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Abstract

Introduction: Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous group of proliferative cellular lesions
that have the potential to become invasive. Very little is known about the molecular alterations involved in the
progression from DCIS to invasive ductal carcinoma (IDC). Heparan endosulfatase (HSulf-2) edits sulfate moieties on
heparan sulfate proteoglycans (HSPGs) and has been implicated in modulating heparin binding growth factor
signaling, angiogenesis and tumorigenesis. However, the role of HSulf-2 in breast cancer progression is poorly
understood. MCF10DCIS.com cells (referred as MCF10DCIS) express HSulf-2 and form comedo type DCIS and
progress to IDC when transplanted in immune-deficient mice and, therefore, is an ideal model to study breast
cancer progression. We evaluated the role of HSulf-2 in progression from DCIS to IDC using mouse fat pad
mammary xenografts.

Methods: Non-target control (NTC) and HSulf-2 knockdown in MCF10DCIS breast cancer cells were achieved by
NTC shRNA and two different lentiviral shRNA against HSulf-2 respectively. Xenografts were established by injecting
NTC and HSulf-2 deficient MCF10DCIS cells in mouse mammary fat pads. Xenografts were subjected to H&E
staining for morphological analysis, TUNEL and Propidium iodide staining (to determine the extent of apoptosis),
Western blot analysis and zymography.

Results: Using a mouse mammary fat pad derived xenograft model, we observed that compared to control
treated xenografts, down-regulation of HSulf-2 was associated with significant delays in growth at Week 7 (P-value
< 0.05). Histological examination of the tumors demonstrated substantial differences in comedo necrosis, with
marked luminal apoptosis and up-regulation of apoptotic markers Bim, cleaved PARP and cleaved caspase 3 in
HSulf-2 depleted xenografts. Furthermore, HSulf-2 depleted xenografts retained the basement membrane integrity
with decreased activity and expression of matrix metalloproteinase 9 (MMP-9), an enzyme critical for degradation
of extracellular matrix compared to nontargeted control.

Conclusion: Our data suggest that HSulf-2 expression may be critical for human breast cancer progression. Down-
regulation of HSulf-2 leads to retention of comedo type DCIS and delays the progression of DCIS to IDC. Further
studies are necessary to determine if therapeutic targeting of HSulf-2 expression might delay the progression of
DCIS to IDC.
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Introduction

Ductal carcinoma in situ (DCIS) consists of proliferating
malignant clonal cells within the lumen of mammary
ducts with no evidence of invasion through the base-
ment membrane into surrounding stroma [1]. While it
is generally accepted that nearly all invasive breast carci-
nomas arise from DCIS [2], few patients with DCIS will
develop invasive breast cancer after standard treatments,
such as surgery, radiation and tamoxifen [3,4]. While
increasing data suggest that epithelial mesenchymal
transition (EMT), a process characterized by activation
of matrix metalloproteinase (MMP) enzymes involved in
the degradation of extracellular matrix [5,6] and the
acquisition of invasive phenotype, is often associated
with progression of DCIS to IDC [7,8], the molecular
events underlying EMT are poorly understood. Molecu-
lar markers, which are associated with the process of
transition from DCIS to invasive ductal carcinoma
(IDC), may allow clinicians and patients to forgo more
aggressive therapies, such as mastectomy. In order to
understand the progression of DCIS to IDC, several
reports have determined the alteration in genetic (intrin-
sic) and stromal (extrinsic) associated with DCIS and
IDC [9-11].

Heparan sulfate proteoglycans (HSPGs) serve as co-
receptors for many heparin binding growth factor recep-
tors [12,13]. HS is highly sulfated and is desulfated at 6-
O sulfate moiety by two HS editing enzymes known as
heparan sulfatases 1 and -2 [14]. Catalytically, these
enzymes desulfate the sulfation moieties on the HSPGs
and this action disrupts the ternary complex formation
between heparin binding ligands, such as bFGF2 and its
cognate receptor, FGFR2 and co-receptor HSPGs [13].
Similarly, various heparin-binding growth factors signal-
ing have been shown to be up-regulated in breast cancer
tumorigenesis and are remodeled by a group of enzymes
known as heparan sulfatases [15-21].

