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Abstract

Introduction: Expression of Y-box binding protein-1 (YB-1) is associated with tumor progression and drug
resistance. Phosphorylation of YB-1 at serine residue 102 (S102) in response to growth factors is required for its
transcriptional activity and is thought to be regulated by cytoplasmic signaling phosphatidylinositol 3-kinase (PI3K)/
Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. These
pathways can be activated by growth factors and by exposure to ionizing radiation (IR). So far, however, no studies
have been conducted on IR-induced YB-1 phosphorylation.

Methods: IR-induced YB-1 phosphorylation in K-RAS wild-type (K-RAS,,.) and K-RAS-mutated (K-RAS,,;) breast cancer
cell lines was investigated. Using pharmacological inhibitors, small interfering RNA (siRNA) and plasmid-based
overexpression approaches, we analyzed pathways involved in YB-1 phosphorylation by IR. Using y-H2AX foci and

standard colony formation assays, we investigated the function of YB-1 in repair of IR-induced DNA double-
stranded breaks (DNA-DSB) and postirradiation survival was investigated.

Results: The average level of phosphorylation of YB-1 in the breast cancer cell lines SKBr3, MCF-7, HBL100 and
MDA-MB-231 was significantly higher than that in normal cells. Exposure to IR and stimulation with erbB1 ligands
resulted in phosphorylation of YB-1 in K-RAS,,, SKBr3, MCF-7 and HBL100 cells, which was shown to be K-Ras-
independent. In contrast, lack of YB-1 phosphorylation after stimulation with either IR or erbB1 ligands was
observed in K-RAS,,: MDA-MB-231 cells. Similarly to MDA-MB-231 cells, YB-1 became constitutively phosphorylated
in K-RAS,,: cells following the overexpression of mutated K-RAS, and its phosphorylation was not further enhanced
by IR. Phosphorylation of YB-1 as a result of irradiation or K-RAS mutation was dependent on erbB1 and its
downstream pathways, PI3K and MAPK/ERK. In K-RAS,,,: cells K-RAS siRNA as well as YB-1 siRNA blocked repair of
DNA-DSB. Likewise, YB-1 siRNA increased radiation sensitivity.

Conclusions: IR induces YB-1 phosphorylation. YB-1 phosphorylation induced by oncogenic K-Ras or IR enhances
repair of DNA-DSB and postirradiation survival via erbB1 downstream PI3K/Akt and MAPK/ERK signaling pathways.

Introduction

The Y-box binding protein-1 (YB-1), which is a member
of a family of DNA-binding proteins, is an oncogenic
transcription factor that is highly expressed in breast
cancers [1,2], colorectal cancer and cancers of the lung,
prostate, ovary and bone. Recently, it was shown that
YB-1 induces the expression of CD44 and CD49f, lead-
ing to enhanced self-renewal and mammosphere growth
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[3] and resulting in drug resistance [3,4]. In breast can-
cer, YB-1 was demonstrated to have prognostic and pre-
dictive significance through the identification of high-
risk patients in the presence or absence of postoperative
chemotherapy. Furthermore, the prognostic and predic-
tive significance of YB-1 was found to be independent
of tumor biologic factors currently available for clinical
decision making [5]. Thus, YB-1 has been proposed as a
potent prognostic biomarker for tumor aggressiveness
and clinical outcome [6]. The expression of many proto-
oncogenes, such as erbB1 [7] and erbB2 [8-10], has been
described as being regulated by YB-1. Phosphorylation
of YB-1 at serine residue 102 (S102) is required for its
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function as a transcription factor of erbB1 [7]. As
described for basal-like breast cancer cells, the phos-
phorylation of YB-1 at S102 is carried out by p90 ribo-
somal S6 kinase [11]. It has been demonstrated that Akt
phosphorylates YB-1 at S102 and affects the anchorage-
independent growth of breast cancer cells [12]. In line
with this effect, it has been shown that YB-1 knockdown
induces apoptosis and also decreases phosphorylation of
signal transducer and activator of transcription 3
(STAT3), ERK1/2 and mammalian target of rapamycin
(mTOR), as well as total mTOR expression [9]. Finally,
it has been reported that YB-1 plays pivotal roles in the
acquisition of tumor drug resistance through the tran-
scriptional activation of drug resistance genes and genes
for growth factor receptors [13,14].

In addition to surgery, radiotherapy is an effective cura-
tive approach for many types of cancer, including breast
cancer. However, the efficacy of radiotherapy is often
challenged by the radioresistance of solid tumors. One of
the mechanisms by which tumor cells acquire radioresis-
tance is overexpression or mutational activation of the
proteins that regulate survival signaling pathways. In this
context, the mutation and overexpression of erbB family
members have been well described [15-19].

