
The conventional ‘Warburg eff ect’ versus oxidative 

mitochondrial metabolism

Th e Warburg eff ect, also known as aerobic glycolysis, is 

defi ned as the propensity of cancer cells to take up high 

levels of glucose and to secrete lactate in the presence of 

oxygen. Warburg’s original work indicated that while 

glucose uptake and lactate production are greatly 

elevated, a cancer cell’s rate of mitochondrial respiration 

is similar to that of normal cells [1,2]. He, however, 

described it as a ‘respiratory impairment’ due to the fact 

that, in cancer cells, mitochondrial respiration is smaller, 

relative to their glycolytic power, but not smaller relative 

to normal cells. He recognized that oxygen consumption 

is not diminished in tumor cells, but that respiration is 

disturbed because glycolysis persists in the presence of 

oxygen [1,2]. Unfortunately, the perception of his original 

fi ndings was simplifi ed over the years, and most subse-

quent papers validated that cancer cells undergo aerobic 

glycolysis and produce lactate, but did not measure 

mitochondrial respiration, and just presumed decreased 

tricarboxylic acid (TCA) cycle activity and reduced 

oxida tive phosphorylation [1,2]. It is indeed well docu-

mented that, as a consequence of intra-tumoral hypoxia, 

the hypoxia-inducible factor (HIF)1α pathway is activated 

in many tumors cells, resulting in the direct up-regulation 

of lactate dehydrogenase (LDH) and increased glucose 

consumption. For updated reviews on the Warburg 

eff ect, the reader is encouraged to refer to the following 

papers [3,4].

However, new fi ndings compel us to reconsider the 

current model of cancer cell metabolism. First, not all 

tumors are associated with increased aerobic glycolysis, 
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and in fact it is now clear that cancer cells utilize both 

glycolysis and oxidative phosphorylation to satisfy their 

metabolic needs. Experimental assessments of ATP pro-

duc tion in cancer cells have demonstrated that oxidative 

pathways play a signifi cant role in energy generation, and 

may be responsible for about 50 to 80% of the ATP 

generated [5-8]. Also, it should be considered that most 

studies were performed using isolated cancer cells, which 

may behave very diff erently from cancer cells in vivo, sur-

roun ded by their natural microenvironment [9] (see also 

Koukourakis and colleagues [10] for another viewpoint).

Second, several studies now clearly indicate that mito-

chondrial activity and oxidative phosphorylation support 

tumor growth. Loss-of-function mutations in the TCA 

cycle gene IDH1 (isocitrate dehydrogenase 1) are found 

in about 70% of gliomas, but, interestingly, correlate with 

a better prognosis and improved survival, suggesting that 

severely decreased activity in one of the TCA cycle 

enzymes does not favor tumor aggressiveness [11]. Th e 

mitochondrial protein p32 was shown to maintain high 

levels of oxidative phosphorylation in human cancer cells 

and to sustain tumorigenicity in vivo [12]. In addition, 

STAT3 is known to enhance tumor growth and to predict 

poor prognosis in human cancers [13]. Interestingly, a 

pool of STAT3 localizes to the mitochondria, to sustain 

high levels of mitochondrial respiration [14] and to 

augment transformation by oncogenic Ras [15,16]. Simi-

larly, the mitochondrial transcription factor A (TFAM), 

which is required for mitochondrial DNA replication and 

oxidative phosphorylation, is also required for K-Ras-

induced lung tumorigenesis [17]. Finally, when con-

strained to use glycolysis by depletion of mitochondrial 

DNA, melanoma B16 cells (B16ρ0) and breast cancer 

T47D cells (T47Dρ0), show severe impairment of tumori-

genicity in vivo [18,19].

Th ere is also evidence that pro-oncogenic molecules 

regulate mitochondrial function. Cyclin D1 inhibits mito-

chondrial function in breast cancer cells [20]. Over-

expression of cyclin D1 is observed in about 50% of 

invasive breast cancers and is associated with a good 

clinical outcome [21], indicating that inhibition of mito-

chondrial activity correlates with favorable prognosis. 

Importantly, it was shown that the oncogene c-Myc 

stimulates mitochondrial biogenesis, and enhances gluta-

mine metabolism by regulating the expression of mito-

chondrial glutaminase, the fi rst enzyme in the glutamine 

utilization pathway [22]. Glutamine is an essential 

metabolic fuel that is converted to alpha-ketoglutarate 

and serves as a substrate for the TCA cycle or for 

glutathione synthesis, to promote energy production and 

cellular biosynthesis, and to protect against oxidative 

stress [23]. Interestingly, pharmacological targeting of 

mito chondrial glutaminase inhibits cancer cell trans-

form ing activity, suggesting that glutamine metabolism 

and its role in fueling and replenishing the TCA cycle are 

required for neoplastic transformation [24] (for a recent 

review on glutamine cancer metabolism, see [2]).

