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Abstract

phenotypes in ER- human breast cancer cells.

NO-donor, diethlylenetriamine NONOate (DETANO).

to poor patient survival.

Introduction: The Ets-1 transcription factor is a candidate breast cancer oncogene that regulates the expression of
genes involved in tumor progression and metastasis. Ets-1 signaling has also been linked to the development of a
basal-like breast cancer phenotype. We recently described a nitric oxide (NO)-induced gene signature that is
associated with poor disease outcome in estrogen receptor-negative (ER-) breast cancer and contains both stem
cell-like and basal-like components. Thus, we examined the role of Ets-1 in NO signaling and NO-induced

Methods: Promoter region analyses were performed on genes upregulated in inducible nitric oxide synthase
(NOS2) high expressing tumors for Ets-binding sites. In vitro mechanisms were examined in human basal-like breast
cancer cells lines. NO signaling effects were studied using either forced NOS2 expression or the use of a chemical

Results: Promoter region analysis of genes that are up-regulated in human ER-negative breast tumors with high
NOS2 expression revealed that the Ets-binding sequence is the only common promoter element present in all of
these genes, indicating that Ets-1 is the key transcriptional factor down-stream of oncogenic NOS2-signaling.
Accordingly, both forced NOS2 over-expression and exposure to NO-donors resulted in significant Ets-1
transcriptional activation in ER- breast cancer cells. Functional studies showed that NO activated Ets-1
transcriptional activity via a Ras/MEK/ERK signaling pathway by a mechanism that involved Ras S-nitrosylation. RNA
knock-down of Ets-1 suppressed NO-induced expression of selected basal-like breast cancer markers such as P-
cadherin, STO0AS, IL-8 and af-crystallin. Additionally, Ets-1 knock-down reduced NO-mediated cellular proliferation,
matrix metalloproteinase and cathepsin B activities, as well as matrigel invasion.

Conclusions: These data show that Ets-1 is a key transcriptional mediator of oncogenic NO signaling that

promotes the development of an aggressive disease phenotype in ER- breast cancer in an Ets-1 and Ras-
dependent manner, providing novel clues of how NOS2 expression in human breast tumors is functionally linked

Introduction

Inducible nitric oxide synthase (NOS2) is a pro-inflam-
matory enzyme generally with a key function in the
innate immune response [1]. However, NOS2 expression
is up-regulated and associated with poor outcome in
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many human cancers, such as melanoma, glioma and
colon cancer [2-4]. Recently, we reported that high
NOS2 expression is a predictor of poor patient outcome
in estrogen receptor-negative (ER-) breast cancer and is
functionally linked to the development of a basal-like
breast cancer phenotype [5]. Basal-like tumors com-
monly present as the triple-negative disease, which lim-
its the therapeutic options for the affected patients [6,7].
Nitric oxide (NO) signaling has various oncogenic
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effects in cancer cells [8-11]. For example, NO activates
signaling through epidermanl growth factor receptor
(EGFR), PI3K/Akt, HIF-1, and Src [5,12-15]. Together,
these observations indicate that NOS2 expression may
have deleterious effects in the progression of certain
human cancers including ER- breast cancer. However,
the molecular mechanisms by which NOS2 and NO sig-
naling exerts an aggressive phenotype has yet to be fully
determined.

Ets-1 is an oncogenic transcription factor involved in
the progression of breast cancer [16-21]. Furthermore,
tumor Ets-1 expression is linked to basal-like tumors and
poor disease survival [19,22,23]. While Ets-1 is overex-
pressed in many tumors, its transcriptional activity is
regulated at the phosphorylation level by extracellular
signal-regulated protein kinases 1 and 2 (ERK1/2)
[24-26]. Ets-1 regulates numerous genes involved in pro-
liferation, angiogenesis, and metastasis [27]. For example,
Ets-1 activity upregulates vascular endothelial growth fac-
tor (VEGF) [28] and matrix metalloproteinases (MMP)
[29]. Thus, Ets-1 is a transcription factor that can pro-
mote an aggressive cancer cell phenotype.

Because both NOS2 and Ets-1 expression have onco-
genic properties that advance the ER- disease, we investi-
gated the functional relationship between them. This
approach revealed that an Ets-binding sequence (EBS) is
the only promoter element common to all genes in a pre-
viously described NOS2 expression signature for ER-
breast tumors [5]. Furthermore, overexpression of NOS2
and experimental exposure to NO resulted in Ets-1 (threo-
nine 38) phosphorylation and increased transcriptional
activity in ER- breast cancer cell lines. Further analysis
showed that NO activated Ets-1 via a Ras/mitogen-
activated protein kinase (MEK)/ERK signaling axis by a
mechanism that involved Ras S-nitrosylation (SNO).
Finally, siRNA knock-down of Ets-1 also decreased NO-
induced phenotypes of disease progression. Together,
these data provide novel evidence that NO signaling pro-
motes an aggressive breast cancer phenotype by activating
the oncogenic Ets-1 transcription factor.