The erbB family of receptor tyrosine kinases consists
of erbB1 (epidermal growth factor receptor (EGFR)),
erbB2 (Neu), erbB3 and erbB4. In particular, erbB1 is
overexpressed or mutated in many tumors and is asso-
ciated with a poor outcome of chemo- as well as radio-
therapy [18,20-22]. The binding of ligands to the
extracellular domain of the receptor induces dimeriza-
tion, which is necessary for activation of the intracellular
receptor tyrosine kinase (RTK) [23]. Moreover, exposure
to ionizing radiation (IR) as it occurs during radiother-
apy stimulates RTK activity in a ligand-independent
manner [24,25]. Both ligand-induced and IR-induced
activation of erbBl mediate the activation of multiple
downstream signaling pathways, for example, the phos-
phatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated
protein kinase/extracellular signal-regulated kinase
(MAPK/ERK) and Janus kinase (JAK)/STAT3 pathways
[26,27]. These intracellular signaling cascades play pivo-
tal roles in regulating growth, proliferation and survival
of tumor cells [28]. Most interestingly, the mutation of
K-RAS has been described as a crucial factor for
enhanced activity of the erbB1-dependent PI3K/Akt and
MAPK/ERK pathways [25,29,30]. Stimulated Akt has
been described as an upstream mediator involved in the
activation of YB-1 through phosphorylation at S102
[12]. Because IR is a strong activator of the PI3K/Akt
and MAPK/ERK pathways, in the present study we
investigated whether IR could induce YB-1 phosphoryla-
tion in a panel of breast cancer cell lines. Likewise, the
role of YB-1 in the repair of DNA double-stranded
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breaks (DNA-DSB) and postirradiation survival after
exposure to IR was investigated.

Evidence is presented indicating that IR is a strong
mediator of YB-1 phosphorylation only in tumor cells
with wild-type K-RAS (K-RAS,,); in tumor cells with
mutated K-RAS (K-RASyut), YB-1 is constitutively phos-
phorylated, and this phosphorylation cannot be further
enhanced by exposure to IR. Finally, we found that YB-
1 is an important mediator of DNA-DSB repair and
postirradiation survival.

Materials and methods
Cell lines and reagents
The breast cancer cell lines SKBr3, MCF-7, HBL100 and
MDA-MB-231 were used. Additionally, normal human
fetal lung fibroblast (HFL), human skin fibroblast cell
strains HSF1 and HSF7 and mammary epithelial cell line
MCEF-10A cells were used. Cancer cell lines and fibro-
blast cells were cultured in RPMI 1640 and Dulbecco’s
modified Eagle’s medium (DMEM), respectively. Media
were routinely supplemented with 10% fetal calf serum
(FCS) and 1% penicillin-streptomycin. MCF-10A cells
were cultured in endothelial cell basal medium with the
addition of medium supplements provided by PromoCell
(Heidelberg, Germany) plus 100 ng/ml choleratoxin.
Cells were incubated in a humidified atmosphere of 93%
air and 7% CO, at 37°C. All experiments were performed
in confluent cultures maintained in 10% serum.
Antibodies against phospho-YB-1 (§102) and YB-1,
phospho-Akt (S473), phospho-ERK1/2 (T202/Y204) and
ERK1/2 were purchased from Cell Signaling Technology
(Frankfurt, Germany). Inhibitors against PI3K (LY294002),
MEK (PD98059) and anti-K-Ras antibody were purchased
from Merck Biosciences (Darmstadt, Germany). Anti-Aktl
antibody was purchased from BD Biosciences (Heidelberg,
Germany). Epidermal growth factor (EGF), transforming
growth factor o (TGFa), amphiregulin (AREG) and anti-
actin antibody were purchased from Sigma-Aldrich (Tauf-
kirchen, Germany). Small interfering RNA (siRNA) against
ERKI and K-RAS, as well as a nontargeting siRNA, were
purchased from Thermo Scientific (Karlsruhe, Germany).
YB-1-siRNA (siRNA-I/II) was purchased from Cell Signal-
ing Technology. Lipofectamine 2000 and Opti-MEM were
purchased from Invitrogen (Darmstadt, Germany). Anti-
body against lamin A/C was purchased from Abcam
(Cambridge, UK). The expression plasmids p-EGFP-C1
and p-EGFP/K-RAS"'? were described previously [31].
The ErbB1-RTK inhibitors erlotinib and BIBX1382BS, as
well as the Akt inhibitor API-59CJ-OH, were described
previously [32,33].

Ligand stimulation, drug treatment and irradiation
For ligand stimulation, cells were treated with EGF,
TGFo or and AREG, each at 100 ng/ml, for the indicated
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time points in each experiment. The ErbB1 inhibitor
erlotinib, the PI3K inhibitor LY294002 and the AKT
pathway inhibitor (API) were diluted in dimethyl sulfox-
ide (DMSO), and 10 mM stock solutions were stored at
-70°C. The MEK inhibitor PD98059 was prepared as 20
mM stock solution. For treatment, stock solutions were
diluted in culture medium, and cells were treated with
these solutions to achieve the final concentrations of 5
uM erlotinib, 10 pM LY294002, 20 pM PD98059 and 2.5
pM API-59CJ-OH. Control cultures were treated with
medium containing the appropriate concentrations of
DMSO. Cells were treated with erlotinib, LY294002 and
PD98059 for 2 hours, whereas treatment with API was
performed for 72 hours. Irradiation of cells was per-
formed at 37°C. Confluent cells cultured in 10% serum
were X-ray-irradiated (100 kVp, 15 mA, 0.3 mm Al addi-
tional filtering). The dose rate was 1.7 Gy/minute.