The reverse Warburg eff ect

It is increasingly apparent that the tumor microenviron-

ment regulates neoplastic growth and progression. 

Activation of the stroma is a critical step required for 

tumor formation. Among the stromal players, cancer 

associated fi broblasts (CAFs) have recently taken center 

stage [25]. CAFs are activated, contractile fi broblasts that 

display features of myo-fi broblasts, express muscle-

specifi c actin, and show an increased ability to secrete 

and remodel the extracellular matrix [26,27]. Th ey are 

not just neutral spectators, but actively support malig-

nant transformation [28] and metastasis [29], as com-

pared to normal resting fi broblasts. For example, in a 

humanized mouse model of breast cancer, oncogenically 

driven human organoids develop tumors only if co-

injected with immortalized fi broblasts and not with 

normal primary fi broblasts, suggesting that stromal 

activa tion is required for breast cancer formation [30].

Importantly, the tumor stroma dictates clinical out-

come and constitutes a source of potential biomarkers 

[31]. Expression profi ling has identifi ed a cancer-asso-

ciated stromal signature that predicts good and poor 

clinical prognosis in breast cancer patients, indepen-

dently of other factors [32-34].

We and others have recently shown that a loss of 

caveolin-1 (Cav-1) in the stromal compartment is a novel 

biomarker for predicting poor clinical outcome in all of the 

most common subtypes of human breast cancer, including 

the more lethal triple negative subtype [35,36]. A loss of 

stromal Cav-1 predicts early tumor recurrence, lymph-

node metastasis, tamoxifen-resistance, and poor survival. 

Overall, breast cancer patients with a loss of stromal Cav-1 

show a 20% 5-year survival rate, compared to the 80% 

5-year survival of patients with high stromal Cav-1 

expression. In triple negative patients, the 5-year survival 

rate is 75.5% for high stromal Cav-1 versus 9.4% for absent 

stromal Cav-1 [37]. A loss of stromal Cav-1 also predicts 

progression to invasive disease in ductal carcinoma in situ 

patients, suggesting that a loss of Cav-1 regulates tumor 

progression [35]. Similarly, a loss of stromal Cav-1 is 

associated with advanced disease and metastasis, as well as 

a high Gleason score, in prostate cancer patients [38].

In order to mechanistically dissect how a loss of 

stromal Cav-1 induces a lethal microenvironment, we 

have employed Cav-1(-/-) null mice as a model system. 

Complementary studies were also performed with a co-

culture model of normal human fi broblasts and MCF7 

breast cancer cells.

Unbiased proteomic and transcriptional analysis has 

shown that Cav-1(-/-) null bone-marrow-derived stromal 
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cells display the up-regulation of both myo-fi broblast 

markers and glycolytic enzymes, clearly indicating that a 

loss of Cav-1 promotes myo-fi broblast conversion and 

induces aerobic glycolysis in stromal cells [39]. Th us, 

stromal cells lacking Cav-1 undergo aerobic glycolysis 

and secrete energy-rich metabolites (such as lactate and 

pyruvate) that directly feed cancer cells and fuel mito-

chondrial respiration of adjacent cancer cells. We have 

termed this novel hypothesis the ‘reverse Warburg eff ect’. 

Th is novel idea has now also been independently 

confi rmed by Pol and colleagues [40], who demonstrated 

that genetic ablation of Cav-1 in murine fi broblasts is 

indeed suffi  cient to functionally induce the onset of 

aerobic glycolysis via mitochondrial dysfunction [40]. 

Interestingly, immunohistochemistry on human breast 

cancers lacking stromal Cav-1 has demonstrated the 

over-expression of key glycolytic enzymes, such as PKM2 

and LDH, in the fi broblastic tumor stroma [39].

In further support of this hypothesis, co-culture with 

cancer cells promotes Cav-1 down-regulation in adjacent 

fi broblasts. Importantly, when cultured under homotypic 

conditions, MCF7 cancer cells have a very low mito chon-

drial mass (the conventional Warburg eff ect). However, 

co-culture with fi broblasts, which more closely mirrors 

the microenvironment of a naturally occurring tumor, 

promotes a very signifi cant increase in mitochondrial 

mass in MCF7 cancer cells, suggesting that the Warburg 

eff ect might be an in vitro artifact [41]. Importantly, 

lactate administration to homotypic MCF7 cancer cell 

cultures signifi cantly increases mitochondrial mass, 

suggesting that lactate administration phenocopies the 

presence of reactive fi broblasts [41], by promoting 

mitochondrial biogenesis. Th ese new data indicate that 

cancer cells and CAFs develop a ‘symbiotic’ or ‘parasitic’ 

relationship, with the vectorial and unilateral transfer of 

energy from glycolytic stromal cells to oxidative cancer 

cells (Figures 1 and 2).