Materials and methods

Cell culture and reagents

Human breast adenocarcinoma cell lines MDA-MB-231,
MDA-MB-468 and SKBR3 (American Type Culture Col-
lection (ATCC), Manassas, VA, USA) were cultured in
RPMI medium (Invitrogen, Carlsbad, CA, USA) contain-
ing 10% fetal bovine serum (Atlanta Biologics, Norcross,
GA, USA) and 100 IU penicillin and 100 pg/ml strepto-
mycin (Invitrogen). Cells were cultured at 37°C in 5%
CO, and passaged two to three times per week and were
authenticated by short tandem repeat profiling within the
past six months (ATCC). Aminoguanidine (AG) and
L-arginine (L-Arg) were purchased from Sigma-Aldrich
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(St. Louis, MO, USA). Farnesylthiosalicylic acid (FTS)
and PD 184161 were purchased from Cayman Chemical
(Ann Arbor, MI, USA). G66976 was purchased from
EMD Chemicals (Billerica, MA, USA). Recombinant
human epidermal growth factor (EGF) was purchased
from R&D Systems (Minneapolis, MN, USA). Antibodies
to af-crystalin, actin, Ets-1 and NOS2 were from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies
to phospho-ERK1/2 (thr 202/tyr 204), ERK1/2 and phos-
pho-MEK1/2 (ser 217/221) were from Cell Signaling
(Danvers, MA, USA). Anti-Ras was from Thermo Scienti-
fic (Waltham, MA, USA) and anti-phospho-Ets-1 (thr 38)
was purchased from Invitrogen. DETANO was gener-
ously provided by Dr. Larry Keefer (National Cancer
Institute, Frederick, MD, USA). DETANO stock solutions
were made in 10 mM NaOH and concentrations were
determined by absorbance at 250 nm (¢ = 8000 M.cm™)
prior to every use.

Genomic sequence analyses

The promoter sequence for each gene listed in Table 3
of Glynn et al. [5] was extracted using ElDorado (ver-
sion 12-2010) software and analyses were performed
using the RegionMiner (Release 4.2) software. Both soft-
ware packages are part of the commercially available
Genomatix Software Suite (V2.1) (Genomatix Software,
Inc, Ann Arbor, MI, USA).

NOS2 expression

Cells were transfected with 4 pg pCMV6-XL4 (empty
vector) or pCMV6-XL4-human NOS2 (NM_000625)
(OriGene Technologies, Rockville, MD, USA) by electro-
poration using the Amaxa Nucleofector kit V (Lonza,
Walkersville, MD, USA) and then grown for 48 hours
under normal conditions before further treatment or
analysis.

Western blotting

Western blotting was performed by standard proce-
dures. Cells were lysed on ice with cold lysis buffer
(Tris-HCl pH 8.0 (50 mM), NaCl (150 mM), NP-40
(1%), ethylenediaminetetraacetic acid (EDTA, 1 mM),
NaF (50 mM), NazVO, (10 mM), phenylmethylsulfonyl
fluoride (PMSF, 1 mM) and protease inhibitor cocktail
(EMD Chemicals)). Images were recorded on a Fluoro-
Chem SP system using AlphaEase FC software (Alpha
Innotech, San Leandro, CA, USA).

Ets-luciferase assays

Ets-1 transcriptional activity was performed by transi-
ently transfecting cells with 750 ng of Ets-luciferase
reporter plasmid expressing firefly luciferase (Panomics,
Santa Clara, CA, USA) and 250 ng pGL4.70 plasmid
expressing renella luciferase (Promega, Madison, W1,



Switzer et al. Breast Cancer Research 2012, 14:R125
http://breast-cancer-research.com/content/14/5/R125

USA) using Lipofectamine LTX reagent for six hours at
37°C. After transfection, cell culture media was replaced
with serum-free (D)MEM containing EGF (20 ng/mL),
DETANO and inhibitors. Cells were incubated for 18
hours and luciferase activity was measured using the
Dual-luciferase assay kit (Promega). Relative luminescent
units (RLU) were measured using a Glomax 96-well
plate luminometer (Promega) and data were normalized
to fold change from untreated control cells. Data repre-
sent mean normalized RLU #* standard deviation (SD).

Ras activation and S-nitrosylation

Relative Ras activation was determined using the Ras
binding domain (RBD)-pull-down assay kit (Thermo
Scientific). Briefly, cell lysate was incubated with RBD-
agarose beads. Immunoprecipitated active Ras was
eluted by boiling in 4X-lithium dodecyl sulfate (LDS)
sample buffer. Active Ras and total cellular Ras were
measured by western blot. Activation of Ras is shown as
mean fold increase compared to untreated cells + SD.
Ras was immunoprecipitated using Protein G-Dynabeads
(Invitrogen) conjugated with monoclonal mouse anti-
Ras and assayed with the S-Nitrosylated Protein Detec-
tion Kit (Cayman Chemical) as instructed by the manu-
facturer. Procedures were performed under low ambient
light to diminish Ras-SNO decomposition.