Protein extraction and western blotting

After undergoing the indicated treatments, cells were
washed twice with phosphate-buffered saline and lysed
with lysis buffer (50 mM/Il Tris-HCI, pH 7.5, 50 mM/1 p-
glycerophosphate, 150 mM/I NaCl, 10% glycerol, 1%
Tween 20, 1 mM/l NaF, 1 mM/I dithiothreitol, protease
and phosphatase inhibitors). Following protein quantifi-
cation using the Bio-RAD DC protein assay, samples
were subjected to sodium dodecyl sulfate polyacrylamide
gel electrophoresis, and assessment of specific proteins
in each experiment was performed by Western blot ana-
lysis using specific antibodies. After detecting phos-
phorylated proteins, the blots were stripped and
incubated with an antibody against total protein. Densi-
tometry was performed where appropriate using Scion
Image software (Scion Corporation, Frederick, Maryland,
USA).

Subcellular fractions

Cytoplasmic and nuclear extracts were prepared accord-
ing to the instructions contained in the NE-PER Nuclear
and Cytoplasmic Extraction Reagent Kit (Pierce Biotech-
nology, Rockford, IL, USA).

siRNA transfection

Cells were transfected with 50 nM nontargeting siRNA
or specific siRNA using Lipofectamine 2000 transfection
reagent according to the protocol of the manufacturer.
Twenty-four hours after transfection the media were
changed. Cells were used for experiments 4 days after
transfection. For knockdown of YB-1, cells were trans-
fected with YB-1 siRNAI/II (Cell Signaling Technology)
and for knockdown of K-Ras, a K-RAS-specific pool of
siRNA (Thermo Fisher Scientific, Bonn, Germany) was
used.
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Sequencing of KRAS

Total RNA was isolated from frozen cell pellets using
the RNeasy mini kit (Qiagen, Hilden, Germany) and
reverse transcribed with the Reverse-iT First Strand
Synthesis Kit (ABgene, Surrey, UK) using anchored
oligo(dT) primers. Exons 1 to 3 of K-RAS were ampli-
fied from the cDNA using ReddyMix PCR Master Mix
(ABGene) with specific primers (sense, GAGAGGCCTG
CTGAAAATGA; antisense, TGGTGAATATCTTCA
AATGATTTAGT). Amplicons were isolated with
QIAquick columns (Qiagen, Hilden, Germany), and
both strands were sequenced by a commercial subcon-
tractor (SeqLab, Goettingen, Germany).

K-RASV'? overexpression

Subconfluent K-RAS,,; cells (SKBr3 and MCF-7) were
trypsinized, and 2 x 10° cells were transiently trans-
fected with 5 pug of p-EGFP-C1 control vector or p-
EGFP/K-RASY'? by means of electroporation. After 24
hours, the efficiency of transfection was tested by fluor-
escent microscopy of green fluorescent protein (GEP),
and thereafter the media were changed. After an addi-
tional 24 hours, cells were used for experiments.

Y¥-H2AX foci formation assay

The y-H2AX foci formation assay was used to evaluate
residual DNA-DSB as described previously [34]. Briefly,
the cells were cultured on coverglass slides and trans-
fected with 50 nM nontargeting siRNA or specific
siRNA against YB-1 and K-RAS. After 24 hours, the
medium was exchanged with fresh medium. Forty-eight
hours later the cells were exposed to single doses of
irradiation of 2, 4, and 6 Gy and incubated at 37°C for
an additional 24 hours. Thereafter the slides were
stained with phospho-H2AX (S139) as described pre-
viously. The y-H2AX foci were counted (70 to 250 cells
per treatment condition) and graphed.

Clonogenic assay

Clonogenic cell survival following radiation exposure was
analyzed by means of colony formation assay. Cells were
preplated in six-well plates and 24 hours later were mock-
irradiated or irradiated with single doses of 1, 1.5, 2, 3 or 4
Gy. Irradiation was performed at 37°C using a Gulmay
RS225 X-ray machine (Gulmay limited, Chertsey, UK)
with a dose rate of 1.7 Gy/minute and the exposure factors
of 150 kVp, 15 mA and 0.3-mm Al additional filtering. To
investigate the effect of YB-1 expression on postirradiation
survival, cells were transfected with nontargeting siRNA
or YB-1-specific siRNA. Three days after transfection cells
were preplated in six-well plates, and 24 hours later the
cells were mock-irradiated or irradiated with single doses
of 1, 1.5, 2, 3 or 4 Gy. In either of the experiments,
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cultures were incubated for 10 days to allow for colony
growth. Colonies of more than 50 cells were scored as sur-
vivors. Clonogenic fractions of irradiated cells were nor-
malized to the plating efficiency of nonirradiated controls.

Results

Stimulation of YB-1 phosphorylation in breast cancer cells
by IR and exposure to erbB1 ligands

The level of basal YB-1 phosphorylation at S102 in a
panel of breast cancer cells (MDA-MB-231, MCE-7,
HBL100 and SKBr3) was compared to the level of YB-1
phosphorylation in normal cells, that is, human skin and
lung fibroblasts (HSF1, HSF7 and HFL) as well as normal
mammary epithelial cells (MCF-10A) (Figures 1A and
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1B). As shown in Figure 1C, the ratio of P-YB-1/YB-1 is
significantly higher in tumor cells than in fibroblasts. The
comparisons of the ratio of P-YB-1/YB-1 in tumor cells
and normal mammary epithelial cells indicated an even
stronger significant difference as tested for MDA-MB-
231 and MCF-10A cells (Figures 1B and 1C).