HSulfs have been shown to promote wingless type
(Wnt) signaling known to promote cancer growth [22].
Previous reports indicate that HSulf-2 has both tumor
suppressing and tumor promoting roles in cancer
[23,24]. More specifically, studies have indicated that
HSulf-2 is the most frequently, differentially-expressed
gene between ductal carcinoma in situ and invasive duc-
tal carcinoma [25]. The tumor promoting functions of
HSulf-2 have been supported by previous reports sug-
gesting HSulf-2 as a positive regulator of Wnt pathway
in pancreatic cancer cells [22]. Furthermore, it has been
shown that HSulf-2 has a pro-angiogenic role in breast
cancer [23]; however, more recent data suggest that
HSulf-2 attenuates metastasis [24]. Although HSulf-2’s
role in cancer has been investigated in various tumor
types, the precise role of HSulf-2 in breast cancer
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tumorigenesis is not clearly defined. In the present
study, we have determined the role of HSulf-2 in pro-
gression of ductal carcinoma in situ to invasive ductal
carcinoma using the MCF10DCIS cell line. Increased
proliferation of epithelial cells, loss of acinar organiza-
tion and filling of the luminal space has been shown in
the MCF10DCIS model, a well-characterized xenograft
progression model of DCIS to IDC [26]. Our study sug-
gests that HSulf-2 might play an important role in the
transition from DCIS to an invasive phenotype (IDC).
HSulf-2 promotes basement membrane proteolysis via
up-regulation of MMP-9 activity and promotes progres-
sion of DCIS to IDC thus opening avenues to therapeu-
tically target HSulf-2.

Materials and methods

Cell lines and cell culture

Breast cancer cell lines MCF10DCIS and MCF10AT1
were grown as described previously [16,27,28]. Anti-
HSulf-2 antibody was a gift from Dr Lewis Roberts
(Mayo Clinic, Rochester, MN, USA). Antibodies used in
these studies are anti-a-tubulin (Sigma, St. Louis, MO,
USA), anti-Bnip3, anti-Bim EL, anti-cleaved PARP, anti-
cleaved caspase 3, (Cell Signaling, Boston, MA, USA)
anti-MMP-2, anti-MMP-9 and anti-MMP-14 antibodies
(Chemicon, Billerica, MA, USA).

Western immunoblot

Equal amounts of proteins from the cells were resolved
on SDS-PAGE followed by transfer on PVDF membrane
and immuno-probed with indicated antibodies as pre-
viously described [29].

Small interfering RNA transfections and shRNAs
Short-hairpin RNAs (shRNAs) cloned into the lentivirus
vector pLKO.1-puro were chosen from the human
library (MISSION TRC-Hs 1.0) and purchased as gly-
cerol stock from Sigma. The control shRNA (non-target
shRNA vector, Sigma) contains a hairpin insert that will
generate siRNAs but contains five base pair mismatches
to any known human gene. Target sequence for HSulf-2
shRNA (HW11) CAAGGGTTACAAGCAGTGTAA and
HSulf-2 shRNA (HW13): CCACAACACCTACACCAA-
CAA. Lentivirus particles were produced by transient
transfection of two different plasmids targeting HSulf-2
(pLKO.1-HSulf-2) and pLKO.1 non-target control
(NTC) along with packaging vectors (pVSV-G and
pGag/pol) in 293T cells as previously described [30,31].

Mouse mammary fat pad injections

MCF10DCIS xenografts were generated by injecting
MCEF10DCIS cells stably expressing non-targeted control
and HSulf-2 knockdown clones HW11 and HW13. A
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total of 1.0 x 10° cells in 0.1 ml of matrigel were subcu-
taneously injected at each nipple of gland #5 of female
nude mice. Xenografts were removed at Weeks 3, 5 and
7, either fixed in formalin buffer or frozen immediately
in liquid nitrogen or stored at -80°C. All animal work
was conducted under protocols approved by the Mayo
Clinic Institutional Animal Care and Use Committee
and the animals were housed in institutional animal
facilities. Tumor volume was calculated with the for-
mula V = 1/2 a x b? where “a” is the longest tumor
axis, and “b” is the shortest tumor axis.

