-stimulating factor 1 (CSF-1) in promoting branching morphogenesis during postnatal
mammary gland development through to lactation. The more restricted role of eosinophils and their
chemoattractant eotaxin during pubertal ductal morphogenesis is also discussed. A possible
interaction between macrophages and eosinophils in ductal morphogenesis is considered, along with
the roles of other chemokines. This role of macrophages in normal development also appears to be
subverted by tumors of the mammary gland to promote the escape of the tumor cells from the local
environment and enhance their rate of metastasis. These data emphasize the dual role of macrophages
in the promotion of epithelial growth in normal and cancer states.
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Introduction

It is well established that epithelial/mesenchymal inter-
actions are important for postnatal development of the
mammary ductal tree and its differentiation during preg-
nancy into a milk-producing structure [1]. The mesen-
chyme contains a heterogeneous group of cells [2] and
several of these, such as fat cells and fibroblasts, are
capable of producing factors that can promote the growth
of epithelial cells [3—6]. This review focuses on the role of
two types of migrant hematopoietic cells, macrophages
and eosinophils, that have been recently found to accumu-
late extensively around terminal end buds (TEBs) during

the pubertal burst of ductal growth [7]. Their chemoattrac-
tant factors and their roles in mammary cancer are also
discussed.

Leukocyte homing to the mammary gland

The stroma of the mammary gland is composed of various
cells including adipocytes, fibroblasts, endothelial cells,
nerve cells and migratory leukocytes [8]. Immunohisto-
chemical analysis using anti-F4/80 antibody revealed two
cell types, macrophages and eosinophils, whose recruit-
ment to the postnatal mammary gland closely parallels the
formation and outgrowth of terminal end buds (TEBs)

CSF-1 = colony-stimulating factor 1 or macrophage-colony-stimulating factor; CSF-1R = colony-stimulating-factor-1 receptor; IL = interleukin; MEC =
mammary enriched chemokine; MMTV = mouse mammary tumor virus; RANK(-L) = receptor activator of nuclear factor kB (ligand); TEB = terminal

end bud; TNF = tumor necrosis factor.
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Macrophage and eosinophil distribution during mammary gland
development and differentiation. (a—e) Longitudinal paraffin section of
a terminal end bud (TEB) was stained twice, first with
hematoxylin/eosin (H/E) (d) and then, after destaining, by
immunostaining with anti-F4/80 antibody and counterstaining with
hematoxylin (a—c). The F4/80* cells were detected with a peroxidase-
coupled detection system (brown coloration). (b,c,d) High-
magpnification pictures of (a): (b) bottom frame; (c,d) top frame. The
pictures of doubly stained cells show the cross-reactivity of anti-F4/80
antibody for macrophages (b, filled arrowheads), mainly seen in the
neck of the TEB (bottom frame, a) and for eosinophils (c,d, empty
arrowheads), mainly seen around the head of the TEB (top frame, a).
F4/80* eosinophils were distinguished from F4/80* macrophages by
their characteristic eosin-pink cytoplasmic granules (d, empty
arrowheads) and their segmented nucleus, sometimes in a ring shape
with a round cytoplasmic shape (b,c,d, empty arrowheads). In contrast,
F4/80+ macrophages have a large, oval nucleus with a spread
cytoplasm (b,c, filled arrowheads) containing no eosin-pink
cytoplasmic granules. (e) The presence of macrophages inside the
TEB, where they engulf apoptotic epithelial cells. (f-h) F4/80
immunostaining of mammary sections at day 16 of pregnancy (f,g) and
day 2 postpartum (h). Note the abundance of macrophages tightly
associated with the lobulo-alveoli during pregnancy and lactation.
Original magnification: a, f, h, 400x%; b, c, d, e, g 1000x. Panels a—e
modified from [7].

(Fig. 1a—e) [7]. Although F4/80 was originally described
as a murine macrophage-restricted cell-surface glycopro-
tein [9], it is also expressed in eosinophils (see Fig. 1c),
which can be independently identified by their specific
eosinophilic cytoplasmic granules (see Fig. 1d). The distri-
bution of macrophages and eosinophils around TEBs
overlaps, although macrophages are mostly recruited to
the neck while eosinophils are more numerous around the
head of the TEB. When other leukocyte-lineage markers
such as B220, CD3 and Gr-1 are used, neither B cells,
Tcells nor neutrophils are detected in the vicinity of
epithelial structures in the developing mammary gland
during puberty, even though they are present in the lymph
node localized in the middle of the fourth abdominal
mammary gland. Macrophages and eosinophils are also
found during pregnancy and lactation around the lobulo-
alveoli, although macrophages are more numerous
(Fig. 1f=h).