Clinically, high glucose uptake has been exploited to 

monitor tumor growth using position emission tomo-

graphy (PET) scanning via radiolabeled 2-deoxy-glucose. 

However, we should acknowledge that PET avidity does 

not necessarily correlate with high aerobic glycolysis. For 

example, PET is not useful in clear cell renal carcinomas 

[42,43], which are the tumor ‘prototype’ in which the 

Warburg eff ect should sustain tumor formation. About 

half of clear cell renal carcinomas are due to mutations in 

the Von Hippel-Lindau (VHL) gene [44,45], leading to 

HIF1α constitutive activation and forced induction of 

aerobic glycolysis [46-48]. Conversely, little attention is 

paid to understanding which cell-type or compartments 

within a tumor are most PET avid. In fact, the clinical use 

of PET is well established in Hodgkin’s lymphomas [49], 

which are composed of less than 10% tumor cells, the rest 

being stromal and infl ammatory cells [50]. Yet, Hodgkin’s 

lymphomas are very PET avid tumors, suggesting that 

2-deoxy-glucose uptake may be associated with the 

tumor stroma. Th at the fi brotic component may be 

glucose avid is further supported by the notion that PET 

is clinically used to assess the therapeutic response in 

gastrointestinal stromal tumors (GIST), which are a 

subset of tumors of mesenchymal origin. Finally, pilot 

clinical studies have shown that PET is useful for 

detection of various forms of fi brosis, including pulmo-

nary fi brosis [51].

Th e reverse Warburg eff ect can also be described as 

‘metabolic coupling’ between supporting glycolytic stromal 

cells and oxidative tumor cells. Metabolic cooperativity 

between adjacent cell-compartments is observed in 

several normal physiological settings. During folliculo-

genesis and early embryogenesis, oocytes are surrounded 

by supporting cumulus granulosa (CG) cells. Oocytes 

lack some crucial metabolic functions, such as the ability 

to utilize glucose, to produce cholesterol and to transport 

certain amino acids. Th us, oocytes control CG cell 

metabolism, promoting their glycolysis, cholesterol 

synthesis and amino acid uptake [52,53]. Remarkably, 

both oocytes and zygotes can reach a two-cell stage only 

in the presence of pyruvate and oxalo acetate, but not 

using glucose [54,55]. However, upon co-culture with CG 

cells, oocytes or zygotes can cleave to a two-cell stage 

also in the presence of glucose, clearly indicating that CG 

cells metabolize glucose and supply the oocyte with the 

Figure 1. The autophagic tumor stroma model of cancer 

metabolism. Cancer cells induce oxidative stress in adjacent 

cancer-associated fi broblasts (CAFs). This activates reactive oxygen 

species (ROS) production and autophagy. ROS production in CAFs, 

via the bystander eff ect, serves to induce random mutagenesis in 

epithelial cancer cells, leading to double-strand DNA breaks and 

aneuploidy. Cancer cells mount an anti-oxidant defense and up-

regulate molecules that protect them against ROS and autophagy, 

preventing them from undergoing apoptosis. So, stromal fi broblasts 

conveniently feed and mutagenize cancer cells, while protecting 

them against death. See the text for more details. A+, autophagy 

positive; A-, autophagy negative; AR, autophagy resistant.
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glycolytic product pyruvate to permit maturation [54]. In 

this regard, transcriptional profi ling of CG cells and 

oocytes has revealed that key enzymes of the glycolytic 

pathway (aldolase A, enolase 1, LDHA, and PKM2) are 

very highly expressed in CG cells, but are undetectable in 

oocytes [56]. Th ese results indicate that granulosa cells 

support the development and maturation of oocytes and 

early embryos by providing them with essential nutrients, 

such as oxidative phosphorylation substrates (pyruvate 

and lactate [57]), amino acids [58], and cholesterol [59].