Ets-1 knock-down

Cells (1 x 10%/100 pL) were transfected with 400 nM
total siRNA by electroporation using the Amaxa Nucleo-
fector Kit V. Cells were grown in RPMI + 10% FBS for 48
hours before further treatment or analysis. Human Ets-1
siGENOME SMARTpool (Thermo Scientific) oligonu-
cleotide sequences: 5-GAUAAAUCCUGUCAGUCUU-
3; 5-GGACCGUGCUGACCUCAAU-3’; 5-GGAAUU
ACUCACUGAUAAA-3 and 5-GCAUAGAGAGCUAC-
GAUAG-3’. Control siGENOME non-targeting siRNA
pool (Thermo Scientific) sequences: 5-UAGCGA-
CUAAACACAUCAA-3; 5-UAAGGCUAUGAAGA-
GAUAC-3’; 5-AUGUAUUGGCCUGUAUUAG-3’ and
5-AUGAACGUGAAUUGCUCAA-3'. Ets-1 knock-down
was verified at the protein level by western blot.

Proliferation assay

Cells were treated with or without 0.5 mM DETANO in
serum-free RPMI containing 20 uM bromodeoxyuridine
(BrDU) for 24 hours. Using the BrDU ELISA kit (Cell
Signaling), cells were then fixed, washed and BrDU
incorporation was determined by incubating mouse
anti-BrDU followed by anti-mouse-horseradish peroxi-
dase (HRP) secondary. Absorbance data are normalized
to fold-increase compared to untreated controls and are
shown as mean fold change + SD.
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Cathepsin B activity

Cathepsin B Activity Fluorometric Assay Kit (Abcam,
Cambridge, MA, USA) was used as instructed. Briefly,
treated cells were lysed and samples were incubated
with substrate Acetyl-arginine-arginine-amino-4-trifluor-
omethyl coumarin (Ac-RR-AFC). Released AFC was
measured by fluorescence (400 nm excitation/505 nm
emission). Data are normalized to fold change compared
to untreated control cells and are shown as mean + SD.

MMP expression

MMP isoform expression was measured by spot-ELISA
(R&D Systems) as instructed by the manufacturer.
Briefly, conditioned medium was diluted and incubated
in wells containing absorbed MMP antibodies. After
washing, HRP-secondary antibody was applied and
resulting spots were imaged by chemiluminescence as
described above.

MMP activity

Total MMP activity was measured by the MCa assay as
previously described [30]. Briefly, conditioned medium
was incubated with 10 pM MCa peptide [7-methoxycou-
marin-4-acetyl-Pro-Leu-Gly-Leu-f3-(2,4dinitrophenyla-
mino)Ala-Ala-Arg-NH2] (Sigma-Aldrich). Fluorescence
intensity was measured (328 nm excitation/392 nm emis-
sion) and normalized to total cellular protein. Data are
represented as mean RFU per microgram protein + SD.

Cellular invasion

Cellular invasion assays were performed as previously
described [5]. Briefly, MDA-MB-231 cells were seeded
into the top chamber of transwell plates with 8 mm
pores with a thin film of matrigel (BD Biosciences, San
Jose, CA, USA) in serum-free RPMI containing the indi-
cated concentration of DETANO and allowed to invade
towards RPMI containing 5% FBS for 24 hours. Data
represent mean number of invading cells + SD.

Statistical analyses

Data analyses were performed using Prism 4 software
(GraphPad Software, Inc., La Jolla, CA, USA). Statistical
significance was calculated using one-way analysis of
variance (ANOVA) analyses with Dunnett’s post-test or
unpaired t-test. Significance was determined with
P values less than 0.05 or 0.01 as stated in the figure
legends.

Results

NOS2 signals through Ets-1 in human ER- breast tumors
Recently, we reported that NOS2 expression is signifi-
cantly associated with poor survival in ER- breast cancer
and that high NOS2 expression is associated with a
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distinct gene expression profile similar to the basal-like
phenotype [5]. Further analysis of the gene signature
revealed that the Ets-binding site (EBS) is the only promo-
ter element common to all 46 up-regulated genes [see
Additional file 1: Table S1]. To further examine the
enrichment of EBS-regulated genes in high NOS2 expres-
sing ER- tumors, bulk tumor tissue was also analyzed
using the Gene Set Analysis against the TRANSFAC data-
base. A significant enrichment of genes with EBS was
found among the genes that were up-regulated in the
NOS2 high tumors, confirming that NOS2 and Ets-regu-
lated genes are correlated in ER- breast tumors. Thus, we
examined the role of NOS2 activity and NO signaling in
the activation of the Ets-1 transcription factor in human
ER- breast cancer cell lines.