YB-1 has been identified as a direct substrate of Akt
[12,35]. As previously reported, IR can activate the Akt
ligand independently [30,36]. Therefore, we asked whether
IR could induce YB-1 phosphorylation as well. As shown in
Figure 1D, IR induces YB-1 phosphorylation differentially.
A strong phosphorylation signal was observed in SKBr3,
whereas HBL100 showed moderate phosphorylation of YB-
1 and phosphorylation in MCF-7 was weak. However, in
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Figure 1 Phosphorylation of YB-1 stimulated by ionizing radiation and erbB1 ligands. (A and B) Confluent cells (breast cancer cells MDA-
MB-231, MCF-7, HBL100 and SKBr3; normal fibroblasts HSF1, HSF7 and human fetal lung fibroblast (HFL); normal mammary epithelial cells MCF-
10A) were cultured in 10% serum. Protein samples were isolated from biologically independent cultures, and a sample of 100 g of protein from
each culture was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). P-YB-1, YB-1, K-Ras and actin were
detected by Western blot analysis. (C) From the densitometric values of P-YB-1 and YB-1, the P-YB-1/YB-1 ratios were calculated for tumor cells
versus fibroblasts, as well as normal mammary epithelial cells, and graphed. Statistical analyses were performed using Student’s t-test. Error bars
represent standard deviations (SD). Confluent cells were (D) irradiated with 4 Gy of IR or (E) treated with 100 ng/ml erbB1 ligand. At the
indicated time points after stimulation, protein samples were isolated and subjected to SDS-PAGE. The levels of P-YB-1 and YB-1 were assessed
by Western blot analysis. The densitometric values represent the P-YB-1/YB-1 ratio normalized to 1 in nonirradiated controls. (D) Phosphorylation
of YB-1 after irradiation was tested at least in three independent experiments. (E) ErbB1 ligand-induced YB-1 phosphorylation was tested at least
in two independent experiments. EGF, epidermal growth factor; AREG, amphiregulin; TGFe, transforming growth factor a. (F) Cells (confluent
status) were kept in serum-free medium or serum containing 10% fetal calf serum medium. Twenty-four hours after serum depletion samples
were isolated, and the level of P-YB-1 was assessed by Western blot analysis. Blots were stripped and incubated with antibody against total YB-1.
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MDA-MB-231 cells, a lack of IR-induced YB-1 phosphory-
lation was observed. In this cell line, stimulation with the
erbB1 ligand EGF, AREG or TGFa did not induce YB-1
phosphorylation, whereas strong phosphorylation at the
indicated times after stimulation was observed in the cell
lines SKBr3, HBL100 and MCF-7 (Figure 1D). Although
the MCF-7 and HBL10O cell lines have K-RAS,,; status,
these cells presented high basal YB-1 phosphorylation. To
prove whether the high basal phosphorylation status of YB-
1 was due to stimulation by growth factors in the culture
medium, P-YB-1 was compared under serum supplementa-
tion and serum depletion in MCF-7 cells. As shown in Fig-
ure 1F, P-YB-1 was markedly reduced when cells were
incubated in serum-free medium for 24 hours. In contrast,
serum depletion did not reduce basal YB-1 phosphorylation
in K-RAS,; MDA-MB-231 cells (Figure 1F).

Constitutive phosphorylation of YB-1 in MDA-MB-231

cells is K-Ras-dependent

MDA-MB-231 cells are characterized by a point muta-
tion at codon 13 in the K-RAS gene [37]. This mutation
is responsible for the constitutive phosphorylation of
ERK1/2 [30]. In addition to ERK1/2 phosphorylation,
these cells also present a constitutive phosphorylation of
YB-1, which is not further modified after exposure to IR
or stimulation with erbB1 ligands (Figures 1D and 1E).
Thus, we investigated whether the constitutive phos-
phorylation of YB-1 in MDA-MB-231 cells is due to the
described endogenous expression of mutated K-RAS
[37]. Therefore, K-Ras expression was downregulated by
siRNA, and the level of P-YB-1 was investigated. Using
a similar approach, we analyzed the effect of ERK1 on
YB-1 phosphorylation downstream of mutated K-Ras.
As shown in Figure 2A, K-RAS siRNA led to a strong
reduction in P-ERK1/2 and P-YB-1 (Figure 2A). Yet,
ERK1/2 and YB-1 protein levels were not affected. Like-
wise, a marked reduction of P-YB-1 was observed when
ERK1 was targeted with siRNA. The role of stimulated
ERK1/2 phosphorylation on YB-1 phosphorylation was
further supported by the results when a MEK inhibitor
was used. As shown in Figure 2B, pretreatment of
MDA-MB-231 cells with the MEK inhibitor PD98059
markedly blocked YB-1 phosphorylation. Similar to the
data shown in Figure 1D, exposure to IR did not induce
YB-1 phosphorylation. These results indicates that the
constitutive YB-1 phosphorylation in MDA-MB-231
cells is a consequence of mutated K-Ras-mediated
ERK1/2 phosphorylation.

