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1
Abstract

Introduction: Previous studies have demonstrated that common breast cancer susceptibility alleles are
differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown
how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers
defined by estrogen (ER) or progesterone receptor (PR) status of the tumour.

Methods: We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been
affected with breast cancer and had information on either ER or PR status of the tumour, to assess the associations
of 12 loci with breast cancer tumour characteristics. Associations were evaluated using a retrospective cohort
approach.

Results: The results suggested stronger associations with ER-positive breast cancer than ER-negative for 11 loci in
both BRCA1 and BRCA2 carriers. Among BRCA1 carriers, single nucleotide polymorphism (SNP) rs2981582 (FGFR2)
exhibited the biggest difference based on ER status (per-allele hazard ratio (HR) for ER-positive = 1.35, 95% CI: 1.17
to 1.56 vs HR = 0.91, 95% CI: 0.85 to 0.98 for ER-negative, P-heterogeneity = 6.5 × 10-6). In contrast, SNP rs2046210
at 6q25.1 near ESR1 was primarily associated with ER-negative breast cancer risk for both BRCA1 and BRCA2 carriers.
In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and 1p11.2 were significantly associated
with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases
by PR status.

Conclusions: The associations of the 12 SNPs with risk for BRCA1 and BRCA2 carriers differ by ER-positive or ER-
negative breast cancer status. The apparent differences in SNP associations between BRCA1 and BRCA2 carriers, and
non-carriers, may be explicable by differences in the prevalence of tumour subtypes. As more risk modifying
variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve
clinical management for mutation carriers.

Introduction
Germline mutations in BRCA1 and BRCA2 confer high
risks of breast, ovarian and other cancers [1-3] and
account for 15 to 20% of the excess familial risk of
breast cancer among first degree relatives [4,5]. Breast
cancer risks for BRCA1 and BRCA2 mutation carriers
have been estimated to range between 40 and 87% by
age 70 [6-12] with population-based estimates tending
to be lower than estimates based on families with multi-
ple affected individuals [6,8]. Moreover, breast cancer
risks for mutation carriers were found to vary according
to the age at diagnosis and the type of cancer of the
index patient involved in the family ascertainment
[6,7,11]. Such evidence suggests that genetic or other
risk factors that cluster in families modify the cancer
risks conferred by BRCA1 and BRCA2 mutations.
A substantial body of work indicates that tumours

arising in patients with germline BRCA1 mutations are
morphologically and genetically distinct from those aris-
ing in carriers of BRCA2 mutations and from tumours

in patients lacking mutations. In gene expression stu-
dies, BRCA1-associated tumours are often classified as
basal subtype tumours [13,14]. This is reflected in their
higher grade, and morphologic features including lym-
phocytic infiltrate, pushing margins and syncytial
growth. Being basal-like they express several markers
that are normally expressed in the basal/myoepithelial
cells of the breast, including stratified epithelial cytoker-
atins 5/6, 14 and 17. BRCA1-associated tumours are
more likely to be estrogen receptor (ER), progesterone
receptor (PR) and HER2 negative and to harbor muta-
tions in the TP53 gene than age-matched sporadic
breast cancers [15,16]. BRCA2-associated tumours are
also predominantly high-grade invasive ductal carcino-
mas of no special type but they often demonstrate a
luminal phenotype despite their high histologic grade
[13,17]. Adjusting for grade, BRCA2-associated tumours
are more often ER-positive and are less likely, compared
with controls, to express the basal cytokeratin CK5 or to
overexpress HER2/neu protein [17].
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Establishing the estrogen receptor status of a breast
cancer (positive or negative) reflects a major subdivision
in breast cancer type (at least five major sub-types are
recognized) and it is becoming clear that the risk factors
associated with breast cancer, both genetic and epide-
miological, differ according to sub-type. Genome-wide
association studies (GWAS) in breast cancer have iden-
tified several common alleles (single nucleotide poly-
morphisms (SNPs)) associated with an increased risk of
breast cancer in the general population [18-25]. Many of
these SNPs are associated with risk for ER-positive
breast cancer, fewer have so far been associated with
ER-negative breast cancer risk [26,27].
Known risk breast cancer susceptibility alleles have

been genotyped in a large series of female BRCA1 and
BRCA2 mutation carriers assembled by the Consortium
of Investigators of Modifiers of BRCA1/2 (CIMBA) to
evaluate their associations with risk of breast cancer for
mutation carriers. Of the 12 SNPs (rs2981582 in FGFR2,
rs3803662 in TOX3/TNRC9, rs889312 in MAP3K1,
rs13281615 at 8q24, rs381798 in LSP1, rs13387042 at
2q35, rs4973768 in SLC4A7/NEK10, rs10941679 at 5p12,
rs6504950 in STXBP4/COX11, rs999737/rs10483813 in
RAD51L1, rs2046210 at 6q25.1 and rs11249433 at
1p11.2) investigated so far, eight were associated with
breast cancer risk for BRCA2 carriers (all but SNPs at
8q24, RAD51L1, 6q25.1 and STXBP4/COX11), whereas
only three SNPs (6q25.1, TOX3/TNRC9 and 2q35) were
associated with risk for BRCA1 mutation carriers [28-31].
Work from the Breast Cancer Association Consortium
and subsequent studies have demonstrated differences in
the associations between these susceptibility loci and
tumour characteristics in the general population [27,32].
These results suggest that the observed differences in the
associations between BRCA1 and BRCA2 mutation car-
riers may reflect differences in the distribution of tumour
characteristics in mutation carriers. It is currently unclear
whether these polymorphisms are associated with differ-
ent tumour characteristics within BRCA1 and BRCA2
mutation carriers.
As an adjunct to predictive testing for a high risk

BRCA1 or BRCA2 gene mutation, more individualized
risk estimates that take into account additional genetic
and environmental modifiers will require a more
detailed understanding of how these various risk factors
interact. Understanding whether common genetic var-
iants modify the risks of developing ER-positive or ER-
negative breast cancer in BRCA1 and BRCA2 mutation
carriers could potentially influence the clinical manage-
ment of these individuals. For example, knowing that a
BRCA1 mutation carrier is more likely to develop ER-
positive breast cancer (than most BRCA1 mutation car-
riers), may influence the choice of management strate-
gies, such as chemoprevention. In this study, we used

data from the CIMBA consortium to evaluate the asso-
ciations between the 12 common breast cancer suscept-
ibility alleles and risk for breast cancer defined by ER
and PR status.