An association between the developing lobulo-alveolar
structures during pregnancy and mast cells has been
reported in mice, while the density of these cells
decreased during lactation [10]. In a healthy state in a
variety of species, macrophages constitute a major cellular
component of the milk [11-14]. Lymphocytes, although
largely absent from the pubertal mammary gland, are an
important cellular component of the gland during lactation,
supplying maternal antibodies and T cells to the milk
[14-19]. Involution is characterized by abundant leuko-
cyte homing into the mammary gland, since all leukocytes
are represented in the involution secretion in various
species [20-22]. In fact, in the milk of commercial
species, the somatic cell count that includes leukocytes
and epithelial cells is used as an indicator of udder health
status. A somatic cell count above the regulatory standard
is generally considered to be an indication of mastitis. The
role of leukocytes during pathologic states of the
mammary gland such as mastitis, when neutrophils
together with macrophages are abundant, will not be
addressed here, but is reviewed extensively elsewhere
[23,24]. This review is focused on macrophage and
eosinophil biology in the mammary gland.

Leukocytes are required for postnatal
mammary gland development

The hypothesis that leukocytes are important for the devel-
opment of the mammary gland was tested by depleting
mice of circulating leukocytes using semilethal gamma-
irradiation to remove hematopoietic progenitors [7]. A
single exposure to gamma-irradiation led to a 97%
decrease in leukocyte number in the blood 5 days after
irradiation. At this dose, proliferation of mammary gland
epithelial cells was not affected, as assessed by
incorporation of BrdU in irradiated versus nonirradiated
mice. However, removal of the hematopoietic system by
gamma-irradiation resulted in a dramatic curtailment of



ductal development. TEBs were completely absent at the
tips of the ducts and the mammary gland retained a
neonatal appearance (Fig. 2a,b). Transplantation of syn-
genic bone marrow into the irradiated mice reconstituted
the leukocyte population in the blood and the macrophage
and eosinophil density around the TEBs, and completely
rescued ductal outgrowth (Fig. 2¢,d). No other leukocytes
were found around the ducts, as assessed by specific
immunohistochemistry with antibodies against lympho-
cytes and neutrophils. Occasionally, cells with the mor-
phology of mast cells could also be detected around the
ducts in the nipple area, but these were not further investi-
gated. These data strongly support the hypothesis that
macrophages and eosinophils play an essential role in
mammary ductal morphogenesis.

CSF-1, or macrophage-colony-stimulating factor 1, is a
dimeric polypeptide growth factor that regulates the sur-
vival and proliferation of the mononuclear phagocytic
lineage (monocytes, macrophages, osteoclasts and
microglia) [25-27], as well as affecting macrophage
behavior, morphology and motility [28,29]. The single
class of receptor for CSF-1 (CSF-1R) is encoded by the
c-fms proto-oncogene and is a member of the class lll
family of transmembrane-receptor tyrosine kinases [30].
Binding of the dimeric CSF-1 initiates dimerization of the
receptor, resulting in auto-transphosphorylation and the
subsequent phosphorylation of downstream target pro-
teins on tyrosine residues [31-33]. The critical roles of
CSF-1 in macrophage biology were confirmed by analysis
of the osteopetrotic mouse that has a null mutation in the
CSF-1 gene (Csf1°r/Csf1°° mouse) [34-36], and in more
recent work in the CSF-1R-null mutant mouse [37]. Both
the ligand- and receptor-deficient mice are severely
depleted in many populations of macrophages and circu-
lating monocytes [36,37]. The similarities between the
phenotypes of the receptor- and ligand-null mutant mice
indicate that the CSF-1R is the only receptor for CSF-1.