Metabolic coupling is also normally observed in the 

brain between astrocytes and neurons, and this is known 

as ‘neuron-glia metabolic coupling’ [60,61]. In this 

regard, glycolytic astrocytes generate high levels of 

lactate to support mitochondrial oxidative phosphory-

lation in adjacent neurons. Consistent with this idea, 

LDH is preferentially expressed in astrocytes, and the 

mitochondrial enzyme pyruvate dehydrogenase is pre sent 

selectively within the neurons [62,63]. Also, in skeletal 

muscle it is well established that glycolytic fast-twitch 

muscle fi bers produce lactate, which is then secreted via 

monocarboxylate transporter (MCT) 4. Lactate is then 

taken up by the slow-twitch fi bers expressing MCT1 and 

utilized as a substrate for oxidative phosphorylation 

[64,65]. Th is form of metabolic coupling is known as the 

‘skeletal muscle lactate shuttle’ [66].

As such, it is perhaps not surprising that tumors may 

have also developed a form of metabolic coupling, 

specifi cally involving tumor-stromal interactions. In 

further support of the existence of a ‘lactate shuttle’ in 

human tumors, we have now shown that CAFs express 

MCT4 (for lactate extrusion), while breast cancer cells 

express MCT1 (for lactate uptake) (Figure 3) [67]. 

Interestingly, MCT4 expression in CAFs is induced by 

oxidative stress, and MCT4 is a known HIF1α target gene 

(see Discussion below) [67].

Figure 2. The reverse Warburg eff ect. (a) Via oxidative stress, cancer cells activate two major transcription factors in adjacent stromal fi broblasts 

(hypoxia-inducible factor (HIF)1α and NFκB). This leads to the onset of both autophagy and mitophagy, as well as aerobic glycolysis, which then 

produces recycled nutrients (such as lactate, ketones, and glutamine). These high-energy chemical building blocks can then be transferred and 

used as fuel in the tricarboxylic acid cycle (TCA) in adjacent cancer cells. The outcome is high ATP production in cancer cells, and protection 

against cell death. ROS, reactive oxygen species. (b) Homotypic cultures (upper panels) of MCF7 cells (right) and hTERT-fi broblasts (left) were 

immunostained with a mitochondrial membrane antibody (red). Note that mitochondrial mass is lower in mono-cultures of MCF7 cells compared 

to fi broblasts. However, co-culture of MCF7 cells with fi broblasts (lower panel) induces a dramatic increase in mitochondrial mass in the ‘central 

MCF7 cell colony’, outlined by the dotted white oval. In contrast, mitochondrial mass is decreased in co-cultured fi broblasts. Panel (b) was modifi ed 

and reproduced with permission from [41,78].
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Oxidative stress: random mutagenesis and 

protection against cell death

Recent studies have dissected the mechanism(s) by which 

a loss of stromal Cav-1 leads to an aggressive breast 

cancer phenotype, and have shown that oxidative stress 

plays a central role. Th e role of oxidative stress in sus-

taining tumor growth is underscored by the observation 

that reactive oxygen species (ROS)-mediated myo-fi bro-

blast conversion is suffi  cient to reduce tumor-free sur-

vival, and increases metastatic potential in a mammary 

tumor mouse model [68].

Gene expression profi ling of Cav-1(-/-) null bone-

marrow-derived stromal cells has shown the up-

regulation of gene transcripts associated with ROS pro-

duc tion, and over-expression of the transcriptional targets 

of HIF1α and NFκB, suggesting that a loss of stromal 

Cav-1 induces oxidative stress, mimics hypoxia, and 

stimulates infl ammation [41].

Co-cu  ltures of normal human fi broblasts and MCF7 

cells indicate that cancer cells use oxidative stress as a 

weapon to trigger the conversion of adjacent fi broblasts 

into myo-fi broblasts [69]. Cancer cell-induced oxidative 

Figure 3. Evidence supporting a ‘lactate shuttle’ in human tumors: compartmentalized distribution of monocarboxylate transporter 

(MCT)1/4. (a) MCT4 is expressed in the fi broblastic stromal compartment of human breast cancers. Note that MCT4 staining is absent from the 

tumor epithelial cells, but is present in the surrounding stroma. MCT4 staining outlines the cancer-associated fi broblasts that surround nests of 

epithelial cancer cells. (b) MCT1 is expressed in the epithelial compartment of human breast cancers. Note that MCT1 staining is present in the 

tumor epithelial cells, but is absent in the surrounding stroma. (c) The lactate shuttle: an energy transfer mechanism in normal tissue and human 

cancers. MCT4 functions primarily as a transporter that extrudes lactate from cells that are undergoing aerobic glycolysis and lack functional 

mitochondria. After lactate is extruded by MCT4 in cancer-associated fi broblasts (CAFs), lactate is then taken up by MCT1 in adjacent cancer cells. 