Materials and methods
Subjects
Subjects were BRCA1 and BRCA2 mutation carriers
recruited by 36 study centres in Europe, North America
and Australia (Table 1). All carriers participated in clini-
cal or research studies at the host institutions, which
have been approved by local ethics committees (list pro-
vided in Additional file 1, Table S1). Each committee
granted approval for access and use of the medical
records for the present analyses.
The large majority of carriers were recruited through

cancer genetics clinics offering genetic testing, and
enrolled into national or regional studies. Eligibility to
participate in CIMBA is restricted to female carriers of
pathogenic BRCA1 or BRCA2 mutations who were 18
years old or older at recruitment. Information collected
included the year of birth; mutation description, includ-
ing nucleotide position and base change; age at last fol-
low-up; ages at breast and ovarian cancer diagnoses; and
age or date at bilateral prophylactic mastectomy. Infor-
mation was also available on the country of residence.
Related individuals were identified through a unique
family identifier. Women were included in the analysis if
they carried mutations that were pathogenic according
to generally recognized criteria. Only studies that pro-
vided tumour pathology information and had genotype
information were included in the analysis. However, to
maximise the available information, genotyped mutation
carriers within those studies missing information on
tumour characteristics were included in the analysis and
their disease subtype was assumed to be missing at ran-
dom (see statistical methods for details). Further details
about the CIMBA initiative can be found elsewhere [33].

Tumour pathology data collection
Tumour pathology data were amalgamated from a range
of sources, specifically patient pathology reports, medical
records, pathology review data, tumour registry records
and results from tissue microarrays. Estrogen and pro-
gesterone receptor status was provided as negative or
positive, with supplementary immunohistochemistry
scoring data and methodology provided when available.
Based on definitions supplied, most centres employed a
cut off of ≥10% of tumour cells stained positive to
define receptor positivity. To ensure consistency across
studies, when information on the proportion of cells
stained was available, we used the same cut-off to define
ER and PR positive tumours. For a small number of
cases where composite scoring methods based on the
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proportion and intensity of staining were available
(Allred score, Remmele score and H-score), widely-
accepted cut-offs were used (Additional file 1, Table S2).
Consistency checks were performed to validate receptor
data against supplementary scoring information if
provided.

Genotyping
This analysis included genotype data on 12 SNPs that
had been previously assessed for their associations
with the overall risk of breast cancer for BRCA1 and
BRCA2 mutation carriers in CIMBA. Genotyping was
performed using either the iPLEX or Taqman plat-
forms and has been described in detail in the previous
reports [28-31]. To ensure genotyping consistency, all
genotyping centres were required to adhere to the
CIMBA genotyping quality control criteria which are
described in detail online [34]. The 12 SNPs genotyped
were rs2981582 in FGFR2, rs3803662 in TOX3/
TNRC9, rs889312 in MAP3K1, rs3817198 in LSP1,
rs13387042 at 2q35, rs13281615 at 8q24, rs4973768
near SLC4A7/NEK10, rs6504950 in the STXBP4/
COX11 region, rs2046210 near ESR1 at 6q25.1 and
rs11249433 at 1p11.2. A Taqman assay could not be
adequately designed for SNP rs999737 in the RAD51L1
region and studies using this platform genotyped the
surrogate SNP rs10483813 (pair-wise r2 = 1 with
rs999737 based on HapMap CEU data). Data for these
two SNPs were combined and treated as a single locus
in the analysis of associations.

Statistical analysis
The aim of this study was to evaluate the associations
between each genotype and breast cancer subtypes
defined by tumour characteristics in BRCA1 and BRCA2
mutation carriers separately. The phenotype of each
individual was defined by the age at diagnosis of breast
cancer and its subtype or by age at last follow-up. Indi-
viduals were censored at the age of the first breast can-
cer diagnosis, ovarian cancer diagnosis, or bilateral
prophylactic mastectomy or the age at last observation.
Mutation carriers censored at ovarian cancer diagnosis
were considered unaffected.
The analysis of risk modifiers in BRCA1 and BRCA2

mutation carriers is complicated by the fact that muta-
tion carriers are not randomly sampled with respect to
their disease status. Many carriers are sampled through
families seen in genetic clinics. The first tested indivi-
dual in a family is usually someone diagnosed with can-
cer at a relatively young age. Such study designs,
therefore, tend to lead to an over-sampling of affected
individuals, and standard analytical methods like Cox
regression or case-control analysis may lead to biased
estimates of the risk ratios [35]. This can be illustrated
by considering an individual affected at age t. In a stan-
dard analysis of a cohort study or a case-control analy-
sis, the SNP genotype for the individual will be
compared with those of all individuals at risk at age t or
in a case-control analysis, with controls randomly
sampled from all possible at risk individuals. This analy-
sis leads to consistent estimates of the hazard ratio or

Table 1 Number of mutation carriers by country grouping affection status and tumour marker characteristics

Country Group BRCA1 BRCA2 Unaffected Breast Cancer ER- ER+ PR- PR+

Austria1 465 179 318 326 76 51 76 44

Australia2 660 552 541 671 235 200 297 121

Canada3 443 358 386 415 107 70 89 68

Denmark4 507 319 463 363 98 93 79 45

France-Belgium-Spain5 1,673 1,256 1,217 1,712 140 165 1,661 127

Finland6 103 105 91 117 59 54 74 39

Germany7 1,231 589 648 1,172 443 336 457 311

Iceland8 0 135 24 111 21 57 18 57

Italy9 994 666 686 974 203 251 231 216

Latvia-Lithuania-Russia10 190 0 79 111 21 6 18 7

Sweden11 537 177 396 318 86 54 89 50

Netherlands12 804 319 611 512 72 41 69 29

UK-Eire13 1,107 866 1,008 965 268 239 175 104

USA14 2,707 1559 2,118 2048 482 366 512 297

Total 11,421 7,080 8,686 9,815 2,311 1,983 2,345 1,515

Studies in country groups:1:MUV; 2:BCFR/KCONFAB; 3:OCGN/BCFR/INHERIT; 4:CBCS/OUH; 5: GEMO/CNIO/HCSC/ICO/MOD-SQUAD; 6:HEBCS; 7:GC-HBOC/DKFZ; 8:
ILUH; 9:CONSIT-TEAM/IOVHBOCS/PBCS; 10: NNPIO/BFBOCC; 11: SWE-BRCA; 12: HEBON; 13:EMBRACE/UKGRFOCR; 14:FCCC/GEMO/GEORGETOWN/MAGIC/MAYO/
MSKCC/NCI/OSU-CCG/UCI/UCSF/UKGRFOCR/UPENN/WCRI
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odds ratio estimates. However, in the present design,
mutation carriers are already selected on the basis of
disease status (where affected individuals are over-
sampled). If standard cohort analysis were applied to
these data, it would lead to affected individuals at age t
being compared to unaffected carriers selected on the
basis of their future disease status. If the genotype is
associated with the disease, the risk estimate will be
biased to zero because too many affected individuals (in
whom the at-risk genotype is overrepresented) are
included in the comparison group. Simulation studies
have shown that this effect can be quite marked [35].
To address this, a retrospective likelihood approach was
previously proposed, which models the observed geno-
types conditional on the disease phenotypes [36]. For
the current analyses we have extended this method to
model the simultaneous effect of each SNP on more
than one tumour subtype. We briefly describe this
method for the analysis of associations with ER-positive
and ER-negative breast cancer, but the same principles
apply for the analysis of associations with other tumour
characteristics.
We modelled the likelihood of the observed genotypes

and tumour subtype conditional on the disease status,
that is:

n∏
i=1

P
(
gi, di|y(ti)