The macrophage density in mammary glands during post-
natal outgrowth, pregnancy and lactation was significantly
lower in Csf1°r/Csf1°r mice (Fig. 3b,d,f,h) than in control
mice (Fig. 3a,c,e,g) [7]. F4/80* macrophages are tightly
associated with alveoli in control mice at all stages, while
the very few macrophages seen in Csf1°P/Csf1°P mice
(filled arrowheads, see Fig.3d) are not adjacent to the
alveoli, and most of the F4/80* cells are eosinophils
(empty arrowheads, see Fig. 3d). A failure of ductal out-
growth and the precocious development of the lobulo-
alveoli units during pregnancy, previously observed in the
mammary glands of Csf1°°/Csf1°P mice [38], are con-
firmed by histology showing the well-differentiated alveoli
formed at day 14 of pregnancy (see Fig. 3b,d) in compari-
son with those in control mice (see Fig. 3a,c). At day 18 of
pregnancy in mutant mice, these units have already devel-
oped (see Fig. 3f) to a stage similar to those seen in lac-
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Leukocytes are necessary for mammary ductal outgrowth.

(a,b) +/Csf1°P mice were irradiated (700 rads, gamma-irradiation) at
19 days of age. A representative mammary gland whole-mount
preparation obtained 10 days after irradiation is illustrated (a), in
comparison with the nonirradiated control (b). (c,d) +/Csf1°P mice
underwent gamma-irradiation (700 rads) at 19 days of age and 2 hours
later were (c) or were not (d) given a transplant of a bone marrow cell
suspension from +/Csf1°P mice. Representative whole-mount
preparations obtained 28 days after irradiation/transplantation (c) and
from an irradiated control mouse that did not undergo bone marrow
transplantation (d) are shown. Note the restoration of ductal outgrowth
after bone marrow transplantation. All the photomicrographs shown
are of whole mounts from the entire fourth abdominal mammary gland
and were taken at the same magpnification. Modified from [7].

tating gland from control mice (see Fig. 3g). However, the
secretory units have almost completely disappeared in
mutant mice at day 4 postpartum and started to involute
because of the lack of suckling by the pups. Similar
defects in branching morphogenesis during pregnancy
were found in the CSF-1R-deficient mice, supporting the
crucial role of CSF-1 in mammary gland development [37].
Besides this aberrant epithelial differentiation, a defect in
proper ductal outgrowth during puberty was also
observed in CSF-1-null mutant mice, as assessed from the
total numbers of branches including primary, secondary
and tertiary ducts, TEB numbers, and ductal length [7].
Daily treatment of CSF-1-deficient mice with CSF-1 from
birth corrected the pubertal ductal outgrowth defect in
terms of TEB formation and total branch numbers and
brought the mammary macrophage population to normal.
This points out the close correlation between the presence
of macrophages and proper ductal morphogenesis [7].

Because Csf1°r/Csf1°P mice have a number of pheno-
types that could have a bearing on mammary gland devel-
opment, including a perturbed sex steroid hormone
feedback in the hypothalamus leading to aberrant estrous
cycling [39], a transgenic approach was used to determine
whether CSF-1 acts directly in the mammary gland or
through a systemic effect. Transgenic mice that specifically
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Macrophage distribution in mammary glands of +/Csf1°P control and
Csf1°p/Csf1°P mice during pregnancy and lactation. F4/80
immunohistochemistry of mammary section of day 14 (P14; a-d) and
day 18 (P18; e,f) of pregnancy and day 4 postpartum of lactation
(PP4; g,h) from control (a,c,e,g) and Csf1°r/Csf1°pr (b,d,f,h) mice. Note
the abundance of F4/80* macrophages tightly associated with alveoli
in control mice at all stages shown, while macrophages are almost
absent in Csf1°r/Csf1°P mice at all stages of mammary development.
The few macrophages (filled arrowheads, d) seen in Csf1°°/Csf1°p
mice are not adjacent to the alveoli, and most of the F4/80 cells seen
are eosinophils (empty arrowheads, d). Original magnification:
a,b,e,f,g,h: x400; c,d: x1000.

restored CSF-1 to the mammary epithelium by express-
ing CSF-1 under the control of mouse mammary tumor
virus (MMTV) promoter were crossed with Csf7or/Csf1°P
mice [40]. CSF-1 was undetectable in the serum and
there was no correction of phenotypic features of the
CSF-1-null mutant mice such as osteopetrosis, body

weight, toothlessness, or the extended estrous cycle.
Furthermore, there was no correction of macrophage
density in organs other than the mammary and salivary
glands, where the MMTV promoter is also active.
However, the expression of CSF-1 in the mammary
epithelium corrected the ductal outgrowth significantly
as well as restoring macrophage recruitment in
Csf1°r/Csf1°P mice. This indicated that the defects
observed in the mammary glands of CSF-1-null mutant
mice are not due to secondary effects induced by a
systemic CSF-1 deficiency [40].