512 enhances basal YB-1

Overexpression of mutated K-RA
phosphorylation

To investigate the role of K-Ras in the constitutive
phosphorylation of YB-1, we further analyzed the status

of K-RAS in SKBr3, MCF-7 and HBL100 cells.
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Figure 2 Constitutive phosphorylation of YB-1 in MDA-MB-231
cells is K-Ras-dependent. (A) Subconfluent cells were transfected
with nontargeting small interfering RNA (siRNA) or siRNA against K-
RAS and extracellular signal-regulated kinase 1 (ERK1) as described in
the Materials and methods. Protein samples were isolated, and the
levels of K-Ras, actin, P-ERK1/2 and P-YB-1 were detected. The blots
were stripped and reincubated with ERK1/2 or YB-1. (B) Confluent
MDA-MB-231 cells were treated with the MEK inhibitor PD98059 or
dimethyl sulfoxide and mock-irradiated or irradiated with 4 Gy
jonizing radiation. At the indicated time points after irradiation,
protein samples were isolated and P-YB-1 and P-ERK1/2 were
detected. The blots were stripped and reincubated with ERK1/2 or
YB-1. Representative Western blots of three independent

experiments are shown.

Sequencing of the K-RAS gene revealed that none of
these cell lines presents a K-RAS point mutation in
codon 12, codon 13 or 61. To investigate whether
mutated K-RASY'* could upregulate YB-1 phosphoryla-
tion, we introduced mutated K-RAS into K-RAS,,.,
SKBr3 and MCEF-7 cells. Cells were transiently trans-
fected with either a control pEGFP-C1 vector (indicated
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as con.-vector) or a vector expressing mutated K-RAS,
pEGFP-C1/K-RASY'? (indicated as K-RASY'?). Fluores-
cence images of living cells transfected with con.-vector
and K-RASV'? revealed that GFP in K-RAS'? vector-
transfected cells was localized to the plasma membrane,
but that in con.-vector-transfected cells it was not (Figure
3A). This is due to posttranslational modification and
membrane association of K-Ras (Figure 3A). In con.-vec-
tor-transfected cells, GFP expression was not accumulated
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at the cell membrane, but rather it was equally distributed
throughout the cytoplasm. The efficiency of transfection
was verified by immunoblotting as well (Figure 3B). In cells
transfected with K-RAS"'? vector, the expression of K-Ras
(21 kDa) resulted in a shift of GFP from 27 kDa to 48 kDa
(Figure 3B). The expression of GFP-tagged K-Ras with a
molecular weight of 48 kDa was further confirmed by
stripping the anti-GFP antibody from the membrane and
reincubating the blots with a K-Ras antibody.
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Figure 3 Overexpression of mutated K-RASY'? enhances basal YB-1 phosphorylation. The indicated cell lines were transiently transfected
with pEGFP-C1 control vector (con. vector) or pEGFP/K—RASvu (K-RAS'"?) as described in Materials and methods. Forty-eight hours after
transfection (A) green fluorescent protein (GFP) expression was analyzed by fluorescent microscopy and (B) protein samples were isolated. The
expression levels of GFP and K-Ras were assessed by Western blot analysis. P-YB-1 was detected using the same blots. After the membranes
were stripped, each blot was incubated with an antibody against total YB-1. Actin was detected as an additional loading control. The function of
K-RAS''? on YB-1 phosphorylation was tested in at least three independent experiments, and a representative Western blot is shown. (C) Forty-
eight hours after transfecting SKBr3 cells with the pEGFP-C1 control vector or pEGFP/K-RASY'? (K-RAS), cells were mock-irradiated or irradiated
with 4 Gy ionizing radiation. Ten minutes after irradiation protein samples were isolated. Following sodium dodecyl sulfate polyacrylamide
electrophoresis, the expression levels of GFP and K-Ras, as well as the phosphorylation status of ERK1/2 and YB-1, were assessed by Western blot
analysis. The blots were stripped and incubated with YB-1 and ERK1/2 antibodies. A representative Western blot of three independent
experiments shown.
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In line with our observations of MDA-MB-231 cells,
exogenous expression of K-RASV'? in K-RAS,,;, SKBr3
and MCEF-7 cells resulted in markedly enhanced basal
phosphorylation of YB-1 at S102 (Figure 3B), which pre-
vents further enhancement of phosphorylation by IR
(Figure 3C). Thus, these data support the hypothesis
that in cells expressing mutated K-RAS, the basal phos-
phorylation of YB-1 is constitutively enhanced and can-
not be further stimulated by IR.

IR-induced YB-1 phosphorylation is mediated by erbB1-
dependent PI3K/Akt and MAPK/ERK pathways