)
=

n∏
i

P
(
(y(ti), di|gi)

)
P(gi)

P
(
y(ti)

) (1)

Where y(ti) is the disease phenotype for individual i at
censoring age ti (breast cancer at age ti or unaffected at
age ti), di is the ER status (0 = negative, 1 = positive)
and gi the observed genotype of individual i (gi = 0, 1 or
2 minor alleles) and n the number of subjects in the
analysis. To allow for tumour characteristics we
assumed that breast cancer consists of different disease
subtypes, such that the total breast cancer incidence at
age ti, l(ti), is the sum of the disease incidence for the
subtypes, that is l(ti) = v(ti) + μ(ti), where v(ti) is the
incidence for ER-negative disease and μ(ti) is the inci-
dence of ER-positive disease. We assumed that the sub-
type-specific incidences depend on the underlying
genotype through a Cox-proportional hazards model:
ν(ti) = ν0(ti) exp(β tzgi) and

μ(ti) = μ0(ti) exp(γ tzgi)where v0(ti) and μ0(ti) and are
the baseline incidences for disease subtypes (ER-negative
and ER-positive respectively), zgi is the genotype vector
for individual i and b and g are the subtype specific gen-
otype log-risk ratios (for ER-negative and ER-positive
breast cancer respectively). The probabilities of develop-
ing ER-positive and ER-negative breast cancer condi-
tional on the underlying genotype were assumed to be
independent. We further assumed that, if tumour

subtype is unknown, the information is missing at ran-
dom with respect to genotype. Then for each individual:

P
(
(y(ti), di|gi)

)
=

=
(
ν0(ti) exp(β tzgi)

)Oi(1−di) × (
μ0(ti) exp(γ tzgi)

)Oidi×

exp

(
−

ti−1∑
u=0

(
μ0(u) exp

(
γ tzgi

)
+ ν0(u) exp

(
β tzgi

)))
if di = 0, 1

=
(
μ0(ti) exp(γ tzgi) + ν0(t) exp(β tzgi)

)Oi×

exp

(
−

ti−1∑
u=0

(
μ0(u) exp

(
γ tzgi

)
+ ν0(u) exp

(
β tzgi

)))
if di = unknown

were Oi = 0 if unaffected and Oi = 1 if affected. Thus,
the above formulation allows use of all mutation carriers
irrespective of whether the tumour subtype is observed
or not. The baseline incidences for each disease subtype
(v0(ti) and μ0(ti)) are unknown. However, it is possible
to solve for those recursively by constraining the overall
breast cancer incidence for mutation carriers l(t), to
agree with external estimates as previously demonstrated
[37,38] and by imposing a further constraint on the ratio
of the observed ER-positive to ER-negative breast can-
cers in each age group:

P(ERpositive at age t)
P(ERnegative at age t)

=
π+(t)
π−(t)

=

=

∑
g
P(g)μ0(t) exp(γ tzg) exp

(
−

t−1∑
u=0

(μ0(u) exp(γ tzg) + ν0(u) exp(β tzg))
)

∑
g
P(g)v0(t) exp(β tzg) exp

(
−

t−1∑
u=0

(μ0(u) exp(γ tzg) + ν0(u) exp(β tzg))
)

The likelihood in equation 1 can then be maximised
jointly over the log-risk ratios b and g, genotype fre-
quencies P(g) and the age and subtype-specific frequen-
cies π+(t) and π-(t) This likelihood is based on the
assumption that the ascertainment of mutation carriers
is dependent on the overall disease phenotype (breast
cancer) but not on tumour subtypes. This allows the
subtype frequencies π+(t) and π-(t) to be estimated
within the dataset. Relaxing this assumption and condi-
tioning also on tumour subtype requires external esti-
mates for the age and subtype-specific frequencies π+(t)
and π-(t).
The effect of each SNP was modelled either as a per-

allele HR (multiplicative model) or as separate HRs for
heterozygotes and homozygotes, and these were esti-
mated on the logarithmic scale. Heterogeneity in the
hazard ratios between tumour subtypes was examined
by fitting models where v(ti) = v0(ti) exp (b1g) and μ(ti)
= μ0(ti) exp (b1 + b2)g) with g = 0,1 and 2 (for 0, 1, 2
copies of the minor allele respectively) and testing for b2
= 0. Analyses were carried out with the pedigree-analy-
sis software MENDEL [39]. All analyses were stratified
by country of residence and used calendar-year- and
cohort-specific cancer incidences for BRCA1 and
BRCA2 [40]. For this purpose, a stratified version of the
retrospective likelihood (equation 1) was derived as
described previously [36]. Countries with small numbers
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of mutation carriers were grouped together. We used a
robust variance-estimation approach to allow for the
non-independence among related mutation carriers [41].

Predicted breast cancer risks by ER status
Based on our results we computed the predicted abso-
lute risk of developing ER-negative and ER-positive
breast cancer for BRCA1 and BRCA2 mutation carriers
by the combined 12 SNP profile. For each individual we
derived an empirical score, based on the per-allele log-
relative hazard estimates for each genotype, which was

of the form
12∑
j=1

βjgjwhere bj is the per-allele log-hazard

estimate for locus j and gj is the genotype at the same
locus (taking values 0, 1 and 2). This assumes a multi-
plicative model for the combined SNP associations. This
is a reasonable assumption given that previous analyses
found no evidence of departure from the multiplicative
model [35]. Scores were calculated for ER-positive and
ER-negative disease, separately for BRCA1and BRCA2
mutation carriers. The empirical distribution of the
derived score was then used to compute the subtype
specific incidence associated with each multilocus geno-
type as described previously [31]. We reported the abso-
lute risks of developing ER-specific breast cancer at the
5th, 50th and 95th percentiles of the empirical distribu-
tion of the SNP profile.

Results
A total of 11,421 BRCA1 and 7,080 BRCA2 mutation
carriers from 36 studies had been successfully genotyped
for at least one of the12 SNPs and were eligible for
inclusion in these analyses. 9,815 BRCA1 and BRCA2
mutation carriers were censored at a first invasive breast
cancer diagnosis, of whom 4,310 had information on
either ER or PR (Table 1).