Mammary epithelial cells seem to produce CSF-1 during
mammary development. The ducts in mice expressing a
B-galactosidase reporter gene under the control of the
CSF-1 promoter were strongly positive for -galactosidase
during development and pregnancy, indicating epithelial
synthesis of CSF-1 [41]. However, mammary transplanta-
tion experiments indicated that this CSF-1 synthesis was
not necessary for macrophage recruitment [40]. Immuno-
histochemical and in situ hybridization studies in human
breast tissue showed that normal, nonlactating epithelial
cells synthesize significant amounts of CSF-1, which is
upregulated in lactating epithelium in vivo and in vitro
[13,42,43]. Moreover, a high concentration of biologically
active CSF-1 is present in human milk, with the maximum
being observed on day 2 postpartum, before declining
rapidly one month after delivery [13]. The CSF-1 receptor
(CSF-1R) is exclusively expressed in macrophages in the
mammary gland tissue of virgin mice [7] and has not been
reported in normal, human, resting, nonlactating epithelial
breast tissue [42,44]. In contrast, during pregnancy and
lactation, CSF-1R is highly expressed in both the
mammary epithelium and macrophages in humans, but
only in macrophages in mice [43,44] (L Zhu and JW
Pollard, unpublished data). Thus, the pattern of CSF-1
expression in humans and mice is quite similar, although
there are differences in the identity of CSF-1R bearing
cells. Consequently, the regulation of the local CSF-
1/CSF-1R system appears to be crucial for ductal out-
growth and epithelial differentiation functions through
paracrine mechanisms, although in humans, there might
also be an autocrine component.

Overall these data indicate functions for macrophages in
ductal outgrowth and differentiation, possibly acting
through their well-documented roles in supplying trophic
factors for epithelial cell growth, angiogenesis or matrix
remodeling but also through their phagocytic activity
[45-47]. In fact, a unique location for macrophages inside
the body of well-formed TEBs was systematically found in
control mice (see Fig. 1e), and these cells were absent in
Csf1°r/Csf1or mice [7]. In this particular case,
macrophages engulfed apoptotic epithelial cells and were
restricted to the proximal area of the lumen within the TEB
(see Fig. 1e), suggesting their participation in the lumen



formation which requires epithelial apoptosis [48,49].
Consequently, the absence of this particular macrophage
function might in part explain the compromised ductal out-
growth in Csf1°r/Csf1°P mice.

CSF-1 and macrophages in breast cancer
Substantial evidence indicates that over-expression of
CSF-1 and CSF-1R in human breast cancer correlates
with poor prognosis [50,51]. Because macrophages can
serve as both positive and negative mediators of the
immune system, the importance of macrophages in tumor
growth remains controversial [62-54]. Nevertheless, there
is a growing literature showing that tumor-derived mole-
cules redirect macrophage activities to promote tumor
development, establishing a positive correlation between
macrophage infiltration into the breast tumor stroma and
poor prognosis [51,55-58]. Therefore, we have proposed
a model in which macrophages may supply common
trophic substances to tumors to facilitate their growth,
invasiveness and metastatic ability in a similar manner as
they do to the developing TEB during the ductal invasion
at puberty (Fig. 4). Such substances could be angiogenic
factors (vascular endothelial growth factor, angiopoietin-1),
proteases (matrix metalloproteinase-9, urokinase plas-
minogen activator), growth factors (epidermal growth
factor) or cytokines (tumor necrosis factor alpha). In both
these processes, CSF-1 as well as other chemokines pro-
duced by the normal or tumorigenic epithelium are neces-
sary for macrophage homing into the gland (see Fig. 4).

To test this hypothesis and to investigate whether the clin-
ical correlations had a causal basis, we crossed CSF-1-
null mutant mice with a strain susceptible to mammary
tumors because of overexpression of the polyoma middle
T antigen oncoprotein under the MMTV promoter, and we
observed tumor progression in heterozygous and homozy-
gous mutant mice [59]. In the absence of CSF-1, tumor-
associated macrophages were severely depleted. This
had no effect on the incidence or growth of the primary
tumor, but it reduced the rate of tumor progression to the
more malignant states and almost completely suppressed
metastasis to the lung [69]. Reintroduction of CSF-1
locally to the mammary epithelium by transgenic means
recruited tumor-associated macrophages in control mice
prematurely, and restored their density to the control
levels seen in Csf1°°/Csf1°P mice [569]. This treatment
accelerated tumor progression and the rate of metastasis
in both genotypes.