Similarly, ketones are transported by the same MCTs that handle lactate. Our studies suggest that metabolic coupling occurs between CAFs and 

adjacent tumor cells. Modifi ed and reproduced with permission from [67].
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stress potently perturbs the behavior of adjacent fi bro-

blasts, induces the lysosomal-mediated degradation of 

Cav-1, and promotes mitochondrial dysfunction, result-

ing in increased aerobic glycolysis [41]. In turn, these 

glycolytic fi broblasts support tumor cell mitochondrial 

respiration and growth by actively transferring high-

energy nutrients (such as lactate and pyruvate) to cancer 

cells.

In support of the ‘reverse Warburg eff ect’, comparison 

of the tumor-promoting properties of two fi broblast lines 

(named CL3 and CL4) with either mitochondrial or 

glycolytic metabolism has revealed that aerobic glycolysis 

in CAFs greatly promotes tumor formation. CL3 fi bro-

blasts show oxidative metabolism and increased mito-

chon drial mass, whereas CL4 fi broblasts display a shift 

towards aerobic glycolysis and increased lactate produc-

tion [70]. Interestingly, in a xenograft model, CL4 fi bro-

blasts enhance the growth of mammary tumors by 

approxi mately eight-fold compared to CL3 cells, without 

a detectable increase in angiogenesis. Consistent with this 

growth-promoting eff ect, CL4 fi broblasts also increase the 

mitochondrial mass of co-cultured breast cancer cells [71].

An oxidative-stress-rich micro-environment generates 

DNA damage in both cancer and stromal cells (Figure 1). 

We have shown that MCF7 cancer cells induce oxidative 

stress and promote DNA double-strand breaks in 

associated stromal cells, which are blocked by anti-

oxidant treatments [41]. Similarly, after three-dimen-

sional co-culture with prostate cancer cells, bone-derived 

stromal cells undergo stable cytogenetic modifi cations by 

a ROS-mediated mechanism [72].

Conversely, in an MCF7-fi broblast co-culture model, 

MCF7 cancer cells undergo aneuploidy and random 

muta genesis [41], suggesting that CAFs facilitate the 

dynamic search for a more aggressive ‘mutator pheno-

type’ in cancer cells (Figure 1). Functionally, fi broblasts 

provide cancer cells with a six-fold protection against cell 

death [41] (Figure 2), via the up-regulation of the anti-

apoptotic protein TIGAR [41]. Cav-1 knockdown fi bro-

blasts provide even greater protection for cancer cells 

against apoptosis, clearly indicating that a loss of stromal 

Cav-1 in humans may greatly facilitate tumor growth by 

suppression of cancer cell death [41].

Th us, data supporting the ‘reverse Warburg eff ect’ 

indicate that cancer cells and fi broblasts are metabolically 

coupled and mutagenically co-evolving [41,73]. Cancer 

cells use oxidative stress to corrupt adjacent fi broblasts 

and to induce their metabolic re-programming [73]. In 

this way, fi broblasts secrete energy rich metabolites that 

facilitate cancer cell survival. In addition, fi broblasts 

promote mutagenesis of cancer cells, leading to a more 

aggressive ‘aneuploid’ phenotype [41,73]. Aneuploidy in 

cancer cells is known to be associated with poor clinical 

outcome.

Hypoxia, autophagy, and mitophagy in the tumor 

stroma

Metabolomic profi ling reveals that Cav-1(-/-) null mam-

mary fat pads display a highly catabolic metabolism, with 

the increased release of several metabolites, such as 

amino acids, ribose and nucleotides, and a shift towards 

gluconeogenesis, as well as mitochondrial dysfunction 

[74]. Th ese changes are consistent with increased auto-

phagy, mitophagy and aerobic glycolysis, all processes 

that are induced by oxidative stress [74]. Autophagy or 

‘self-eating’ is the process by which cells degrade their 

own cellular components to survive during starvation or 

to eliminate damaged organelles after oxidative stress. 

Mitophagy, or mitochondrial-autophagy, is particularly 

important to remove damaged ROS-generating 

mitochondria.

An autophagy/mitophagy program is also triggered by 

hypoxia [75,76]. Hypoxia is a common feature of solid 

tumors, and promotes cancer progression, invasion and 

metastasis [77]. Interestingly, via induction of autophagy, 

hypoxia is suffi  cient to induce a dramatic loss of Cav-1 in 

fi broblasts. Th e hypoxia-induced loss of Cav-1 can be 

inhibited by the autophagy inhibitor chloroquine, or by 

pharmacological inhibition of HIF1α [69,78]. Conversely, 

small interfering RNA-mediated Cav-1 knock-down is 

suffi  cient to induce pseudo-hypoxia, with HIF1α and 

NFκB activation, and to promote autophagy/mitophagy, 

as well as a loss of mitochondrial membrane potential in 

stromal cells [78]. Th ese results indicate that a loss of 

stromal Cav-1 is a marker of hypoxia and oxidative stress. 