Associations with ER status - BRCA1 mutation carriers
There were significant differences in the HR for ER-
positive and ER-negative disease for BRCA1 mutation
carriers for two SNPs (Table 2). The FGFR2 SNP
rs2981582 exhibited the clearest difference with a strong
association for ER-positive disease but not ER-negative
disease (per allele HR = 1.35, 95% CI: 1.17 to 1.56, for
ER-positive compared with HR = 0.91, 95% CI: 0.85 to
0.98 for ER-negative, P-heterogeneity = 6.5 × 10-6). The
SLC4A7/NEK10 SNP rs4973768 also exhibited a similar
pattern (ER-positive: per-allele HR = 1.17, 95% CI: 1.03
to 1.133, compared with ER-negative: per-allele HR =
0.99, 95% CI: 0.93 to 1.06, P-heterogeneity = 0.027).
Although there was no significant evidence of differ-
ences between the HRs for ER-positive and ER-negative
breast cancer, the TOX3/TNRC9 SNP rs3803662 was

significantly associated with the risk of ER-positive dis-
ease (per-allele HR = 1.25, 95% CI: 1.06 to .46, P-trend
= 0.0062) but not with risk for ER-negative breast can-
cer (per-allele HR = 1.05, 95% CI: 0.97 to 1.13, P-trend
= 0.21). LSP1 SNP rs3817198 was associated with the
risk of ER-negative breast cancer (per-allele HR = 1.07,
95% CI: 1.00 to 1.07, P-trend = 0.047) but not with risk
of ER-positive breast cancer (per-allele HR = 1.07, 95%
CI: 0.93 to 1.22, P-trend = 0.33, P-het = 0.98). The
6q25.1 SNP rs2046210 near ESR1 was associated with
the risk for both ER-negative (per-allele HR = 1.19, 95%
CI: 1.11 to 1.27, P-trend = 2.4 × 10-7) and ER-positive
(per-allele HR = 1.14, 95% CI: 1.01 to 1.30, P-trend =
0.043) breast cancer. There was no significant evidence
of association with either ER-negative or ER-positive
breast cancer for any of the other SNPs, although the
HR estimates tended to be higher for ER-positive breast
cancer (for example, SNPs rs13387042 at 2q35 and
rs13281615 at 8q24).

Associations with ER status - BRCA2 mutation carriers
Only SNP rs2046210 at 6q25.1 exhibited differential
associations between ER-positive and ER-negative breast
cancer for BRCA2 mutation carriers (P-heterogeneity =
0.045, Table 3). The per-allele HR for ER-negative dis-
ease was estimated to be 1.17 (95% CI: 0.99 to 1.38)
whereas the per-allele HR for ER-positive breast cancer
was 0.97 (95% CI: 0.89 to 1.05). Although there were no
significant differences in the associations between the
two types of disease for BRCA2 mutation carriers, the
HR estimates for ER-positive disease tended to be larger
compared to ER-negative breast cancer. SNPs at/near
FGFR2, TOX3/TNRC9, MAP3K1, LSP1, 2q35, SLC4A7/
NEK10, 5p12 and 1p11.2 were associated with ER-posi-
tive breast cancer for BRCA2 mutation carriers (using
either a per-allele or 2 df genotype test). The strongest
associations were for the FGFR2 rs2981582 SNP (HR for
ER-positive breast cancer = 1.35, 95% CI: 1.23 to 1.48,
P-trend = 1.4 × 10-10) and TOX3/TNRC9 SNP
rs3803662 (HR for ER-positive breast cancer = 1.28.
95% CI: 1.16 to 1.41, P-trend = 1.5 × 10-6). Only SNPs
at or near MAP3K1, STXBP4/COX11 and 6q25.1 were
associated with the risk of ER-negative breast cancer for
BRCA2 mutation carriers.

Associations with PR status - BRCA1 mutation carriers
The general pattern of associations with PR-positive and
PR-negative breast cancer for BRCA1 mutation carriers
(Additional file 1, Table S3) was similar to that seen for
ER status. Significant differences in the associations
between PR-positive and PR-negative breast cancer were
observed for three SNPs. The minor allele of FGFR2
SNP rs2981582 was associated with a significantly
higher risk for PR-positive breast cancer for BRCA1
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Table 2 Genotype and per-allele hazard ratio estimates by estrogen receptor status for BRCA1 mutation carriers

Genotype Unaffected, Affected by subtype, N (%) ER- ER+ P-het

N (%) ER- ER+ Unknown HR 95% CI P-trend HR 95% CI P-trend

FGFR2 rs2981582

GG 1301 (36.2) 447 (40.0) 104 (29.6) 869 (35.1) 1.00 1.00

GA 1,721 (47.9) 516 (46.2) 166 (47.3) 1190 (48.1) 0.93 0.83 to 1.03 1.24 0.98 to 1.57

AA 573 (15.9) 154 (13.8) 81 (23.1) 416 (16.8) 0.82 0.70 to 0.96 1.85 1.40 to 2.44

Per-allele 0.91 0.85 to 0.98 0.01 1.35 1.17 to 1.56 4 × 10-5 6.5 ×10-6

TOX3/TNRC9 rs3803662

CC 1,811 (52.0) 545 (49.5) 154 (45.7) 1195 (50.2) 1.00 1.00

CT 1,405 (40.3) 461 (41.8) 143 (42.4) 987 (41.5) 1.06 0.96 to 1.18 1.20 0.97 to 1.50

TT 269 (7.7) 96 (8.7) 40 (11.9) 199 (8.4) 1.09 0.90 to 1.31 1.61 1.14 to 2.27

Per-allele 1.05 0.97 to 1.13 0.21 1.25 1.06 to 1.46 0.0062 0.07

MAP3K1 rs889312

AA 1,858 (49.6) 569 (49.7) 186 (52.1) 1319 (51.6) 1.00 1.00

AC 1,552 (41.4) 480 (41.9) 136 (38.1) 987 (38.6) 0.97 0.87 to 1.07 0.86 0.69 to 1.06

CC 336 (9.0) 97 (8.5) 35 (9.8) 250 (9.8) 0.97 0.81 to 1.16 0.97 0.69 to 1.35

Per-allele 0.98 0.91 to 1.06 0.56 0.97 0.83 to 1.13 0.69 0.92

LSP1 rs3817198

TT 1,894 (47.4) 652 (45.4) 195 (44.5) 1205 (43.7) 1.00 1.00

TC 1,680 (42.0) 629 (43.8) 197 (45.0) 1239 (44.9) 1.09 0.99 to 1.20 1.11 0.92 to 1.35

CC 422 (10.6) 154 (10.7) 46 (10.5) 315 (11.4) 1.13 0.97 to 1.33 1.10 0.80 to 1.50

Per-allele 1.07 1.00 to 1.15 0.047 1.07 0.93 to 1.22 0.33 0.98

2q35 rs13387042

GG 924 (24.0) 301 (22.1) 93 (22.2) 576 (21.4) 1.00 1.00

GA 1,855 (48.3) 723 (53.1) 194 (46.3) 1370 (50.9) 1.17 1.04 to 1.32 1.02 0.81 to 1.30

AA 1,064 (27.7) 338 (24.8) 132 (31.5) 745 (27.7) 0.96 0.84 to 1.11 1.25 0.97 to 1.62

Per-allele 0.98 0.91 to 1.04 0.48 1.13 0.99 to 1.28 0.075 0.065

8q24 rs13281615

AA 1,319 (32.8) 502 (35.9) 143 (33.7) 897 (32.5) 1.00 1.0

AG 2,008 (50.0) 657 (47.0) 198 (46.7) 1,364 (49.5) 0.98 0.88 to 1.08 0.97 0.79 to 1.19

GG 691 (17.9) 238 (17.0) 83 (19.6) 496 (18.0) 1.00 0.87 to 1.16 1.17 0.89 to 1.53