The phosphorylation of YB-1 at S102 in response to sti-
mulation with EGF has been described as being depen-
dent on p90 ribosomal S6 kinase [11]. In that study
[11], Stratford et al. showed that the stimulation of
SUM149 breast cancer cells with serum, EGF and phor-
bol 12-myristate 13-acetate (PMA) leads to phosphoryla-
tion of YB-1 at S102, which is dependent on the MAP
kinase pathway [11]. Because we and others have shown
that IR induces activation of erbB1 in a ligand-indepen-
dent manner [24,25], we tested whether the IR-induced
YB-1 phosphorylation shown in Figure 1D could be
blocked by erbB1 tyrosine kinase inhibitors. To test this
hypothesis, the effect of the erbB1-RTK inhibitor erloti-
nib on YB-1 phosphorylation was analyzed in whole cell
extracts as well as in cytoplasmic and nuclear fractions.
Pretreatment of SKBr3 cells with erlotinib resulted in
complete inhibition of YB-1 phosphorylation in whole
cell extract (Figure 4A) as well as in cytoplasmic and
nuclear fractions (Figure 4B). As expected, erlotinib also
blocked basal- and radiation-induced P-Akt and P-
ERK1/2 in these cells (Figure 4A). To rule out off-target
effects of erlotinib, the efficacy of the highly specific
erbB1-RTK inhibitor BIBX1382BS [38] on radiation-
induced YB-1 phosphorylation was tested in cytoplasmic
and nuclear fractions. EGF was included as positive con-
trol. As shown at the bottom of Figure 4B, in both cyto-
plasmic and nuclear protein fractions treatment with
BIBX1382BS resulted in a marked reduction of YB-1
phosphorylation stimulated by IR as well as EGF treat-
ment. These data indicate that erbB1-RTK activity is
necessary for radiation-induced YB-1 phosphorylation,
and this is most likely due to activation of the PI3K/Akt
and MAPK/ERK pathways. To test the function of
PI3K/Akt and MAPK/ERK pathways in YB-1 phosphor-
ylation, we further investigated whether the inhibitors of
PI3K, Akt and MAPK affect YB-1 phosphorylation in
irradiated cells. The data shown in Figures 4C and 4D
indicate that treatment with either of the inhibitors
markedly reduced the phosphorylation of YB-1 at S102.
However, optimal inhibition was observed when cells
were treated with a combination of PI3K and MEK
inhibitors.
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Constitutive YB-1 phosphorylation due to K-RAS mutation
depends on erbB1 and downstream PI3K/Akt and MAPK/

ERK pathways

As IR-induced YB-1 phosphorylation was shown to be
dependent on erbB1, PI3K/Akt and MAPK/ERK, we
further investigated whether K-RAS,,-dependent consti-
tutive phosphorylation of YB-1 might be sensitive to the
inhibition of erbB1, PI3K and MEK. To this end, K-
RAS,, MCE-7 cells were transiently transfected with
con.-vector or K-RASV1? vector, and 48 hours after trans-
fection the cells were treated with the erbB1 inhibitor
erlotinib, the PI3K inhibitor LY294002 or the MEK inhi-
bitor PD98059 for 2 hours. Similar to the results shown
in Figure 3, overexpression of K-RAS"'? resulted in an
about 2.5-fold stimulation of YB-1 phosphorylation. Erlo-
tinib reduced mutated K-RAS ¥'*-induced YB-1 phos-
phorylation by about 50%, while the PI3K inhibitor and
the MEK inhibitor reduced K-RASY'*-induced YB-1
phosphorylation to the control level. However, the com-
bination of PD98059 and LY294002 (PD/LY) blocked
basal and K-RAS V'*-induced YB-1 phosphorylation com-
pletely (Figure 5A). These data indicate that phosphoryla-
tion of YB-1 due to mutation of K-RAS in part depends
on activation of erbB1. This is most likely mediated by
autocrine production of ligands and is in part indepen-
dent of erbB1, but it is dependent on activation of the
PI3K/Akt and MAPK/ERK pathways.

Because K-Ras strongly induces YB-1 phosphorylation
when it is mutated (Figures 3 and 5A), we next analyzed
whether phosphorylation of YB-1 in K-RAS,,, cells after
irradiation or stimulation with EGF depends on K-Ras
expression. Therefore, following downregulation of K-
Ras by siRNA, SKBr3 cells were irradiated or stimulated
with EGF. As shown in Figure 5B, downregulation of K-
Ras did not affect either IR- or EGF-induced YB-1 phos-
phorylation. A lack of effect of K-RAS-siRNA on P-
ERK1/2 was observed as well (Figure 5B).

YB-1 regulates repair of IR-induced DNA-DSB and
postirradiation survival

In addition to its function as a transcription factor, YB-1
is also involved in DNA repair, that is, base excision
repair and mismatch repair [39]. In line with this func-
tion, it has been demonstrated that YB-1 binds to dou-
ble-stranded, single-stranded and DNA-containing abasic
sites [40]. So far, however, no data demonstrating the
function of YB-1 in repair of IR-induced DNA-DSB and
postirradiation survival exist. The function of erbB1 and
its downstream pathways and the impact of mutated K-
RAS on repair of DNA-DSB have been demonstrated pre-
viously [15,34,41,42]. Therefore, we next asked whether
the cells presenting a differential pattern of basal- and
radiation-induced YB-1 phosphorylation additionally
exert a differential sensitivity to IR. The results obtained
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Figure 4 Radiation-induced phosphorylation of YB-1 is mediated by erbB1-dependent PI3K/Akt and MAP kinase signaling. (A) SKBr3
cells were treated with dimethy! sulfoxide (DMSO) or erlotinib (5 uM) for 2 hours and mock-irradiated or irradiated with 4 Gy IR. At the indicated
time points after irradiation, protein samples were isolated and P-YB-1, P-Akt and P-ERK1/2 were detected. The blots were stripped and
incubated with antibodies against YB-1, ERK1/2 or Akt1. The effect of erlotinib on IR-induced YB-1 phosphorylation in whole cell extract was
tested in two independent experiments. (B) SKBr3 cells were treated with DMSO or erlotinib and irradiated as described above. Thereafter 100
g of isolated cytoplasmic and nuclear fractions were subjected to sodium dodecyl sulfate polyacrylamide electrophoresis. Blots from both
fractions were incubated with P-YB-1, followed by stripping and detection of total YB-1. Actin in the cytoplasmic fraction was used as a loading
control. The experiment was repeated using the most specific erbB1 tyrosine kinase inhibitor, BIBX1382BS. As a positive control, the 30-minute
time point post-epidermal growth factor stimulation was included. (C and D) SKBr3 cells were treated with 20 uM PD98059 (PD), 10 uM
LY294002 (LY), 2.5 uM API59CJ-OH (API), 5 uM erlotinib (Erl) or a combination of PD98059 and LY294002 (PD/LY) for 2 hours. Control cells were
treated with DMSO. Thereafter cells were irradiated with 4 Gy IR. (C) At the indicated time points and (D) 10 minutes after irradiation, protein
samples were isolated and the levels of P-YB-1 were analyzed in (C) whole lysate and (D) cytoplasmic and nuclear fractions. Blots were stripped
and reincubated with YB-1 antibody. Actin and lamin A/C were detected as loading controls. The experiments shown in Figures 4C and 4D were
repeated at least twice, and representative Western blots are shown.