Since macrophages are the only CSF-1R-bearing cells in
the mouse tumors induced by polyoma middle T, these
data provide strong evidence that macrophages provide
help to tumor cells to grow and escape from their base-
ment membranes such that they have access to the host
vasculature. This process may also be enhanced by the
angiogenic properties of macrophages at sites of leuko-
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Model for macrophage potentiation of normal mammary gland
development and for tumor progression. CSF-1/chemokines produced
by the TEB or tumor regulate infiltration and activity of macrophages.
These cells release growth factor remodeling signals and angiogenic
factors that promote vascularization and/or invasion of mammary
epithelial or tumor cells through the matrix. Ang, angiopoietin; EGF,
epidermal growth factor; MMP, matrix metalloproteinase; TNF, tumor
necrosis factor; uPA, urokinase plaminogen activator; VEGF, vascular
endothelial growth factor.

cytic infiltration in the tumor [47,60]. It is notable that in
human breast cancer there is a positive correlation between
high vascular grade and increased macrophage index and a
strong relationship between increased macrophage counts
and reduced relapse-free survival and overall survival [58].
Our genetic experiments in mice indicate that these are
causal relations and suggest possible therapeutic interven-
tion aimed at inhibiting CSF-1R signaling.

Eosinophils and eotaxin in mammary gland
development

Eotaxin is a powerful chemoattractant for eosinophils but
not for mononuclear cells or neutrophils [61,62]. It acts to
mobilize eosinophils and their progenitors from the bone
marrow into the blood, and their subsequent recruitment
into sites of allergic inflammation [63-66]. Besides its role
in inflammation, eotaxin is also required for maintaining the
physiological baseline trafficking of eosinophils in the
jejunum during healthy states [67]. Eotaxin mRNA has
been detected in the mammary gland [68], and our recent
work showed that eosinophil recruitment to the prepuber-
tal mammary gland coincided with a significant elevation in
eotaxin mRNA transcript levels [7]. In mammary glands
from eotaxin-deficient mice, the number of eosinophils
around the TEBs dropped to 2% of the level found in wild-
type mice [7], even though eosinophils have normal
numbers in the bone marrow and peripheral blood of
these mice [65,69].

Among the known eosinophil chemotactic factors, IL-5
could also be considered as a candidate acting in the

159



160

Breast Cancer Research Vol 4 No 4 Gouon-Evans et al.

mammary gland. IL-5 is responsible for the proliferation,
differentiation, recruitment and activation of eosinophils
[70]. Although the eosinophil population is strongly
depleted in the blood of IL-5-deficient mice, mammary
ductal outgrowth is normal and eosinophils are still found
around TEBs in these mice (V Gouon-Evans and JW
Pollard, unpublished data). These observations agree with
the notion that IL-5 provides the signal for the release of a
pool of eosinophils from the bone marrow, while eotaxin
remains the critical local chemoattractant for eosinophils
into the mammary gland.

Eosinophils are generally regarded as cells recruited to
tissues as a host defense against parasites or during aller-
gic responses [71,72]. They are also detected in a variety
of healthy tissues, although their functions are not defined.
For example, eosinophils reside in the jejunum and thymus
of mice [67], and in the uterus they are recruited abun-
dantly to the stroma at estrus under the influence of
estrogen-regulated synthesis of eotaxin [73]. During post-
natal mammary gland development, eosinophils occupy a
unique position around the head of TEBs. In eotaxin-
deficient mice, the total ductal branch numbers were sig-
nificantly reduced and TEB formation was affected,
although to a lesser extent than in Csf1°r/Csf1°r mice [7].
However, in contrast to Csf71°r/Csf1°P mice, ductal elon-
gation was not defective, indicating a more targeted role
of eosinophils on the branching pattern. Moreover,
eotaxin-deficient mice can lactate normally, suggesting a
restricted role of eosinophils during pubertal mammary
gland development.