Immunohistochemistry

Each specimen of xenografts obtained from NTC and
HSulf-2 down-regulated clones were stained with H&E
for morphological analysis. For immunohistochemistry,
xenografts embedded in paraffin were cut at 5 to 7
pm, mounted on glass and dried overnight at 37°C. All
sections were deparaffinized in xylene, rehydrated
through a graded alcohol series and washed in phos-
phate-buffered saline (PBS). PBS was used for all sub-
sequent washes and for antiserum dilution. Tissue
sections were quenched sequentially in 3% hydrogen
peroxide in aqueous solution and blocked with 6%
non-fat dry milk in PBS for 1 h at room temperature.
Slides then were incubated at 4°C overnight with a
rabbit polyclonal antiserum specific for HSulf-2 at a
final 1:100 dilution and SMA at a final 1:100 dilution
(Dako, Cat # M0851, Glostrup, Denmark) in PBS-3%
non-fat dry milk. After three washes in PBS to remove
the excess antiserum, the slides were incubated with
diluted goat anti-rabbit biotinylated antibody (Vector
Laboratories, Burlingame, CA, USA) at 1:200 dilution
in PBS-3% non-fat dry milk for 1 h. All the slides were
then processed by the ABC method (Vector Labora-
tories, Burlingame, CA, USA) for 30 minutes at room
temperature. Diamonibenzidine (Vector Laboratories)
was used as the final chromogen and hematoxylin was
used as the nuclear counterstain. Negative controls for
each tissue section were prepared by leaving out the
primary antiserum.

Immunofluoresence

For immunofluoresence, similar steps were followed as
described for immunohistochemistry till incubation with
primary respective antibodies. After three washes in
Tris-Buffered Saline and Tween 20 to remove the
excess antiserum, the slides were incubated with diluted
anti-rabbit - Fluorescein Isothiocyanate and anti-mouse
TRITC antibody. Slides were finally mounted on mount-
ing medium with 4’,6-diamidino-2-phenylindole (DAPI)
for nuclear staining or propidium iodide was added
prior to mounting on mounting medium. No primary
antibody was added in negative controls.
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Terminal deoxynucleotidyl transferase biotin-dUTP nick
end-labeling (TUNEL) assay

TdT-mediated dUTP nick end labeling assay was used
to detect apoptosis in xenografts obtained from NTC
and HSulf-2 downregulated HW11 and HW13 clones as
recommended by the manufacturer of APO Tag kit
(Millipore Corporate, Billerica, MA, USA).

Gelatin zymography

MMP-2 and MMP-9 enzymatic activity in mouse
derived xenografts was performed by SDS-PAGE gelatin
zymography. Gelatinases present in the tissue lysates
degrade gelatin in the SDS-PAGE leaving a clear white
band after commassie staining of the gel. Tissue samples
were homogenized in the lysis buffer. Equal protein was
denatured in the absence of reducing agent and electro-
phoresis in 7.5% SDS-PAGE containing 0.1% (w/v) gela-
tin. The gel was incubated in the presence of 2.5%
Triton X-100 at room temperature for two hours and
subsequently at 37°C over might in 10 mM CaCl2, 0.15
M NaCl, and 50 mM Tris (pH 7.5). The gel was stained
with 0.25% Coomassie Blue.

Results

HSulf-2 downregulation attenuates tumor growth in vivo
To evaluate the role of HSulf-2 in breast cancer, we
generated batch stable clones with two different viral
shRNAs, HW11 and HW13 targeted to different regions
on HSulf-2 mRNA in MCF10DCIS cells as described in
Materials and methods. Western immunoblot analysis
(Figure 1A) shows robust HSulf-2 down-regulation in
these batch clones. Non-targeted control (NTC) ShRNA
served as control.

To gain insights into the role of HSulf-2 in the pro-
gression from DCIS to IDC in vivo, NTC and HSulf-2
down-regulated batch stable clones HW11 and HW13
in MCF10DCIS cells were injected into mammary fat
pad as described in Materials and methods. Tumor tis-
sues were excised at the indicated intervals and either
immediately frozen or saved in fixative. Tumor growth
was monitored by caliper measurements at Weeks 3, 5
and 7 (Figure 1B). As shown in Figure 1B, tumor growth
in both HSulf-2 down-regulated clones (HW11 and
HW13) were attenuated compared to NTC cells (*P-
value < 0.05, **P-value < 0.05). These data suggest that
depletion of HSulf-2 results in decreased tumor growth.