Per-allele 1.00 0.93 to 1.07 0.93 1.06 0.93 to 1.22 0.38 0.43

SLC4A7/NEK10 rs4973768

CC 1,148 (26.2) 406 (27.2) 103 (22.2) 691 (24.7) 1.00 1.00

CT 2,205 (50.4) 736 (49.3) 235 (50.5) 1,399 (50.1) 0.98 0.88 to 1.08 1.20 0.96 to 1.51

TT 1,024 (23.4) 350 (23.5) 127 (27.3) 703 (25.2) 0.99 0.87 to 1.12 1.38 1.07 to 1.77

Per-allele 0.99 0.93 to 1.06 0.83 1.17 1.03 to 1.33 0.013 0.027

STXBP4/COX11 rs6504950

GG 2,346 (53.1) 814 (53.2) 252 (52.9) 1,502 (53.1)) 1.00 1.00

GA 1,737 (39.3) 593 (37.8) 191 (40.1) 1,127 (39.8) 1.00 0.91 to 1.10 1.03 0.86 to 1.24

AA 333 (7.5) 122 (8.0) 33 (6.9) 200 (7.1) 1.04 0.88 to 1.23 0.94 0.65 to 1.34

Per-allele 1.01 0.94 to 1.09 0.77 1.00 0.87 to 1.15 0.97 0.87

5p12 rs10941679

AA 2,211 (55.8) 815 (57.3) 271 (61.0) 1,529 (56.5) 1.00 1.00

AG 1,472 (37.1) 517 (36.4) 145 (32.7) 1,001 (37.0) 0.99 0.90 to 1.09 0.84 0.69 to 1.02

GG 280 (7.1) 90 (6.3) 28 (6.3) 177 (6.5) 0.89 0.73 to 1.08 0.84 0.58 to 1.20

Per-allele 0.97 0.90 to 1.04 0.39 0.88 0.75 to 1.02 0.08 0.26

6q25.1 - rs2046210

CC 1,886 (43.3) 567 (38.2) 158 (36.0) 1,007 (37.0) 1.00 1.00

TC 1,919 (44.1) 718 (48.3) 232 (52.9) 1,305 (48.0) 1.21 1.10 to 1.33 1.37 1.13 to 1.67

TT 547 (12.6) 201 (13.5) 49 (11.2) 409 (15.0) 1.39 1.21 to 1.59 1.11 0.81 to 1.53

Per-allele 1.19 1.11 to 1.27 2.4 × 10-7 1.14 1.01 to 1.30 0.043 0.60
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mutation carriers (per-allele HR for PR-positive = 1.29,
95% CI: 1.10 to 1.51, HR for PR-negative = 0.93, 95%
CI: 0.87 to 1.00, P-heterogeneity = 7 × 10-4). Allele “A”
of SNP rs13387042 at 2q35 was associated with a signif-
icantly higher risk of PR-positive breast cancer for
BRCA1 mutation carriers (HR for PR-positive breast
cancer = 1.16, 95% CI: 1.01 to 1.33; HR for PR-negative
= 0.97, 95% CI: 0.91 to 1.04, P-heterogeneity = 0.034).
Although the RAD51L1 SNP showed no differential
associations with ER-status, there was evidence that the
minor allele of this SNP was associated with a lower
risk of PR-positive breast cancer (HR for PR-positive =
0.79, 95% CI: 0.61 to 0.95; HR for PR-negative = 1.02,
95% CI: 0.94 to 1.11; P-heterogeneity = 0.027). The only
SNPs associated with risk for PR-negative breast cancer
were SNPs at 6q25.1 (per-allele HR = 1.19, 95% CI: 1.11
to 1.27, P-trend = 3.7 × 10-7), and in LSP1 (per-allele
HR = 1.09, 95% CI: 1.01 to 1.16, P-trend = 0.017), but
these were not significantly different from the associa-
tions with PR-positive breast cancer for BRCA1 muta-
tion carriers.

Associations with PR status - BRCA2 mutation carriers
Only two SNPs demonstrated significant differences in
the associations with PR-positive and PR-negative breast
cancer for BRCA2 mutation carriers (Additional file 1,
Table S4). SNP rs13387042 at 2q35 was associated with
a higher risk of PR-positive breast cancer (per-allele HR
for PR-positive = 1.14, 95% CI: 1.03 to 1.25; per-allele
HR for PR-negative = 0.92, 95% CI: 0.81 to 1.04, P-het-
erogeneity = 0.009). SNP rs10941679 at 5p12 was also
associated with a higher risk of PR-positive breast can-
cer for BRCA2 mutation carriers (per-allele HR for PR-
positive = 1.15. 95% CI: 1.03 to 1.27, HR for PR-negative
= 0.94, 95% CI: 0.81 to 1.09, P-heterogeneity = 0.028).
SNPs near or at FGFR2, TOX3/TNRC9, LSP1 were asso-
ciated with both PR-negative and PR-positive breast
cancer, whereas the 1p11.2 SNP was associated with risk
for PR-negative breast cancer. MAP3K1 and SLC4A7/

NEK10 were associated only with risk of PR-positive
breast cancer among BRCA2 mutation carriers.

Absolute risks of developing ER-positive and ER-negative
breast cancer by SNP profile
Using the estimated HRs for ER-positive and ER-nega-
tive breast cancer for BRCA1 and BRCA2 mutation car-
riers, we computed the predicted absolute risk of
developing ER-negative and ER-positive breast cancer at
various percentiles of the combined SNP distribution.
The SNP profile distribution is different for each disease
subtype and mutation. We note that SNPs for which the
per-allele HR estimates are close to 1.0 contribute little
to the predicted ER-specific risks. Figure 1 shows the
predicted risks of developing ER-negative and ER-posi-
tive breast cancer for BRCA1 and BRCA2 mutation car-
riers at the 5th, 50th and 95th percentiles of the empirical
risk distribution of the combined SNP profile. A BRCA1
mutation carrier at the 5th percentile of the SNP profile
distribution would be at 43% risk of developing ER-
negative breast cancer by age 80 compared with 60% for
BRCA1 mutation carriers at the 95th percentile of the
risk distribution. The risks of developing ER-positive
breast cancer would be 18% and 46% by age 80 at the
5th and 95th percentiles of the ER-positive breast cancer
risk distribution. BRCA2 mutation carriers at the 5th

percentile of the ER-negative breast cancer risk distribu-
tion are predicted to have a 22% risk of developing ER-
negative breast cancer by age 80 compared with 39% for
the 95th percentile of the risk distribution. The risks of
developing ER-positive breast cancer by age 80 for
BRCA2 carriers varied from 33% to 70% at the 5th and
95th percentiles of the ER-positive risk distribution
respectively.