NOS2 and NO increases Ets-1 transcriptional activity
To evaluate Ets-1 activation by NO signaling, we exam-
ined the effect of forced NOS2 expression on Ets-1 (thr
38) phosphorylation in human basal-like cells. MDA -
MB-468 cells, which do not express basal NOS2, were
transfected with a human NOS2 expression plasmid and
incubated with the NOS2 substrate L-Arg or the NOS2
inhibitor AG. NOS2 expression in the presence of L-Arg
resulted in robust Ets-1 (thr 38) phosphorylation com-
pared to cells transfected with empty vector control
(Figure 1A). Ets-1 (thr 38) phosphorylation was markedly
reduced in NOS2 expressing cells treated with AG.
Because NOS2 expression resulted in Ets-1 (thr 38)
phosphorylation, we also examined the effect of NO sig-
naling on Ets-1 activation in human ER- breast cancer
cell lines treated with NO releasing compounds. Using
the chemical NO-donor DETANO, the effect of NO on
Ets-1 (thr 38) phosphorylation in MDA-MB-468, MDA -
MB-231 and SUM159 cell lines was examined. The
applied donor concentrations generate actual NO con-
centrations that are in the physiological nanomolar con-
centration range because of the slow release rate of NO
from this donor [see Additional file 2: Figure S1] [31].
DETANO induced significant increases in Ets-1 (thr 38)
phosphorylation in all three cell lines in a concentration-
dependent manner as compared to untreated serum-
starved controls (Figure 1B). The NO-donor at 0.5 mM
induced a level of Ets-1 (thr 38) phosphorylation similar
to the stimulation of MDA-MB-468 cells with EGF
(10 ng/ml). EGF did not result in an increase of Ets-1
(thr 38) phosphorylation in MDA-MB-231 or SUM159 cell
lines, which exhibit relatively low EGFR expression and
EGF-induced tyrosine 1173 phosphorylation compared
to MDA-MB-468 cells [see Additional file 3: Figure S2].
Additionally, similar results were observed in the ER-/
HER2+ SKBR3 cell line [see Additional file 4: Figure S3].
Our data indicate that NOS2 phosphorylates Ets-1 via NO
production and subsequent NO signaling.
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To examine the effect of NOS2 expression on Ets-1
transcriptional activity, MDA-MB-468 cells were trans-
fected with a NOS2 expression plasmid and then transi-
ently transfected with an Ets-luciferase reporter plasmid.
Cells were then incubated in serum-free media supple-
mented with L-Arg or AG. NOS2 expression resulted in
a significant increase in luciferase reporter activity when
incubated with L-Arg; however, this effect was not
observed in the presence of the NOS2 inhibitor AG, indi-
cating that NO release resulted in Ets-1 transcriptional
activation (Figure 1C). To examine the effect of NO sig-
naling on Ets-1 transcriptional activity, MDA-MB-468
and MDA-MB-231 cells were transiently transfected with
an Ets-luciferase reporter plasmid and treated with EGF
or DETANO in serum-free media. EGF caused a signifi-
cant increase in luciferase activity compared to untreated
controls in the MDA-MB-468 cells, but not in MDA -
MB-231 cells, reminiscent of the Ets-1 (thr 38) phosphor-
ylation findings for these cell lines (Figure 1D). DETANO
caused a concentration-dependent increase in luciferase
activity and the effect was most significant at 0.3 and
0.5 mM in both MDA-MB-468 and MDA-MB-231 cells.
These data show that NOS2, via NO signaling, increases
Ets-1 transcriptional activity in ER- breast cancer cells.

NO activates Ets-1 via a Ras/MEK/ERK signaling pathway
Ets-1 is phosphorylated and activated by the MEK/ERK
signaling pathway [26]. Therefore, the role of MEK/ERK
signaling was examined in NO-induced Etsl activation.
Transfection of MDA-MB-468 cells with a NOS2 expres-
sion plasmid resulted in increased MEK1/2 (ser 217/221)
and ERK1/2 (thr 202/tyr 204) phosphorylation compared
to control cells and this effect was reduced in the pre-
sence of AG (Figure 2A). DETANO caused a concentra-
tion-dependent increase in both MEK1/2 (ser 217/221)
and ERK1/2 (thr 202/tyr 204) phosphorylation in MDA -
MB-231, MDA-MB-468 and SUM159 cells (Figure 2B).
Similar results were obtained in SKBR3 cells [see Addi-
tional file 4: Figure S3]. Furthermore, the DETANO-
mediated phosphorylation of ERK1/2 (thr 202/tyr 204)
and p-Ets-1 (thr 38) was attenuated by the MEK inhibitor
PD184161 in MDA-MB-468 cells (Figure 2C). Ets-lucifer-
ase activity in MDA-MB-468 cells treated with either
EGF or 0.5 mM DETANO was significantly decreased in
the presence of PD184161 compared to EGF or
DETANO alone (Figure 2D). These data show that NO
activates Ets-1 via the MEK/ERK signaling pathway.