In a co-culture model, autophagy in cancer-associated 

fi broblasts was shown to promote tumor cell survival via 

the induction of the pro-autophagic HIF1α and NFκB 

pathways in the tumor stromal microenvironment [78]. 

Finally, the mitophagy marker Bnip3L is selectively up-

regulated in the stroma of human breast cancers lacking 

Cav-1, but is notably absent from the adjacent breast 

cancer epithelial cells [78].

Another study has shown that cell-specifi c induction of 

autophagy by HIF1α activation in fi broblasts or MDA-

MB-231 cells diff erentially aff ects tumor growth. In a 

xenograft model, HIF1α activation in fi broblasts greatly 

enhances the tumorigenicity of co-injected MDA-MB-231 

cells, whereas HIF1α activation in MDA-MB-231 cancer 

cells suppresses tumor growth [79]. Importantly, in this 

experimental setting, the levels of tumor angiogenesis 

were unchanged. As HIF1α triggers autophagy in both 

fi broblasts and cancer cells, these data demonstrate that 

the role of autophagy in driving tumor formation is cell-

type specifi c, and that stromal autophagy, and not cancer 

cell autophagy, favors tumor growth.

Several studies have demonstrated that the over-

expression of autophagic markers, such as ATG16L and 

cathepsin K and D, in the stroma and not in tumor cells 
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predicts poor prognosis [80-82]. Similarly, loss of auto-

phagic markers, such as Beclin 1, in tumor cells correlates 

with poor clinical outcome, suggesting that activation of 

an autophagic program in tumor cells reduces tumor 

aggressiveness [83].

Metabolome profi ling of several types of human cancer 

tissues versus corresponding normal tissues have consis-

tently shown that cancer tissues are highly catabolic, with 

the signifi cant accumulation of many amino acids and 

TCA cycle metabolites [84,85]. Th e levels of reduced 

glutathione were decreased in primary and metastatic 

prostate cancers compared to benign adjacent prostate 

tissue, suggesting that aggressive disease is associated 

with increased oxidative stress [86]. Also, these data 

show that the tumor microenvironment has increased 

oxidative-stress-induced autophagy and increased 

catabolism.

Taken together, all these fi ndings suggest an integrated 

model whereby a loss of stromal Cav-1 induces autophagy/

mitophagy in the tumor stroma, via oxidative stress. Th is 

creates a catabolic micro-environment with the local 

accumulation of chemical building blocks and recycled 

nutrients (such as amino acids and nucleotides), directly 

feeding cancer cells to sustain their survival and growth. 

We have termed this novel idea the ‘autophagic tumor 

stroma model of cancer’ [74]. Th is new paradigm may 

explain the ‘autophagy paradox’, which is based on the 

fact that both the systemic inhibition and systemic 

stimulation of autophagy prevent tumor formation [87]. 

We propose that vectorial energy transfer from the tumor 

stroma to cancer cells directly sustains tumor growth, 

and that interruption of such metabolic coupling will 

block tumor growth. Autophagy inhibitors (such as 

chloroquine) functionally block the catabolic transfer of 

metabolites from the stroma to the tumor, inducing 

cancer cell starvation and death [88]. Conversely, 

autophagy inducers (such as rapamycin) promote 

autophagy in tumor cells and induce cell death [89]. Th us, 

both inhibitors and inducers of autophagy will have a 

similar eff ect by severing the metabolic coupling of the 

stroma and tumor cells, resulting in tumor growth 

inhibition (cutting ‘off ’ the fuel supply).

Th is model may also explain why enthusiasm for anti-

angiogenic therapy has been dampened. In most cases, 

the clinical benefi ts are short term, and more importantly, 

new data suggest an unexpected link between anti-angio-

genic treatments and metastasis. In pre-clinical models, 

anti-vascular endothelial growth factor (anti-VEGF) 

drugs (sunitinib and anti-VEGFR2 blocking antibodies) 

were shown to inhibit localized tumor formation, but 

potently induced relapse and metastasis [90-92]. Th us, by 

inducing hypoxia in the tumor microenvironment, anti-

angiogenic drugs may create a more favorable metastatic 

niche [93]. Hypoxia-induced autophagy may play a role 

by generat ing a catabolic micro-environment rich in 

chemical building blocks that can be directly used by 

cancer cells to sustain malignant transformation and 

metastatic progression.