by clonogenic assay indicate a differential response in
terms of postirradiation survival of the cell lines analyzed.
The radiation dose, D3,, which is required to reduce cell
survival to 37%, is 1.95 Gy for SKBr3, 1.65 Gy for MDA -
MB-23, 1.35 Gy for MCEF-7 and 1.10 Gy for HBL100
cells. We further investigated whether YB-1 activity is
involved in the process of DNA-DSB repair and

postirradiation survival. For this purpose, a siRNA
approach was used. As shown in Figure 6, downregula-
tion of YB-1 by siRNA, either in K-RAS,, MDA-MB-231
or in K-RAS,,; SKBr3 cells, resulted in impaired repair of
DNA-DSB as shown by enhanced residual y-H2AX foci
24 hours after irradiation. Interestingly, downregulating
K-Ras resulted in enhanced frequency of residual DSB to
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the level observed with YB-1 siRNA. Likewise, siRNA tar-
geting of YB-1 increased radiation sensitivity tested in
MDA-MB-231 cells.

Discussion

This study presents the first evidence that phosphoryla-
tion of YB-1 at S102 is induced in tumor cells exposed
to IR. Moreover, we provide evidence that oncogenic K-

RAS due to a mutation in codon 12 or codon 13 leads
to constitutive phosphorylation of YB-1.

IR stimulates activation of many cytoplasmic signaling
cascades, mostly downstream of membrane-bound
receptors [24,43]. ErbB1 is one of the first membrane
receptors described that, when overexpressed or
mutated, leads to radio- and chemoresistance in a vari-
ety of human solid tumors. The expression of erbBl1,
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After 24 hours, the y-H2AX focus assay was performed. Using a fluorescence microscope, we counted the number of y-H2AX foci in 70 to 250
nuclei for each individual condition and graphed them. Using Student’s t-test, we found that YB-1 siRNA as well as K-RAS siRNA transfection
resulted in significantly enhanced residual y-H2AX foci (*P < 0.01 and **P < 2.13 x 10°®). Bar histograms represent data for residual y-H2AX foci
observed in two independent experiments after irradiation of cells with 4 Gy. (C) Three days after transfecting MDA-MB-231 cells with indicated
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ionizing radiation and incubated at 37°C. Ten days later cultures were stained, and colonies with more than 50 cells were counted. The SF of
irradiated cells was normalized to the plating efficiency of nonirradiated controls. Data represent the average SF + SD of six parallel experiments.
The significance of the effects YB-1 siRNA on postirradiation survival was assessed using Student's t-test. Except for the 1-Gy radiation dose (P =
0.089), the effects of YB-1 siRNA at the radiation doses of 1.5, 2, 3, and 4 Gy proved to be statistically significant at the following P values: P 5 oy
= 0.006, Pi gy = 0.003, Pz ¢y = 0001 and Py ¢,y = 0.015. From the cultures used for clonogenic assay, protein samples were isolated and levels
of P-YB-1, YB-1 and actin were detected using Western blot analysis.
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erbB2 and erbB3 has been reported to be regulated by the
transcription factor YB-1 [10,44]. For the nuclear accu-
mulation and induction of transcriptional activity, YB-1
must be phosphorylated at S102 [7]. Phosphorylation of
YB-1 at this site under in vitro conditions has been
described to be dependent on Akt [12,35]. In response to
serum, EGF and PMA, the ribosomal S6 kinase (RS6K)
has been described as the major enzyme that is responsi-
ble for phosphorylation of YB-1 at S102 [11]. Thus, it can
be concluded that YB-1 and erbB1 are functionally linked
because, on the one hand, YB-1 regulates erbB1 expres-
sion and, on the other hand, erbB1 signaling through Akt
as well as RS6K stimulates the transcriptional activity of
YB-1 through S102 phosphorylation.

It has been well described that IR induces activation of
erbB1 and its downstream pathways, mainly PI3K/Akt
and MAPK/ERK, in a ligand-independent manner
[24,25]. In the present study, we have shown that, as is
the case with exposure to erbB1 ligands, IR can induce
YB-1 phosphorylation through the activation of erbB1
and the downstream PI3K/Akt and MAPK/ERK signal-
ing cascades. On the basis of these data and the known
function of YB-1 in the regulation of erbB1 and erbB2
expression [7,8], it can be assumed that exposure of
tumor cells to IR as it occurs during conventional radio-
therapy may lead to an enhanced expression of erbB1
and erbB2. Because overexpression of these receptors is
associated with radioresistance, YB-1 can thus be pro-
posed as a new candidate to increase the efficacy of
molecular targeting strategies in cancer as recently
reported [45].