Ras is a major activator of MEK/ERK signaling [32],
therefore the role of Ras signaling in mediating NOS2
and NO-induced Ets-1 activation was examined. Wild
type Ras expressing MDA-MB-468 cells were transfected
as described above and the relative level of Ras activation
was determined by the RBD pull-down assay and com-
pared to total Ras expression. NOS2 expression in the
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phosphorylation in MDA-MB-468 cells transfected with control plasmid and NOS2 expression plasmid in the presence of NOS2 substrate (L-Arg)
or inhibitor (AG). (b) Western blot of phospho-Ets-1 (thr 38) compared to total Ets-1
DETANO. (c) Ets-luciferase activity in MDA-MB-468 cells transfected with either control or NOS2 expression plasmid and cultured in the presence
of L-Arg or AG. Data represent mean fold luciferase activity compared to control plasmid incubated with L-Arg. (d) Ets-luciferase activity in
serum-starved cells treated with either EGF or DETANO. Data represent mean fold luciferase activity compared to untreated control. Significant
luciferase activity (**P < 0.01) was determined by one-way ANOVA from at least three independent experiments. AG, aminoguanidine; ANOVA,
analysis of variance; DETANO, diethlylenetriamine NONOQate; EGF, epidermal growth factor; Ets-1, erythroblastosis virus E26 oncogene homolog 1;

a
Q
3

o“ o

[DETANO] mM
01 03 05

Wi s p-Ets-1 (thr38)
© MR e W WS otal Ets-1

“ S S S total Ets-1
@ ﬁ m p-Ets-1 (thr38)

4 4 W total Ets-1

in serum-starved cells exposed to either EGF (10 ng/ml) or

presence of L-Arg resulted in Ras activation compared to
control cells; however, the addition of AG reduced levels
of active Ras (Figure 3A). Because NO activates Ras via
SNO post-translational modification [33,34], Ras-SNO
formation was measured by the biotin-switch assay [35].
Similar to Ras activation, NOS2 expression resulted in
Ras-SNO, which was reduced in the presence of AG
(Figure 3A). To examine the effect of NO on Ras activa-
tion and S-nitrosylation, MDA-MB-468 cells were treated
with either EGF or DETANO for 24 hours. Ras activation

was significantly increased by EGF and both concentra-
tions of DETANO (0.1 and 0.5 mM) compared to serum-
starved controls (Figure 3B). Densitometric analyses
show that DETANO at 0.5 mM activated Ras comparable
to EGF (P < 0.01), whereas 0.1 mM DETANO induced an
activation that was significantly lower than EGF, albeit
still statistically significant above control levels [see Addi-
tional file 5: Figure S4]. Ras-SNO formation was observed
in MDA-MB-468 cells treated with 0.5 mM but not with
0.1 mM DETANO consistent with a nitrosative signaling
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conditions described in (c). AG, aminoguanidine; DETANO, diethlylenetriamine NONOate; EGF, epidermal growth factor; ERK, extracellular signal-
regulated protein kinase; Ets-1, erythroblastosis virus E26 oncogene homolog 1; L-Arg, L-arginine; MEK, mitogen-activated protein kinase; NOS2,

nitric oxide synthase.

profile of NO (Figure 3B) [36]. Ras-SNO was not
observed in control or EGF stimulated cells. To further
examine the role of Ras-SNO modification in the activa-
tion of Ets-1, MDA-MB-468 cells were treated with
DETANO alone or in the presence of chemical inhibitors
of S-nitrosation, N-acetyl cysteine (NAC) or sodium
azide. Ras-SNO was detected in cells treated with
DETANO; however, both NAC and azide blocked Ras-
SNO formation (Figure 3C). Ets-luciferase activity was
measured in MDA-MB-468 cells treated with DETANO
alone and in combination with NAC or azide. DETANO

resulted in increased luciferase activity compared to
untreated controls and NAC and azide significantly
reduced NO-mediated Ets-1 transcriptional activity
(Figure 3D). These results suggest that activation of Ras
and Ets-1 by 0.5 mM DETANO is mediated, at least in
part, by Ras-SNO formation.