Discussion
This is the first report to investigate the associations
between 12 common breast cancer susceptibility alleles
and ER and PR status of breast tumours in BRCA1 and

Table 2 Genotype and per-allele hazard ratio estimates by estrogen receptor status for BRCA1 mutation carriers
(Continued)

1p11.2 - rs11249433

TT 1,491 (34.1) 506 (33.7) 144 (32.4) 973 (35.1) 1.00 1.00

CT 2,133 (48.7) 745 (49.7) 245 (55.2) 1,342 (48.5) 0.97 0.88 to 1.07 1.10 0.90 to 1.34

CC 752 (17.2) 248 (16.5) 55 (12.4) 455 (16.4) 0.99 0.87 to 1.13 0.76 0.56 to 1.03

Per-allele 0.99 0.93 to 1.06 0.79 0.92 0.81 to 1.05 0.22 0.35

RAD51L1 - rs999737/rs10483813

CC/TT 2,335 (61.5) 760 (64.1) 212 (62.5) 1,551 (62.5) 1.00 1.00

TC/AT 1,294 (34.1) 370 (31.2) 113 (33.3) 819 (33.0) 0.92 0.83 to 1.03 1.00 0.80 to 1.24

TT/AA 170 (4.5) 56 (4.7) 14 (4.1) 110 (4.4) 1.02 0.81 to 1.28 0.93 0.56 to 1.56

per allele 0.96 0.88 to 1.04 0.34 0.98 0.82 to 1.18 0.87 0.81

P-het, Heterogeneity P-value; ER-, estrogen receptor negative; ER+, estrogen receptor positive
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Table 3 Genotype and per-allele hazard ratio estimates by estrogen receptor status for BRCA2 mutation carriers

Genotype Unaffected, Affected by subtype, N (%) ER- ER+ P-het

N (%) ER- ER+ Unknown HR 95%CI P-
trend

HR 95% CI P-trend

FGFR2 rs2981582

GG 794 (37.8) 86 (32.7) 248
(29.5)

457 (29.8) 1.00 1.00

GA 987 (47.0) 137 (52.1) 419
(49.8)

755 (49.3) 1.28 0.99 to 1.67 1.35 1.17 to 1.55

AA 321 (15.3) 40 (15.2) 174
(20.7)

320 (20.9) 1.23 0.85 to 1.78 1.81 1.51 to 2.18

Per-allele 1.14 0.97 to 1.35 0.12 1.35 1.23 to 1.48 1.4 × 10-10 0.097

TOX3/TNRC9 rs3803662

CC 1,088 (53.4) 136 (53.3) 377
(46.3)

702 (48.2) 1.00 1.00

CT 792 (38.9) 96 (37.7) 361
(44.3)

604 (41.5) 0.98 0.75 to 1.27 1.33 1.17 to 1.53

TT 157 (7.7) 23 (9.0) 77 (9.5) 150 (10.3) 1.27 0.83 to 1.93 1.54 1.22 to 1.95

Per-allele 1.06 0.88 to 1.29 0.53 1.28 1.16 to 1.41 1.5 × 10-6 0.11

MAP3K1 rs889312

AA 1,107 (51.1) 121 (45.7) 430
(50.3)

746 (47.7) 1.00 1.00

AC 888 (41.0) 120 (45.3) 349
(40.8)

646 (41.3) 1.23 0.96 to 1.59 1.03 0.90 to 1.17

CC 170 (7.9) 24 (9.1) 76 (8.9) 172 (11.0) 1.42 0.93 to 2.16 1.29 1.03 to 1.62

Per-allele 1.21 1.01 to 1.45 0.039 1.09 0.99 to 1.21 0.08 0.35

LSP1 rs3817198

TT 1,075 (46.1) 142 (44.4) 429
(42.0)

718 (42.7) 1.00 1.00

TC 1,005 (43.1) 146 (45.6) 466
(45.6)

759 (45.2) 1.08 0.86 to 1.36 1.14 1.01 to 1.29

CC 252 (10.8) 32 (10.0) 127
(12.4)

203 (12.1) 1.02 0.68 to 1.51 1.39 1.14 to 1.70

Per-allele 1.03 0.87 to 1.22 0.70 1.17 1.07 to 1.28 5.5 × 10-4 0.20

2q35 rs13387042

GG 571 (25.3) 71 (23.0) 216
(22.0)

382 (23.1) 1.00 1.00

GA 1,080 (47.8) 156 (50.5) 500
(50.8)

809 (48.8) 1.12 0.85 to 1.47 1.18 1.01 to 1.36

AA 608 (26.9) 82 (26.5) 268
(27.2)

466 (28.1) 1.06 0.78 to 1.45 1.13 0.95 to 1.34

Per-allele 1.03 0.87 to 1.19 0.71 1.06 0.97 to 1.15 0.20 0.75

8q24 rs13281615

AA 794 (34.1) 99 (31.6) 317
(31.7)

524 (31.3) 1.00 1.00

AG 1,156 (49.6) 165 (52.7) 511
(51.1)

837 (49.9) 1.08 0.85 to 1.38 1.05 0.92 to 1.21

GG 382 (16.4) 49 (15.7) 172
(17.2)

315 (18.8) 1.05 0.75 to 1.46 1.13 0.94 to 1.35

Per-allele 1.04 0.89 to 1.21 0.66 1.06 0.97 to 1.16 0.19 0.80

SLC4A7/NEK10 rs4973768

CC 669 (26.5) 82 (24.9) 251
(22.6)

401 (23.5) 1.00 1.00

CT 1,241 (49.1) 164 (49.9) 546
(49.4)

829 (48.7) 1.05 0.81 to 1.36 1.14 0.99 to 1.31

TT 618 (24.5) 83 (25.2) 311
(28.0)

474 (27.8) 1.04 0.77 to 1.41 1.27 1.08 to 1.50

Per-allele 1.02 0.88 to 1.19 0.78 1.13 1.04 to 1.22 0.0043 0.25
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BRCA2 mutation carriers. The analysis was made possi-
ble by the availability of a large, combined dataset with
genotype and tumour pathology information in muta-
tion carriers collated through the CIMBA consortium.
The majority of the SNPs examined demonstrated

stronger associations with ER-positive breast cancer for
both BRCA1 and BRCA2 mutation carriers (Figure 2).
Only rs2046210 on 6q25.1 exhibited stronger evidence
for ER-negative disease. Among BRCA1 mutation car-
riers, the most marked difference was for SNP
rs2981582 in FGFR2, which was strongly associated with
ER-positive breast cancer and exhibited no evidence of
an association with ER-negative breast cancer (P = 6.5 ×
10-6). Previous analyses of this polymorphism in

mutation carriers failed to find an association with the
overall risk of breast cancer for BRCA1 mutation car-
riers, but found an association with risk for BRCA2
mutation carriers [29,31]. Our results suggest that
rs2981582 in FGFR2 also modifies ER-positive breast
cancer risk for BRCA1 mutation carriers to a similar
relative extent as in BRCA2 mutation carriers and ER-
positive disease in the general population [27,32]. Simi-
lar patterns were observed for SNPs rs3803662 in
TOX3/TNRC9 and rs4973768 in SLC4A7/NEK10 in
which the associations were predominantly with ER-
positive breast cancer for both BRCA1 and BRCA2
mutation carriers, in line with results from studies of
breast cancer in the general population [18,21,27]. The