The mutation of K-RAS is one of the most common
genetic alterations in human tumors [46,47]. Oncogenic
activation of K-Ras plays a central role in tumor pro-
gression and has been associated with resistance to ther-
apy and reduced overall patient survival [48,49]. It has
been demonstrated in many cell lines, either with endo-
genously or exogenously introduced K-RAS mutation,
that the production of erbB1 ligands, mainly TGFo and
AREG, is upregulated [50-54]. Furthermore, K-Ras-
mediated autocrine erbB1 signaling through TGFo and
AREG contributes to radioresistance [30,55,56]. Here we
have shown that endogenously mutated K-RAS or over-
expression of mutated K-RAS in K-RAS,,; cells results in
a marked increase in basal phosphorylation of YB-1.
Mutated K-Ras due to permanent activation of ERK1/2
results in enhanced autocrine production of erbB1l
ligands, such as TGFa and AREG [29,30], which consti-
tutively induce YB-1 phosphorylation (see Figure 1D). In
contrast to K-RAS,,, cells, basal phopshorylation of YB-1
in K-RAS,,; cells is sensitive to serum depletion of the
culture medium (see Figure 1F), and basal YB-1 phos-
phorylation in K-RAS,,, cells can be further enhanced by
IR or the erbB1 ligands EGF, AREG and TGFa (see
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Figures 1D and 1E). Thus, our data indicate that YB-1
phosphorylation mediated by K-RAS mutation is in part
dependent on erbB1 signaling through the PI3K/Akt
and MAPK/ERK pathways (see Figure 5). However,
downstream pathways of erbB1, such as PI3K/Akt and
MAPK/ERK, can also be activated in K-RAS-mutated
cells independently of erbB1. In this context, mutated
K-Ras directly activates the MAPK/ERK pathway [30]
through interaction with Raf/MEK and can indirectly
activate PI3K/Akt through activating H-RAS [29]. Thus,
as summarized in Figure 7, in K-RAS-mutated cells, the
function of the PI3K/Akt and MAPK/ERK pathways in
YB-1 phosphorylation is in part erbBl-independent and
directly linked to the activity by K-Ras.

Although growing evidence exists for the function of
K-Ras in chemo- and radioresistance, the exact underly-
ing mechanism is not clear. On the basis of recent
results, one of the potential mechanisms could be the
enhanced repair of DNA-DSB mediated through
mutated K-RAS [30,42,57]. The data presented in the
present study reveal a novel function of mutated K-Ras
in regulating YB-1 phosphorylation. Because YB-1 is a
multifunctional protein which is also involved in the
regulation of DNA repair as described by Gaudreault et
al. [39] and Hasegava et al. [40], phosphorylation of YB-
1, either due to K-RAS mutation or following irradiation
of K-RAS,,; cells, may be necessary for efficient repair of
DNA-DSB. The results regarding the y-H2AX foci sup-
port this assumption (see Figure 6). The involvement of
YB-1 in DNA-DSB repair is also demonstrated by the
fact that YB-1 siRNA, like K-RAS siRNA, leads to an
enhanced frequency of residual DNA-DSB and affects
postirradiation cell survival. The role of YB-1 in the cel-
lular radiation response is further supported by the dif-
ferential radiation sensitivity of the cell lines tested in
the present study. SKBr3 cells, which show marked
radiation-induced YB-1 phosphorylation, are the most
radioresistant cells, whereas HBL-100 cells, which pre-
sent the lowest radiation-inducible YB-1 phosphoryla-
tion, are the most radiosensitive cells. The radiation
sensitivity profile of the four cell lines tested is also in
good agreement with the radiation-induced stimulation
of YB-1 phosphorylation in these cell lines, which seems
to be influenced by the basal phosphorylation status of
the YB-1 protein.

Conclusions

On the basis of the data presented here, it can be con-
cluded that in cells mutated in K-RAS, YB-1 is constitu-
tively phosphorylated and this phosphorylation cannot be
further enhanced by exposure to IR. However, in K-RAS
cells, exposure to IR does induce erbBl signaling,
which mediates YB-1 phosphorylation. As summarized in
Figure 7, IR-induced YB-1 phosphorylation in K-RAS,,, or
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Figure 7 Importance of K-Ras in regulating YB-1 phosphorylation.
A model illustrating the signaling pathways involved in Y-box binding
protein 1 (YB-1) phosphorylation and its function in cell survival after
exposure to ionizing radiation and treatment with erbB1 ligands or due
to expression of oncogenic K-RAS.

constitutive phosphorylation of YB-1 in K-RAS,,, cells
most likely depends on the erbB1 downstream PI3K/Akt
and MAPK/ERK pathways, which seem to be responsible
for YB-1 phosphorylation and thus the YB-1-mediated
repair of DNA-DSB as well as postirradiation survival.
Therefore, YB-1 can be discussed as a potential candidate
involved in radioresistance of solid tumors, for which tar-
geting of YB-1 could thus be an effective strategy to over-
come resistance to radiotherapy.
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