To examine the role of Ras in mediating the NO activa-
tion of the MEK/ERK/Ets-1 signaling pathway, MDA-MB-
468 cells were treated with EGF or 0.5 mM DETANO
with or without the Ras inhibitor FTS. FTS blocks Ras
association with the cellular membrane and renders Ras
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presence or absence of FTS. (f) Western blot of Ets-1 (thr 38) phosphorylation in serum-starved MDA-MB-468 cells exposed to EGF or DETANO (0.5
mM) in the presence or absence of GO 6976. (g) Ets-luciferase activity in serum-starved MDA-MB-468 cells exposed to EGF or DETANO (0.5 mM) in
the presence or absence of FTS or Go 6976. Significance compared to control was determined by one-way ANOVA (*P < 0.05). (h) Schematic
representing the NO-sensitive Ras/MEK/ERK/Ets-1 signaling pathway. AG, aminoguanidine; ANOVA, analysis of variance; DETANO,
diethlylenetriamine NONOQate; EGF, epidermal growth factor; ERK, extracellular signal-regulated protein kinase; Ets-1, erythroblastosis virus £26
oncogene homolog 1; FTS, farnesylthiosalicylic acid; L-Arg, L-arginine; MEK, mitogen-activated protein kinase; NOS2, nitric oxide synthase.
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protein susceptible to proteasomal degradation [37]. EGF
and DETANO resulted in Ets-1 (thr 38) phosphorylation;
however, this signaling effect was not observed in the pre-
sence of FTS (Figure 3E). Furthermore, FTS treatment
resulted in decreased Ras protein levels, indicating that
Ras signaling is critical for NO to increase Ets-1 (thr 38)
phosphorylation. An alternative activator of MEK-1/2 sig-
naling is protein kinase Co. (PKCa) [38-40]. To examine
the role of PKCa on NO activation of MEK/ERK/Ets-1
signaling, cells were treated with EGF or 0.5 mM
DETANO and with or without the PKCa inhibitor Go
6976. The phosphorylation of Ets-1 by NO was not altered
by G6 6976 (Figure 3F), suggesting that NO activates Ets-
1 via a PKCo.-independent mechanism.

To examine the role of Ras and PKCa on NO-
mediated Ets-1 transcriptional activity, MDA-MB-468
cells were transfected with an Ets-luciferase reporter
plasmid and treated with 0.5 mM DETANO alone or in
combination with either G6 6976 or FTS. Consistent
with the Ets-1 phosphorylation results, FTS blocked the
effect of NO to increase Ets-1 transcriptional activity,
while G6 6976 had no effect on luciferase activity (Fig-
ure 3G). These data suggest that NO activates Ets-1 sig-
naling and its transcriptional activity via a Ras/MEK/
ERK signaling pathway and not via PKCa activation
(Figure 3H).

NO and Ets-1 contribute to an aggressive basal-like
phenotype

NOS2 expression is associated with a basal-like pheno-
type in ER- breast tumors and NO signaling results in
increased expression of basal-like signature genes in ER-
human breast cancer cell lines [5]. To examine the role
of Ets-1 in mediating the expression of basal-like markers
induced by NO signaling, MDA-MB-468 cells were trans-
fected with either control or Ets-1-specific siRNA and
exposed to DETANO. Western blotting showed that
Ets-1 siRNA resulted in suppression of Ets-1 protein
expression (Figure 4A). DETANO treatment resulted in
increased expression of the basal-like markers P-cad-
herin, SI00A8 and af-crystallin when compared to con-
trol siRNA treated cells (Figure 4A). Furthermore, the
increase of P-cadherin, SI00A8 and af3-crystallin expres-
sion by DETANO was reduced in Ets-1 knocked-down
cells (Figure 4A). Densitometric analyses of protein
expression displayed in Figure 4A are shown in Figure 4B.
In addition, IL-8 production was significantly increased by
NO and significantly reduced in Ets-1 siRNA transfected
MDA-MB-468 cells (Figure 4C). Similarly, the increased
cellular proliferation induced by DETANO treatment was
significantly reduced in Ets-1 siRNA transfected MDA-
MB-468 and MDA-MB-231 cells (Figure 4D). These data
show that Ets-1 mediates the expression of the basal-like
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breast cancer signature genes induced by oncogenic NO
signaling.

Ets-1 regulates the expression of various proteases that
are critical to matrix reorganization and cancer cell inva-
sion [41]. Therefore, the role of NO/Ets-1 signaling on
cathepsin B (CTSB) was examined. CTSB expression and
activity was measured in extracts from cells transfected
with Ets-1 siRNA and treated with or without 0.5 mM
DETANO and compared to cells transfected with control
siRNA. CTSB expression was only modestly increased in
DETANO-treated control cells but was markedly reduced
in cells transfected with Ets-1 siRNA (Figure 4A and 4B).
In contrast to the CTSB expression levels, CTSB activity
significantly increased in DETANO-treated cells when
compared to untreated cells (Figure 4D). However, CTSB
activity was significantly reduced in cells transfected
with Ets-1 siRNA compared to control siRNA in both
DETANO-treated and untreated conditions (Figure 4E).
These results show that NO increases CTSB expression
and activity via Ets-1 signaling.