The eotaxin receptor, CCR3, is predominantly expressed
by the hematopoietic cells involved in an allergic
response — eosinophils, basophils and T helper type 2
cells —but is never seen in neutrophils or macrophages
[74-76]. Basophils are not found around the ducts in the
pubertal mammary glands, nor are T cells (V Gouon-Evans
and JW Pollard, unpublished data). Moreover, eotaxin has
no chemoattractant effects on macrophages and neu-
trophils in models of inflammation in vivo [65] or in vitro
[68]. As a result, it seems that eotaxin acts strictly as a
chemoattractant for eosinophils homing around the
mammary TEBs during their estrogen-induced growth. The
analysis of mammary glands of eotaxin-deficient mice pro-
vided the first report of a beneficial role for eosinophils in a
physiological process. Nevertheless, the molecular mech-
anism for eosinophil function in the mammary gland
remains to be explained.

Eosinophils and tumors

Eosinophils are also found in many types of human cancers,
including both hematological cancers, such as Hodgkin's
lymphoma [77], as well as solid tumors [78-83]. Deposi-
tion of eosinophilic granular proteins has been found in
breast [84], ovarian and uterine tumors [85]. The presence

of eosinophils was reported to be one indicator of
increased survival in carcinoma of the uterine cervix [86], in
breast cancer [87] and in gastric cancer [78]; however, it
was also indicative of a less effective immune response in
cervical cancer [81] or had no prognostic value in rectal
cancer [79] or in nasopharyngeal carcinoma [82]. Thus,
there is increasing evidence showing that eosinophils infil-
trate into tumor sites, suggesting that these cells may play
a role in host—tumor interactions.

Macrophage/eosinophil interaction through
the chemokine C10

The colocalization of macrophages and eosinophils
around TEBs suggests a possible interaction between
these cells. In Csf1°r/Csf1°P mice, the first appearance of
macrophages in the mammary gland was delayed and
their number around TEBs was significantly reduced, to
half that found in control mice [7]. This residual population
suggests the presence of other locally derived factors
recruiting macrophages besides CSF-1. Interestingly, the
mouse chemokine C10, a chemoattractant for monocytes
[88], was found exclusively in cytoplasmic granules of
eosinophils around the TEBs (Fig. 5). Although C10 was
originally identified in macrophages activated by granulo-
cyte/macrophage-colony-stimulating factor [89], C10 has
been recently found to be constitutively expressed in
inflammatory eosinophils as well as in circulating
eosinophils in healthy situations [90]. C10 is highly homol-
ogous to human chemokines such as MIP-1 [91], CCF18
[92], HCC-1, and HCC-2 [93]. These human chemokines
possess similar affinity for C-C chemokine receptor 1 and
promote T-cell and monocyte chemotaxis. This suggests
that C10 secreted by eosinophils might constitute a
chemokine acting to recruit macrophages around the
growing TEBs. However, C10 is unlikely to be the domi-
nant macrophage chemoattractant. Indeed, in the absence
of CSF-1, macrophages are not seen around the ductal
tree before TEB appearance, as opposed to observations
in control mice, where macrophages are recruited around
the rudimentary epithelial tree at 2.5 weeks of age [7].
Later on, however, when TEBs form, macrophages are
found in association with C10-expressing eosinophils
around TEBs even in CSF-1-deficient mice. These data
indicate that CSF-1 is the first factor acting as a chemoat-
tractant for macrophages in the mammary gland, while
C10, whose expression depends on the eosinophil recruit-
ment around TEBs, may constitute a late modulator of
macrophage populations. Taken together, our data point
out a possible interaction around the developing TEBs
between macrophages and eosinophils through C10 pro-
duction by eosinophils.

Role of other cytokines/chemokines in
mammary gland development

Besides CSF-1, C10 and eotaxin, other chemokines/
cytokines that have been reported in the mammary gland
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C10 expression in mammary gland. (a, b) C10 Immunohistochemistry
of a longitudinal section of a TEB. C10* cells are detected with a
peroxidase-coupled detection system (brown coloration). (b) High
magnification of the frame seen in (a). Note the positive eosinophils in
the stroma surrounding epithelial cells of the TEB, characterized by
their segmented nucleus, sometimes in a ring shape, with a round
cytoplasmic shape. Original magnification: a, 400%; b 1000x.

tissue and milk could be involved in leukocyte homing and
activation into the mammary gland at different stages of its
development and differentiation [16,94].