Table 3 Genotype and per-allele hazard ratio estimates by estrogen receptor status for BRCA2 mutation carriers
(Continued)

STXBP4/COX11 rs6504950

GG 1,420 (55.6) 171 (51.0) 601
(53.1)

896 (52.5) 1.00 1.00

GA 951 (37.2) 145 (43.3) 444
(39.3)

684 (40.1) 1.27 1.03 to 1.58 1.09 0.97 to 1.23

AA 184 (7.2) 19 (5.7) 86 (7.6) 127 (7.4) 0.84 0.54 to 1.30 1.08 0.87 to 1.34

Per-allele 1.07 0.92 to 1.25 0.36 1.06 0.97 to 1.16 0.19 0.91

5p12 rs10941679

AA 1,372 (58.6) 176 (54.8) 584
(54.8)

924 (56.3) 1.00 1.00

AG 824 (35.2) 122 (38.0) 425
(39.9)

622 (37.9) 1.08 0.86 to 1.37 1.15 1.01 to 1.30

GG 146 (6.2) 23 (7.2) 57 (5.4) 94 (5.7) 1.25 0.82 to 1.91 0.94 0.73 to 1.22

Per-allele 1.10 0.92 to 1.31 0.28 1.06 0.96 to 1.17 0.23 0.70

6q25.1 - rs2046210

CC 985 (39.8) 121 (39.2) 466
(42.1)

634 (37.7) 1.00 1.00

TC 1,165 (47.1) 132 (42.7) 499
(45.1)

802 (47.7) 0.99 0.78 to 1.12 0.96 0.85 to 1.08

TT 324 (13.1) 56 (18.1) 141
(12.8)

247 (14.7) 1.47 1.08 to 2.01 0.94 0.78 to 1.12

Per-allele 1.17 0.99 to 1.38 0.059 0.97 0.89 to 1.05 0.41 0.045

1p11.2 -
rs11249433

TT 895 (35.9) 107 (33.6) 345
(31.4)

599 (34.7) 1.00 1.00

CT 1,226 (49.2) 160 (50.3) 553
(50.3)

843 (48.9) 1.00 0.79 to 1.28 1.08 0.96 to 1.23

CC 371 (14.9) 51 (16.0) 202
(18.4)

282 (16.4) 1.00 0.73 to 1.40 1.27 1.08 to 1.50

Per-allele 1.00 0.86 to 1.17 0.98 1.12 1.03 to 1.22 0.0065 0.23

RAD51L1 - rs999737/
rs10483813

BRCA1 CC/TT 1,368
(59.5)

167
(59.0)

589 (61.4) 1,000
(62.0)

1.00 1.00

TC/AT 789 (34.3) 104 (36.8) 323
(33.6)

534 (33.1) 1.06 0.84 to 1.35 0.94 0.83 to 1.07

TT/AA 141 (6.1) 12 (4.2) 48 (5.0) 80 (4.9) 0.74 0.42 to 1.32 0.87 0.67 to 1.14

Per-allele 0.97 0.80 to 1.17 0.73 0.94 0.85 to 1.03 0.20 0.77

P-het, Heterogeneity P-value; ER-, estrogen receptor negative; ER+, estrogen receptor positive
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HR estimates for ER-positive breast cancer in BRCA1
and BRCA2 mutation carriers for these SNPs were very
similar.
Among the 12 SNPs investigated in this report, SNP

rs2046210 at 6q25.1 exhibited the strongest association
with the risk of breast cancer for BRCA1 mutation car-
riers in previous analyses, and was not associated with
risk for BRCA2 mutation carriers [28]. The current
results suggest that this was mainly driven by an

association with ER-negative breast cancer risk. This
observation is again consistent with the effects seen in
population-based studies, in which the relative risk is
higher for ER-negative than ER-positive disease [42,43]
(Alison Dunning, personal communication). There was
some evidence that the 6q25.1 SNP is also associated
with ER-negative disease cancer subtype in BRCA2
mutation carriers, although the estimates for ER-nega-
tive breast cancer in BRCA2 mutation carriers are
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Figure 1 Predicted risks of developing ER-negative and ER-positive breast cancer based on SNP profiles. Solid lines depict the median
risks and dotted lines the risks at the 5th and 95th percentiles of the risk distribution. The absolute risk differences between individuals at the
extremes of the risk distributions are greater for ER-positive breast cancer.
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imprecise due to the relatively small sample size. In
addition to the 12 loci investigated in this report, a
recently identified locus at 19p13 also appears to be pre-
dominantly associated with ER-negative breast cancer
[44].
The patterns of association between the SNPs and PR

tumour status were similar to those observed for ER,
which is not surprising given that ER and PR expression
are highly correlated. There were, however, two notable
exceptions. The 2q35 SNP rs13387042 demonstrated
significantly stronger associations with PR-positive than
PR-negative breast cancer for both BRCA1 and BRCA2
mutation carriers (P = 0.034 and P = 0.0086, for PR-
positive for BRCA1 and BRCA2 respectively), suggesting

this SNP may be more relevant for BRCA1 and BRCA2
tumours expressing PR. However, a population-based
study has found this SNP is also associated with PR-
negative breast cancer [45]. Furthermore, the RAD51L1
locus was associated with PR-positive breast cancer for
BRCA1 mutation carriers and the magnitude of the
association was similar to that observed in the general
population [23] (A.B. Spurdle, personal communication).
Previous studies demonstrated that SNPs, which are

associated with ER-positive breast cancer in the general
population, tend to be associated with the breast cancer
risk for BRCA2 mutation carriers and SNPs, which are
associated with ER-negative breast cancer in the general
population, tend to be associated with the breast cancer

Figure 2 Summary of per-allele HR estimates for ER-positive and ER-negative breast cancer for mutation carriers. The patterns of per-
allele HR estimates (taken from Tables 2 and 3) suggest that the breast cancer subtype specific associations are similar between BRCA1 and
BRCA2 mutation carriers.
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risk for BRCA1 mutation carriers [27,31,44-46]. The
current results demonstrate that despite lack of an asso-
ciation between a SNP and the overall breast cancer risk
for BRCA1 or BRCA2 mutation carriers, residual asso-
ciations exist with specific disease subtypes. Figure 2
summarises the association patterns in BRCA1 and
BRCA2 mutation carriers. The HR estimates for ER-
positive and ER-negative breast cancer among BRCA1
mutation carriers appear to be different (intraclass cor-
relation coefficient (ICC) approximately 0), as are the
HR estimates for ER-positive and ER-negative breast
cancer among BRCA2 mutation carriers (ICC = 0.13).
On the other hand the HR estimates for ER-positive
breast cancer among BRCA1 and BRCA2 mutation car-
riers appear to be more similar (ICC = 0.65). There is,
however, little correlation in the HR estimates for ER-
negative breast cancer among BRCA1 and BRCA2 muta-
tion carriers (ICC = 0.05). However, SNP 6q25.1, which
is mainly associated with ER-negative disease in BRCA1
mutation carriers, is estimated to confer similar HRs for
ER-negative breast cancer for both BRCA1 and BRCA2
mutation carriers. These associations are mainly in the
same direction and of similar magnitude to those
observed with breast cancer in the general population
stratified by ER expression status. Taken together, these
findings are consistent with a model in which these
SNPs and BRCA1 or BRCA2 mutations combine multi-
plicatively on the risk for ER-positive or ER-negative
breast cancer [47]. Hence, the apparent differences in
the strength of the SNP associations by BRCA1 and
BRCA2 mutation status can be explained once tumour
subtype is taken into account.
The major strength of the current study is the large