HSulf-2 knockdown delays ductal carcinoma in-situ (DCIS)
to invasive ductal carcinoma

Histopathological evaluation of xenografts by H&E
staining clearly showed comedo type lesions with well
formed basement membrane surrounding the ductal
lesions at Week 3 in NTC clone and in xenografts
derived from HW11 and HW13 clones (Figure 2, top
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Figure 1 HSulf-2 knockdown attenuates tumor growth. (A)
Western immunoblot analysis using anti-HSulf-2 and anti-tubulin
antibodies shows efficient down-regulation of HSulf-2 in HW11 and
13 compared to NTC cells. (B) NTC and HSulf-2 depleted clones
were injected in mouse mammary fat pad as described in Materials
and methods. Tumor growth was monitored at Weeks 3, 5 and 7.
Eight mice per group were evaluated. Inset: Excised tumors from
NTC and HSulf-2 depleted clones. Graphs show quantitation of the
tumor volume at indicated intervals among the groups. P-value <
0.05 (Student t test analysis).

panel). While HSulf-2 depleted HW11 and HW13 xeno-
grafts exhibited an increasing number of ductal lesions
with defined basement membrane at Weeks 5 and 7, the
NTC derived xenografts exhibited a more invasive phe-
notype with less defined DCIS structures (Figure 2A,
middle and bottom panels). Graphical representation of
the number of comedo DCIS structures in these clonal
lines are shown in Figure 2B for the period of the
experiment and demonstrate significantly more comedo
type lesions in the HSulf-2 depleted clones compared to
the control treated.

HSulf-2 is expressed in comedo structures formed in vivo
To understand the pattern and extent of HSulf-2
expression in MCF10DCIS derived NTC xenografts, we
evaluated HSulf-2 staining in xenografts obtained from
NTC clones by immunohistochemistry as described in
Materials and methods. HSulf-2 was expressed predomi-
nantly in ductal lesions and in the central filled lumen
areas with least expression in stroma at Week 3 (Figure
3A). Increased expression of HSulf-2 staining was evi-
dent as the DCIS structures evolved into IDC with
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basement membrane dissolution (Figure 3B - Arrows).
Similarly, immunofluoresence microscopy with SMA
staining (marker of myoepithelial layer) of the xeno-
grafts (Figure 4) indicated integrity of basement mem-
brane around the ductal lesions (TRITC labeled SMA).
Notably, HSulf-2 expression was predominant in the
stromal compartment in normal breast tissue whereas
HSulf-2 was highly expressed in epithelial cells of
comedo structures apparent in NTC derived xenografts.
Furthermore, HSulf-2 depleted xenografts show well
preserved basement membrane, whereas NTC derived
xenografts show patches of basement membrane indicat-
ing its disruption at Weeks 5 and 7. Nearly absent stain-
ing was observed with anti-HSulf-2 antibody in these
xenografts indicating HSulf-2 depletion was also main-
tained during the breast cancer progression at indicated
time intervals (Figure 4).

Enhanced luminal apoptosis of ductal lesions marks
HSulf-2 depleted xenografts

Our in vivo data clearly suggest that HSulf-2 depletion
resulted in decreased tumor volume and increased necro-
tic areas in H&E staining (Figure 2). Therefore, we further
evaluated the effect of HSulf-2 knockdown on apoptosis in
NTC and HSulf-2 depleted xenografts. To analyze the
extent of apoptosis in xenografts, we performed TUNEL
and propidium iodide (PI) staining on xenografts as
described in the Materials and methods section. Our data
revealed that HSulf-2 depletion resulted in a higher degree
of apoptotic positive areas (TUNEL positive, FITC labeled)
in the xenografts as compared to NTC at Week 5 and
notably at Week 7 (Figure 5A, panel 1). More importantly,
xenografts derived from HSulf-2-depleted clones showed
marked TUNEL positive ductal lesions with intact base-
ment membrane even at Weeks 5 and 7 (Figure 5, panels
2 and 3). Figure 5B shows quantification of these data by
bar graph (*P-value < 0.05, t test). At least 100 fields were
examined in six different sections of each group.

To further identify key players involved in apoptotic cell
death and basement membrane remodeling, we extended
our investigation in lysates derived from xenografts as
described in Materials and methods. Western blot analysis
of lysates derived from xenografts suggest that pro-apop-
totic proteins Bim, cleaved PARP, cleaved caspase 3 were
up-regulated in HSulf-2 depleted xenografts (four to five
mice/group) with very little change in Bnip3 expression
compared to NTC derived xenografts (Figure 6A). These
data suggest that HSulf-2 knockdown resulted in increased
apoptosis in the center of ductal lesions.

HSulf-2 knockdown attenuates MMP-9 expression in
mouse xenografts and MCF10DCIS cells

We noted two major effects of HSulf-2 depletion on
mouse derived xenografts: a) increased luminal
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Figure 2 (A) HSulf-2 knockdown xenografts retains comedo structures for longer duration. H&E staining of NTC and HSulf-2 depleted
clones derived xenografts at Weeks 3, 5 and 7. (B) Quantitation of intact comedo structures in NTC and HSulf-2 depleted clones as shown in
Figure 2A. At least six different slides per sample were evaluated. P-value < 0.05.