Finally, the autophagic tumor stroma model can also 

provide an explanation for systemic cachexia, which is 

progressive skeletal muscle and adipose tissue wasting, 

aff ecting up to 50% of all cancer patients and resulting in 

severe weight loss and shortened survival [94]. Cachexia 

is the result of increased energy consumption and higher 

metabolic rates [95]. Based on our data, we envision that 

cancer leads to a generalized catabolic state via an 

autophagic-mechanism that generates building blocks 

and starves the rest of the body. While the exact signaling 

pathways governing this phenomenon are not yet fully 

elucidated, it is clear that oxidative stress-induced auto-

phagy functions as a driver of muscle wasting [96]. For 

example, skeletal muscles from tumor-bearing mice 

showed impaired Akt activation and a more than 50-fold 

induction of Bnip3, a well recognized marker of 

autophagy/mitophagy [97]. Th ese fi ndings also help 

explain why patients with metabolic syndrome and 

diabetes have an increased risk for the development of 

multiple epithelial cancers, due to their constitutive and 

systemic activation of the autophagic program, and the 

over-production of high-energy nutrients, such as lactate 

and ketones [74].

We have recently used laser-capture micro-dissection 

of the tumor stroma from human breast cancers to 

directly validate that a loss of stromal Cav-1 is trans-

criptionally associated with oxidative stress, hypoxia, 

autophagy, and mitochondrial dysfunction, via gene-set 

enrichment analysis (Figure 4) [98]. In addition, we see 

that oxidative stress in CAFs induces cytokine production 

via NFκB activation, directly linking infl ammation with 

autophagy/catabolism in the tumor stroma [99]. So, 

cachexia may start locally as stromal autophagy, and then 

spread systemically via cytokine production and infl am-

mation, which also drive autophagy [99].

Glutamine utilization, ammonia production, and 

autophagy in the tumor stroma

In direct support that cancer cells use mitochondrial 

oxidative metabolism, many investigators have shown 

that cancer cells are ‘addicted’ to glutamine [24,100]. 

Gluta mine is a non-essential amino acid that is metabo-

lized to glutamate and enters the TCA cycle as alpha-

ketoglutarate, resulting in high ATP generation via oxida-

tive phosphorylation [2,22,101-103].

Recent studies also show that ammonia is a by-product 

of glutaminolysis [104-106]. In addition, ammonia can 

act as a diff usible inducer of autophagy [104-106]. Given 

these observations, glutamine addiction in cancer cells 

provides another mechanism for driving and/or 
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Figure 4. Molecular profi ling of a Cav-1 defi cient tumor micro-environment in breast cancer patients. (a) The transcriptional profi les 

of caveolin-1 (Cav-1)-positive (+) tumor stroma (N = 4) versus Cav-1-negative (-) tumor stroma (N = 7) were compared, via laser-capture 

microdissection. We identifi ed 238 gene transcripts that were up-regulated and 232 gene transcripts that were down-regulated in the stroma of 

tumors showing a loss of Cav-1 expression. Note that the two patient populations are transcriptionally distinct. (b) The Cav-1-defi cient stromal gene 

signature is associated with poor survival in estrogen receptor-positive and luminal A breast cancer patients. Note that the Cav-1-defi cient stromal 

signature is clearly associated with decreased overall survival. (c) Heat maps of the gene transcripts associated with the response to hypoxia, 

glycolysis, and autophagy. Note that Cav-1-defi cient stroma shows the up-regulation of hypoxia target genes (65 transcripts), glycolysis/pyruvate 

metabolism (15 transcripts), and autophagy (22 transcripts). Modifi ed and reproduced with permission from [98].
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main tain ing autophagy in the tumor micro-environment 

(Figure  5). In support of this idea, we have previously 

shown that a loss of Cav-1 in the stroma is suffi  cient to 

drive autophagy, resulting in increased glutamine 

produc tion in the tumor micro-environment [74].

Th us, this concept defi nes a new vicious cycle in which 

autophagy in the tumor stroma transfers glutamine to 

cancer cells, and the by-product of this metabolism, 

ammonia, maintains autophagic glutamine production 

(Figure 5). Th is model fi ts well with the ‘autophagic tumor 

stroma model of cancer metabolism’, in which energy-

rich recycled nutrients (lactate, ketones, and glutamine) 

fuel oxidative mitochondrial metabolism in cancer cells.