Ets-1 regulates the expression of many proteases of the
MMP family [17,42,43], which accelerate tumor cell inva-
sion and metastasis [44]. To examine the role of Ets-1 in
mediating NO-induced MMP expression, conditioned
media were assayed for total MMP expression using a
mosaic MMP spot-ELISA which measures MMP-1, -2, -3,
-7, -8, -9 and -13. Total MMP (that is, the sum of the
MMPs measured) was significantly decreased in cells trans-
fected with Ets-1 siRNA (Figure 5A). DETANO treatment
resulted in a moderate albeit significant increase of total
MMP and this effect was suppressed in Ets-1 siRNA cells
(Figure 5A). The most abundant MMP measured in condi-
tioned media was MMP-7 (matrilysin) and both NO and
Ets-1 knock-down had effects on MMP-7 expression simi-
lar to those of total MMP expression (Figure 5A). Total
MMP activity was also measured from conditioned media
using the Mca assay. Cells transfected with Ets-1 siRNA
exhibited a significant reduction in MMP activity compared
to cells transfected with control siRNA (Figure 5B). Control
cells treated with 0.5 mM DETANO had a significant
increase in MMP activity and this effect was significantly
reduced in Ets-1 knock-down cells (Figure 5B). The role of
Ets-1 in mediating NO-induced MDA-MB-231 invasion
was also measured using the matrigel invasion assay.
Similar to MMP activity, cellular invasion was reduced in
Ets-1 siRNA transfected cells compared to control siRNA
transfected cells (Figure 5C). Control cells treated with
0.5 mM DETANO exhibited increased invasion compared
to cells not exposed to DETANO and this effect was signifi-
cantly reduced in Ets-1 knock-down cells (Figure 5C).
These data indicate that Ets-1 has a critical role in the NO-
induced cellular proliferation, invasion and expression of
basal-like markers in ER- breast cancer cells.
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Figure 4 Ets-1 mediates the NO-induced aggressive basal-like phenotype. (a) Representative western blots of Ets-1, P-cadherin, STO0AS,
af-crystallin, cathepsin B (CTSB) and actin expression in MDA-MB-468 cells transfected with either control or Ets-1 siRNA and treated with DETANO.
(b) Densitometic analyses of proteins described in (a) relative to untreated control plasmid cells. (c) IL-8 production from MDA-MB-468 cells
transfected with either control or Ets-1 siRNA and treated with DETANO. Significance (**P < 0.01) was determined by t-test. (d) Proliferation of
MDA-MB-468 cells transfected with control or Ets-1 siRNA and treated with DETANO in serum-free RPMI. Data represent the fold change compared
to untreated, control siRNA cells. Significance compared to control siRNA transfected cells was determined by t-test (**P < 0.01). (Inset: Western blot
of Ets-1 expression compared to actin in transfected MDA-MB-231 cells.) (e) CTSB activity in cells transfected with control or Ets-1 siRNA and treated
with DETANO. Relative fluorescence units (RFU) were normalized to pg of total protein + SD. Significance (*P < 0.05, **P < 0.01) was determined by
t-test. DETANO, diethlylenetriamine NONOQate; Ets-1, erythroblastosis virus E26 oncogene homolog 1; SD, standard deviation.
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MDA-MB-468 cells transfected with control or Ets-1 siRNA and treated with DETANO. MMP expression is normalized to total cellular protein.

(b) Total MMP activity in serum-starved cells transfected with control or Ets-1 siRNA and treated with DETANO. Activity is shown as fold change
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Discussion

Our study made the novel observation that the oncogenic
transcription factor Ets-1 is a critical mediator of NOS2
and NO-induced signaling in breast cancer and thus, this
study provides a molecular mechanism that at least partly
explains the oncogenic effects of NO in ER- breast cancer.
Moreover, the robust association between NOS2 expres-
sion and up-regulation of genes with EBS transcriptional
activation sites in microdissected and bulk tumor epithelia
indicates that Ets-1 is a significant in vivo mediator of
NOS2 signaling in human ER- breast tumors. NOS2
expression in ER- breast tumors is associated with poor
patient outcomes and a basal-like phenotype [5], linking
NO signaling to this poor outcome and highly metastatic
phenotype [6,45]. NO activation of Ets-1 resulted in the
cellular expression of basal-like markers (P-cadherin,
S100A8, IL-8 and af-crystallin) [46-48] as well as mole-
cules associated with the metastatic process (CTSB and
MMP-7) [49,50] indicating that this signaling mechanism
contributes to the observed clinical features of aggressive
ER- breast cancers that overexpress NOS2. In addition to
the Ras/MEK/ERK/Ets-1 signaling pathway elucidated
here, NOS2 and NO activate multiple oncogenic signaling
pathways such as EGFR, PI3K/Akt, c-Myc, HIF-1a, NF-kB
and Src [8]. Furthermore, SI00A8 and MMPs are potential
targets of SNO highlighting the multifaceted effects of NO
signaling in cancer cell biology. Therefore, the activation
of Ras/Ets-1 is a contributing signaling axis induced by
oncogenic levels of NO [8,51]. These observations strongly
point to NOS2 as a potential comprehensive driver of
aggressive metastatic tumors and further suggest that
NOS2 inhibition or blunting of NO/SNO signaling is a
potential therapeutic target for basal-like breast tumors.
This is of significant clinical impact as basal-like tumors
commonly express the triple-negative phenotype and,
therefore, currently lack therapeutic targets [6,7].