Weeks

apoptosis and b) decreased basement membrane break-
down. Our observation that HSulf-2 knockdown
resulted in decreased breakdown of basement membrane
even at Week 7 of tumor growth indicated that HSulf-2
presence might be critical for basement membrane
(BM) breakdown. Breakdown of BM reflects transition
from ductal to invasive ductal carcinoma [32]. This dis-
integration of basement membrane layer surrounding
the ductal lesions can be attributed to high activity of
MMPs. Therefore, we next evaluated the effect of
HSulf-2 on MMP expression levels. Our analysis on
NTC and HSulf-2 depleted clones reveals that HSulf-2

depletion did not alter MMP-2 and -14 expression
(although slight accumulation of inactive form of MMP-
14 was observed in HSulf-2 depleted xenografts),
whereas marked reduction of MMP-9 expression was
observed in HSulf-2 depleted xenografts as compared to
NTC (Figure 6B). As shown in Figure 6C, gelatin zymo-
graphy of NTC derived xenografts showed enhanced
gelatin degradation as compared to HSulf-2 depleted
xenografts, whereas no change in MMP-2 activation was
observed. These data suggest that HSulf-2 depletion has
negative impact on MMP-9 expression and, hence, its
activity.
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Figure 3 HSulf-2 is expressed in ductal lesions formed in vivo
in NTC derived xenografts. (A) Immunohistochemistry analysis
revealed expression of HSulf-2 in central areas as well as areas
surrounding basement membrane. Limited staining of HSulf-2 was
observed in stromal fraction. (Magnification 20x). (B)
Immunohistochemistry analysis of HSulf-2 expression in NTC at

Weeks 3, 5 and 7 (Magnification 10x).

Discussion

The present study aims to define the relationship
between HSulf-2 and ductal carcinoma in situ progres-
sion to invasive ductal carcinoma using the MCF10DCIS
progression model. Although HSulf-2 has been reported
to be up-regulated in breast cancer [23], its role in
breast cancer progression has not been clearly defined.
Here we utilized a unique cell line which expresses
HSulf-2 and has the ability to form ductal lesions similar
to those found in DCIS pathology in the human breast.
By utilizing mouse mammary fat pad injections to
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evaluate the impact of HSulf-2 depleted MCF10DCIS
cells on tumor growth, we found that HSulf-2 knock-
down significantly attenuated tumor size, promoted
apoptosis and retained comedo lesions for a longer per-
iod of time. It is notable that apoptosis was predomi-
nantly limited to the inner center or luminal area of
comedo structures in HSulf-2 depleted xenografts. This
indicates that loss of HSulf-2 selectively renders inner
luminal cells of comedo lesions to undergo apoptosis
presumably due to the tumor microenvironment result-
ing in culmination of the apoptotic program, which trig-
gers spontaneous apoptosis in comedo lesions [33].
HSulf-2 loss up-regulated both the number and size of
comedo structures with intact basement membrane. A
striking feature of HSulf-2 depleted xenografts is the
maintenance of the integrity of basement membrane
even at later stages (Week 7) of DCIS to IDC progres-
sion, which suggests that HSulf-2 presence is essential
for basement membrane disintegration. Basement mem-
brane is a physical barrier between epithelial cells and
stromal cells. Many MMPs (proteases) have been shown
to play important roles in the remodeling of basement
membrane and invasion of surrounding tissues [34].
Importantly, HSulf-2 silencing attenuated transition
from DCIS to IDC by limiting MMP-9 expression and
activities required for basement membrane degradation.
Several members of the MMP family have been shown
to be up-regulated prior to progression from DCIS to
IDC in MCF10DCIS model [33]. Proteolysis of

Normal Breast

NTC

HW11

HW13

Figure 4 HSulf-2 depleted xenografts retain ductal structures. HSulf-2 (green) and smooth muscle actin (red) is detected by
immunofluresence microscopy in normal human breast and mouse-derived xenografts at Weeks 5 and 7 in NTC and HSulf-2 depleted
xenografts. (Magnification 20x).




Khurana et al. Breast Cancer Research 2012, 14:R43
http://breast-cancer-research.com/content/14/2/R43

Page 7 of 10

5th Week

Sth Week .

012345678

Relative TUNNEL positive areas

NTC

group. *P-value < 0.05, Student t test analysis.