Lessons from other paradigms: an infectious 

parasitic cancer cell that metastasizes and captures 

mitochondrial DNA from host cells

We have recently proposed that cancer cells behave like 

‘parasites’, by inducing oxidative stress in normal host 

fi broblasts, resulting in the production of recycled 

nutrients via autophagy [41,69,78]. Th is is exactly the 

same mechanism by which infectious parasites (such as 

malaria) obtain nutrients and are propagated by inducing 

oxidative stress and autophagy in host cells [107-109]. In 

this regard, malaria is an ‘intracellular’ parasite, while 

cancer cells may be thought of as ‘extracellular’ parasites. 

Th is explains why chloroquine is both an eff ective anti-

malarial drug and an eff ective anti-tumor agent, as it 

functions as an autophagy inhibitor [110], cutting off  the 

‘fuel supply’ in both disease states.

Are there any examples of cancer cells that act as 

infectious parasites? Surprisingly, the answer is yes [111]. 

Th ere are four known types: canine transmissible 

venereal tumor (CTVT), which is a sexually transmitted 

disease that occurs in feral dogs [112] - it is transmitted 

through coitus, licking/biting, or sniffi  ng; devil facial 

tumor disease, spread among Tasmanian devils via facial 

biting [113,114]; contagious reticulum cell sarcoma, 

which is transmitted between Syrian hamsters via 

mosquito bites [115,116]; and malignant fi brous histio-

cytoma, which was transmitted from a cancer patient to 

his surgeon [117] during an injury that occurred when 

the surgeon was operating.

Th ese parasitic cancers are all transmitted by allo-

grafting, so the cancer cells literally ‘metastasize’ from 

one aff ected host to another ‘naïve’ host, in an infectious 

manner that does not involve a virus.

Experimentally, the most is known about CTVT. Th is 

disease is thought to have originated in ancient wolves or 

coyotes, and the tumor cells themselves act as the 

infectious agent. As such, these cancer cells are 

genetically distinct from their hosts, as determined by 

genomic sequence analysis of their nuclear DNA [118]. 

CTVT represents the oldest known cancer cell line that 

has been continuously propagated, most likely for more 

than 10,000 years [118,119].

Interestingly, it has recently been shown that CTVT 

tumor cells survive by periodically ‘capturing’ mito chon-

drial DNA from their hosts [119,120]. Th us, it has been 

suggested that these CVCT tumor cells have survived for 

more than 10,000 years by maintaining and renewing 

their capacity for oxidative mitochondrial metabolism by 

‘stealing’ host cell mitochondrial DNA [119,120]. In 

accordance with this idea, CTVT is highly sensitive to 

adriamycin/doxorubicin therapy [121], a chemo-thera peu tic 

agent that also functions as a mitochondrial poison.

Similarly, it has been independently shown that human 

cancer cells can ‘steal’ live mitochondria or mitochondrial 

DNA [122] from adjacent mesenchymal stem cells in 

culture, which then rescues aerobic glycolysis in these 

cancer cells [122]. Th is is known as mitochondrial 

transfer [122]. Interestingly, others have shown that 

metastatic breast cancer cells show the up-regulation of 

numerous mitochondrial proteins [123], specifi cally 

Figure 5. Glutamine utilization in cancer cells and the tumor 

stroma. Oxidative mitochondrial metabolism of glutamine in cancer 

cells produces ammonia. Ammonia production is suffi  cient to 

induce autophagy. Thus, autophagy in cancer-associated fi broblasts 

provides cancer cells with an abundant source of glutamine. In turn, 

the ammonia produced maintains the autophagic phenotype of the 

adjacent stromal fi broblasts. See text for details. TCA, tricarboxylic 

acid.
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associated with oxidative phosphorylation, as seen by 

unbiased proteomic analysis [123].

Th us, increased mitochondrial oxidative metabolism 

may be a key driver of tumor cell metastasis. In further 

support of this argument, treatment of MCF7 cancer 

cells with lactate is indeed suffi  cient to induce 

mitochondrial biogenesis in these cells [41,78] (Figure 6). 

To determine if these fi ndings may be clinically relevant, 

a lactate-induced gene signature was recently generated 

using MCF7 cells [124]. Th is gene signature shows that 

lactate induces ‘stemness’ in cancer cells, and this lactate-

induced gene signature predicts poor clinical outcome 

(including tumor recurrence and metastasis) in breast 

cancer patients [124] (Figure 6). Th ese fi ndings are 

consistent with experiments showing that intraperitoneal 

injection of lactate in an MDA-MB-231 xenograft model 

results in an approximately ten-fold increase in lung 

metastasis [125].
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