sample of BRCA1 and BRCA2 mutation carriers with
SNP and tumour marker information. Despite the large
sample size, ER and PR marker information was only
available for approximately 30% of the mutation carriers
that had been diagnosed with breast cancer. The sample
sizes for tumour subtypes, while still large, were, there-
fore, much smaller than were available for analyses of
breast cancer risk overall, particularly for ER-positive
breast cancer in BRCA1 carriers and ER-negative breast
cancer in BRCA2 carriers. However, by analysing the data
using a retrospective cohort approach and analysing the
associations with ER-positive and ER-negative disease
simultaneously we were able to include all mutation car-
riers in the analysis, including affected individuals with
missing ER status, thus maximizing the available infor-
mation. Ongoing efforts by CIMBA aim to increase the
proportion of mutation carriers diagnosed with breast
cancer who also have available tumour pathology infor-
mation. This will enable us to assess the associations
with breast cancer subtypes with greater precision.

The majority of the mutation carriers in CIMBA are
identified through clinical genetics centers and, there-
fore, the source of information or definition of tumour
marker status could vary across studies. This heteroge-
neity in classification may attenuate some of the differ-
ences by tumour type. For example, most commonly, a
cut-off of 10% of cells staining was taken to denote posi-
tivity for ER and PR by the centers without further
information on intensity or proportion of positive
tumour nuclei and this was used for all our analyses;
however, in centers that use the Allred score, a value of
> 2 denoted positivity, which may reflect as few as 1%
of cells staining. In fact, recent recommendations sug-
gest that ER and PgR assays be considered positive, for
therapeutic purposes, if there are at least 1% positive
tumour nuclei [48], but these data were not available for
the majority of carriers in our samples to enable reclas-
sification. It has been shown, however, that ER is almost
always diffusely positive or completely negative (that is,
it shows a bimodal staining pattern) with few cases fall-
ing between these extremes [49]. Given the small num-
ber of tumours likely to fall into the1 to 9% of cells
staining category, the impact of changing the cutoff to
1% on our results would be limited. Furthermore, there
was no evidence of variation in the distributions of ER
or PR status across the studies separately for BRCA1
and BRCA2 tumours (Mavaddat N, Antoniou AC, per-
sonal communication, manuscript in preparation) and
all analyses were stratified by country. Finally, the clear
differences observed for some SNPs (most notably for
FGFR2 rs2981582, where the association was limited to
ER-positive disease) suggest that the effect of misclassifi-
cation in tumour subtype on the SNP associations is
likely to have been small.
BRCA1 and BRCA2 tumours have also been found to

differ in terms of other tumour characteristics compared
to breast cancers in the general population. For exam-
ple, tumours in mutation carriers are more likely to be
of higher grade in comparison to breast cancers in the
general population. The distribution of grade has been
found to vary between ER-positive and ER-negative
tumours in both BRCA1 and BRCA2 mutation carriers
(Mavaddat N, Antoniou AC, personal communication,
manuscript in preparation). Although the number of
carriers with information on grade, ER status and SNPs
was too small to permit combined analysis, our results
are unlikely to have been influenced after adjusting for
tumour grade. Case-only analysis to test for differences
in associations between the SNPs and tumour grade
(using ordinal logistic regression) revealed no significant
associations between any of the SNPs and grade for
both BRCA1 and BRCA2 mutation carriers (P > 0.05 for
all tests, results not shown).
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The analysis was performed within a retrospective
cohort approach, by extending the retrospective likeli-
hood approach described previously [36] to model the
simultaneous effects on different breast cancer subtypes
defined by ER/PR. Under this approach the associations
were estimated simultaneously for the tumour subtypes
under investigation. This method depends on the
assumption that ascertainment of mutation carriers does
not depend on tumour subtypes. This is a reasonable
assumption since more than 90% of mutation carriers in
our sample were recruited prior to 2007, when it was
uncommon to use tumour pathology in selecting indivi-
duals for BRCA1 and BRCA2 mutation screening.
Furthermore, the results were virtually identical in a
case only, logistic regression analysis for testing for dif-
ferences in the associations with tumour subtypes which
included only individuals with known tumour character-
istics (results not shown).
The average risks of developing ER-positive and ER-

negative breast cancer in both BRCA1 and BRCA2
mutation carriers are substantially higher compared to
the general population [38]. Therefore, in combination,
these SNPs lead to much bigger differences in the
absolute risk of developing the disease subtypes
between the extremes of the combined SNP genotype
distributions [50]. Based on the SNP profiles investi-
gated in this report, the absolute risk difference
between mutation carriers at the top 5% of the risk
distribution compared to the bottom 5% is much
greater for ER-positive breast cancer than for ER-nega-
tive breast cancer for both BRCA1 and BRCA2 (Figure
1). Recent GWAS have identified several other com-
mon breast cancer susceptibility variants which have
not been investigated in BRCA1 and BRCA2 mutation
carriers yet [24,51]. Moreover, ongoing GWAS in
BRCA1 and BRCA2 mutation carriers [44,52] may also
identify further modifiers of breast cancer risk for
mutation carriers. It will be important to investigate
the associations of these variants with different disease
subtypes in BRCA1 and BRCA2 mutation carriers. Cur-
rently, it is unusual for the risks of different disease
subtypes to be taken into account in the genetic coun-
seling process. However, as more risk modifying var-
iants are identified in the future, provided these have
different associations with different disease subtypes in
mutation carriers and confer relative risks which are
greater (or smaller) than 1, having precise breast can-
cer subtype risks may be useful for the planning of the
clinical management of both BRCA1 and BRCA2 muta-
tion carriers. For example, knowing that a female
BRCA1 mutation carrier was primarily at risk of ER-
positive breast cancer based on her associated SNP
profile (rather than ER-negative breast cancer, as is the
case for the majority of cases) might potentially

influence the choice of clinical management by screen-
ing, chemoprevention or prophylactic surgery.

Conclusions
In summary, in this report we investigated the associa-
tions of common breast cancer polymorphisms with ER
and PR status. Our results indicate there are differential
associations between these SNPs and the risk of devel-
oping ER-positive or ER-negative breast cancer in
BRCA1 and BRCA2 mutation carriers that mirror simi-
lar differences seen in the general population. The find-
ings add to our understanding of the biology of tumour
development in mutation carriers and as more risk var-
iants are identified in the future they may improve clini-
cal management of these individuals.
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