HW11

Figure 5 HSulf-2 knockdown promotes marked apoptosis in vivo. (A) TUNEL staining(green) and nuclei staining with propidium iodide (red)
were performed as described in Materials and methods in NTC and HSulf-2 depleted clones at Weeks 5 and 7. (B) Quantitation of apoptotic
areas (comedo lesions) in NTC and HSulf-2 depleted clones (HW11 and HW13). At least 100 fields were examined in 6 different sections of each
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extracellular matrix proteins and basement membrane
by these proteases results in the disruption of this bar-
rier to promote invasion into surrounding stroma. The
effect of HSulf-2 loss was specific to MMP-9, whereas
no effect on MMP-2 was observed. MMP-9 has pre-
viously been shown to be a predominant matrix pro-
tease expressed in ductal lesions [7]. Our in vivo data
show that HSulf-2 depletion markedly attenuates tumor
growth. Supporting this notion, previous studies have
identified HSulf-2 as one of the top 50 genes up-regu-
lated in DCIS to IDC [25]. Similarly, in two different

mouse models of mammary carcinoma, HSulf-2 up-reg-
ulation was associated with pro-angiogenic activity [23].
Our data provide a novel insight by raising the possibi-
lity that HSulf-2 may play an important role in the dis-
integration of basement membrane and promoting
invasion of surrounding tissue. In addition to retention
of comedo lesions even at Week 7 of tumor growth,
HSulf-2 deficient xenografts were predominantly apop-
totic. Massive apoptosis was evident in the center of
comedo lesions and not near the basement membrane.
This could be explained in several ways: a) it can be
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Figure 6 Analysis of NTC and HSulf-2 xenografts. (A) NTC (four mice) and HSulf-2 derived (five mice/clones) xenograft lysates were subjected
to Western blot analysis using antibodies against Bnip3, Bim EL, cleaved caspase 3, cleaved PARP, beta-actin, and (B) with anti-MMP-14, MMP-9
and MMP-2 antibodies. (C) NTC and HSulf-2 depleted xenografts were subjected to gelatin zymography as described in the Materials and

MMP-9

postulated that cells in the center of comedo lesions are
often highly hypoxic and have a decreased supply of
nutrients and b) these cells are separated from extracel-
lular matrix protein of basement membrane and, hence,
lack adhesion, and that HSulf-2 knockdown further sen-
sitizes these cells to apoptosis due to lack of survival sig-
nals (growth factor and adhesion mediated). In other
words, HSulf-2 depletion might pave way for luminal
clearance in these comedo lesions as a result of apopto-
sis. Previous reports have also documented that HSulf-2
promotes cellular resistance to apoptosis in HCC cell
lines [35]. Our study suggests that progression of DCIS
to IDC might depend on HSulf-2 activities. Therefore,
therapeutically targeting this enzyme either by shRNA
or by a small molecule inhibitor may serve to improve
our chances of controlling the progression of DCIS to
IDC. Our data do not concur with a more recent study
highlighting a tumor suppressor role of HSulf-2 in
MDA231 cell line [24]. This study adequately addressed
the role of HSulf-2 in the context of metastatic propen-
sity of highly aggressive MDA231 cell line. However,

caution should be exercised, as enhanced expression of
HSulf-2 might promote nontargeted effects on tumor
growth. Secondly, the specificity of substrates of HSulf-2
-HSPGs located at the cell surface could contribute to
the differential response to the presence of HSulf-2
based on the binding affinity of specific HSPGS towards
different growth factors. Thus, it is plausible that
observed differences could partly depend on the nature
of specific substrates (HSPGs) expressed in the different
cell lines with HSulf-2 expression. Mechanistically,
HSulf-2 has been shown to attenuate bFGF2 signaling
but promotes Wnt signaling [36-38]. Activated Wnt sig-
naling is common in mammary tumors despite lack of
mutations in Wnt pathway genes [39]. Therefore, HSulf-
2 presence may promote autocrine induction of Wnt
signaling during breast tumorigenesis as previously
reported [22].

In all, this is the first report which highlights the criti-
cal role of HSulf-2 in the progression of DCIS to IDC in
MCF10DCIS cell line xenograft model. Validation of
this finding in human tumors could lead to HSulf-2 as a
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biomarker of breast cancer progression. Additionally, we
propose that therapeutic targeting of HSulf-2 could lead
to improved clinical outcome in patients with breast
cancer

Conclusions

Silencing of heparan sulfatase 2 attenuates breast cancer
growth and inhibits basement membrane disruption in a
matrix metalloprotease dependent process.
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