Normal breast epithelial cells isolated from primary cul-
tures of normal mammary epithelial cells or spontaneously
immortalized mammary gland epithelial cells obtained from
healthy women were shown to release IL-6 and IL-8
together with tumor-necrosis factor (TNF) [95,96]. As a
result, IL-6 and IL-8 are detected in human milk. It is of
interest that expression of IL-6 was abolished in ductal
infiltrating carcinoma and greatly reduced in cultures of
oncogene-transfected human mammary cells, suggesting
that alterations of IL-6 expression are associated with
pathogenesis in breast cancer [95,97].

Proteins of the TNF and TNF receptor family play impor-
tant roles in the control of cell death, proliferation, auto-
immunity, the function of immune cells and the
organogenesis of lymphoid organs [98,99]. Recently,
novel members of this large family have been identified
that have critical functions in immunity and that couple
lymphoid cells with other organ systems such as bone
morphogenesis and mammary gland development in preg-
nancy. The TNF-family molecule RANK-L (receptor activa-
tor of nuclear factor kB ligand, also known as TRANCE,
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TNF-related activation induced cytokine, or ODF, osteo-
clast differentiation factor) and its receptor RANK (recep-
tor activator of nuclear factor kB), besides their critical
functions in bone homeostasis, are expressed in mammary
gland epithelial cells, and control the terminal differentia-
tion of alveolar buds to create lobulo-alveolar structures
competent for lactation [100]. Pregnant RANK-L-deficient
mice fail to form lactating mammary tissues or produce the
major milk protein, B-casein. Without RANK, the mammary
epithelial cells undergo accelerated apoptosis because of
a failure to activate the antiapoptotic protein kinase B
(PKB/AKT) [100]. TNF-o,, another member of the TNF
family, has also been implicated in mammary morphogene-
sis. TNF-o-deficient mice displayed fewer secondary and
tertiary branches of the mammary epithelium during
puberty; nevertheless, their lactational capability remained
normal [101]. TNF-oo was shown to stimulate growth as
well as to induce extensive branching and alveolar mor-
phogenesis of isolated rat mammary epithelial cells in
primary culture, and, under optimal medium conditions, to
inhibit the accumulation of casein proteins [102,103].
Interestingly, macrophages are a major producer of TNF-o
[104], suggesting a role for macrophage-secreted TNF-o
in the morphogenesis of mammary glands.

The mammary enriched chemokine (MEC) is a new
member of the CC9 (beta) chemokine family and has been
recently reported to be highly expressed in many human
mammary gland epithelial tissues and to a lesser extent in
other epithelial-enriched tissues, such as salivary gland,
colon and prostate [105]. Interestingly, MEC expression is
absent or reduced in various mammary tumor types, sug-
gesting that MEC may play a regulatory role in regulating
mammary carcinogenesis and may be a useful diagnostic
tool in oncology.

A putative cytokine, HIN-1 (high in normal-1), has been
newly identified and shown to be highly expressed in
normal human luminal mammary epithelial cells but hyper-
methylated and not expressed in the majority of breast
cancers [106].

Conclusion

It is clear that the stroma of the developing mammary
gland and mammary tumor is constantly changing, not only
through movement and differentiation of resident cells, but
also by recruitment of migrating hematopoietic cells, par-
ticularly macrophages and eosinophils. The activity of
these latter cells brings a new factor for consideration in
the regulation of mammary ductal elongation/differentia-
tion and tumorigenesis. Indeed, the spatial and temporal
secretion of cytokines/chemokines, including CSF-1,
eotaxin and C10, controls the homing of macrophages
and eosinophils into the stroma adjacent to the mammary
epithelium, which in turn influence ductal epithelium mor-
phogenesis. During postnatal development, pregnancy

161



162

Breast Cancer Research Vol 4 No 4 Gouon-Evans et al.

and lactation in mice, macrophages, being the only
CSF-1R-bearing cells, are the key players of the CSF-1/
CSF-1R system acting on ductal outgrowth/differentiation;
whereas in humans, in combination with macrophages, the
CSF-1R-expressing epithelium also participates in
mammary differentiation during pregnancy and lactation.
Eosinophils have a function restricted to postnatal
mammary development, where they may interact with
macrophages to induce proper branching morphogenesis.
Because of the similarities between macrophages adja-
cent to a growing TEB and in invading mammary tumors, it
seems that tumors have co-opted normal developmental
signals to facilitate their growth and progression. Under-
standing the similarities and differences between these
processes may reveal a target that can be exploited as
part of therapeutic armory against breast cancer.
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