The data shown here indicate that Ras activation by NO
has signaling effects in human breast cancer and this sig-
naling mechanism may represent a major target of NO
signaling in cancer biology. While mutated and constitu-
tively active Ras is often observed in human malignancy,
breast tumors harboring Ras mutations are rare, account-
ing for >5% of all breast tumors [52,53]. Wild-type Ras-
SNO modification and activation has been characterized;
however, the resulting signaling effects in human cancer
have not been thoroughly investigated. The involvement
of Ras SNO described here in ER- breast cancer cells is
consistent with previous reports in T lymphocytes and
lung tumors [54,55]. Ras activation by NO in breast cancer
cells has been described to proceed in a cGMP-independ-
net mechanism and our data showing NO-mediated SNO
of Ras is consistent with this previous report [56]. Our
finding that NO activation of Ras, via SNO results in Ets-1

Page 11 of 13

activation suggests that other Ras-mediated pathways may
also activated by NO in human cancer.

We propose that the NO/Ets-1 signaling axis first
described here may promote disease progression in other
tumors that overexpress NOS2, such as glioma and mela-
noma [2,57], and tumors with impaired SNO metabolism,
such as lung and hepatocellular carcinoma [55,58]. Ets-1
has also been linked to melanoma and lung tumor metas-
tasis [59,60]. Furthermore, our data showing that NO
results in a MEK/ERK/Ets-1 signaling cascade in ER-/
HER2+ SKBR3 cells [see Additional file 4: Figure S3] sug-
gest that high NOS2 expression and NO signaling may
induce proliferative and aggressive phenotypes in HER2+
breast cancer. Together, these data further strengthen the
proposed linkage between NO and Ets-1 signaling and
suggest that their interaction is a major promoter of
tumor metastasis and requires further investigation.

Conclusions

In summary, NO signaling results in the activation of
the oncogenic transcription factor Ets-1, which is critical
for the basal-like breast cancer phenotype associated
with tumor NOS2 expression. This effect of NO is
mediated by Ras-SNO modification and subsequent
MEK/ERK signaling to phosphorylate Ets-1 (thr 38).
Activation of Ets-1 by NO resulted in the increased
expression of the basal-like markers P-cadherin,
S100AS8, IL-8 and af-crystallin, which mechanistically
links two prognostic markers of poor basal-like patient
survival [5,23]. Furthermore, NO activation of Ets-1
resulted in increased expression and activity of proteases
critical for tumor metastasis, MMPs and CTSB, and
resulted in increased cancer cell invasion and prolifera-
tion. These data imply a molecular mechanism that elu-
cidates the aggressive basal-like phenotype induced by
NOS2 and NO signaling and provides a potential thera-
peutic target for triple negative/basal-like breast cancer.

Additional material

Additional file 1: Table S1. Ets-binding sites in NOS2-associated
gene signature. An Excel table listing the Ets-binding sites within the
ER- NOS2 gene signature.

Additional file 2: Figure S1. Steady-state NO concentrations
released from DETANO. A pdf file showing the concentration of NO, as
measured by chemiluminescence, versus the concentration of DETANO
over 24-hours.

Additional file 3: Figure S2. Response to EGF stimulation in ER- cell
lines used in this study. A pdf file showing a western blot comparing
relative phospho-(tyr1173) and total EGFR expression in EGF-treated
MDA-MB-468, MDA-MB-231, SUM159 and SKBR3 cells.

Additional file 4: Figure S3. NO activation of Ets-1 in ER-/HER2+
SKBR3 cells. A pdf file showing a western blot of relative Ets-1 (thr 38),
MEK1/2 (ser 217/221) and ERK1/2 (thr 202/tyr 204) phosphorylation in
serum starved SKBR3 cells exposed to either EGF (10 ng/ml) or DETANO.
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Additional file 5: Figure S4. Relative Ras activation of MDA-MB-468
cells. A pdf file showing Ras activation as calculated from densitometric
analyses of active Ras normalized to total Ras. Activity is shown as mean
fold compared to control. Significance (*P < 0.05, **P < 0.01) was
determined by t-test.
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