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Abstract

Introduction: Ductal carcinoma in situ (DCIS) is a non-invasive lesion of the breast that is frequently detected by
mammography and subsequently removed by surgery. However, it is estimated that about half of the detected lesions
would never have progressed into invasive cancer. Identifying DCIS and invasive cancer specific epigenetic lesions and
understanding how these epigenetic changes are involved in triggering tumour progression is important for a better
understanding of which lesions are at risk of becoming invasive.

Methods: Quantitative DNA methylation analysis of ABCB1, CDKN2A/p16/NK4a, ESRT, FOXCI, GSTP1, IGF2, MGMT, MLH1,
PPP2R2B, PTEN and RASSF1A was performed by pyrosequencing in a series of 27 pure DCIS, 28 small invasive ductal
carcinomas (IDCs), 34 IDCs with a DCIS component and 5 normal breast tissue samples. FOXC1, ABCB1, PPP2R2B and
PTEN were analyzed in 23 additional normal breast tissue samples. Real-Time PCR expression analysis was performed for
FOXCT.

Results: Aberrant DNA methylation was observed in all three diagnosis groups for the following genes: ABCB1, FOXCI,
GSTP1, MGMT, MLH1, PPP2R2B, PTEN and RASSFIA. For most of these genes, methylation was already present at the DCIS
level with the same frequency as within IDCs. For FOXCT significant differences in methylation levels were observed
between normal breast tissue and invasive tumours (P < 0.001). The average DNA methylation levels were significantly
higher in the pure IDCs and IDCs with DCIS compared to pure DCIS (P=0.007 and P= 0.001, respectively). Real-time
PCR analysis of FOXCT expression from 25 DCIS, 23 IDCs and 28 normal tissue samples showed lower gene expression
levels of FOXCT in both methylated and unmethylated tumours compared to normal tissue (P < 0.001). DNA
methylation levels of FOXC1, GSTP1, ABCB1 and RASSF1A were higher in oestrogen receptor (ER) positive vs. ER negative
tumours; whereas methylation levels of FOXC1, ABCB1, PPP2R2B and PTEN were lower in tumours with a TP53 mutation.
Conclusions: Quantitative methylation analysis identified ABCB1, FOXC1, PPP2R2B and PTEN as novel genes to be
methylated in DCIS. In particular, FOXCT showed a significant increase in the methylation frequency in invasive
tumours. Low FOXCT gene expression in both methylated and unmethylated DCIS and IDCs indicates that the loss of its
expression is an early event during breast cancer progression.

Introduction

The multistep model of breast cancer progression sug-
gests a transition from normal epithelium to invasive car-
cinoma via intraductal hyperplasia and in situ carcinoma
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[1]. These presumptive precursor lesions are currently
defined by their histological features. Ductal carcinoma
in situ (DCIS) is a pre-invasive lesion with diverse histo-
logical morphologies and molecular alterations [2]. The
risk of DCIS progressing to invasive carcinoma is not well
ascertained and robust biomarkers capable of stratifying
the most aggressive from the more benign forms of the
disease are currently lacking.
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Cancer progression is due to the accumulation of
genomic alterations leading to oncogene overexpression
and tumour suppressor loss inducing growth advantage
and clonal expansion. The transition of DCIS to invasive
ductal cancer (IDC) is a poorly understood key event in
breast tumour progression. Copy number alterations are
already present in DCIS but their frequency tends to
increase in IDCs [3]. Such genomic aberrations lead to
altered gene expression, and comprehensive gene expres-
sion studies comparing DCIS and IDCs have identified
stage-specific markers ([4-6] and Muggerud et al., sub-
mitted) along with a gene expression classifier which dif-
fered between DCIS and invasive breast cancer [7]. On
the other hand, the frequency of TP53 mutations in DCIS
is similar to what is observed in invasive tumours and in
situ and invasive components from the same tumour
exhibit the same mutations, indicating the same cellular
origin of the two components [8-10].

Epigenetic changes are considered to be an early event
during tumour development and one of the hallmarks of
cancer [11]. Hypermethylation of CpG islands represents

Table 1: Clinicopathological factors
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an alternative mechanism to inactivate tumour suppres-
sor genes and is a prevalent early molecular marker for
cancer. Specific patterns of CpG island methylation could
result from clonal selection of cells having growth advan-
tages due to silencing of associated tumour suppressor
genes, DNA repair genes, cell-cycle regulators and tran-
scription factors. Previous candidate gene studies investi-
gated promoter hypermethylation of in situ lesions and
identified aberrant methylation at the promoters of
GSTPI1, CyclinD2, RARB2, Twist, RASSFIA, HIN-1,
CDKN2A, 14-3-30 and APC1 [12-17]. However, only
GSTP1 promoter hypermethylation was reported to
progress in frequency during breast carcinogenesis [12].
Identification of early epigenetic changes in DCIS
lesions might give valuable markers for early detection
and may contribute to the understanding of how these
changes affect the progression of the disease. The aim of
this study was to identify informative progression mark-
ers by methylation analyses of eleven genes known to be
methylated in breast tumours or breast cancer cell lines;
ABCBI [18], CDKN2A/p16/NK4a [19], ESRI [20], GSTPI

No. DCIS No. Invasive No. Mixed
Diagnosis 27 28 34
Oestrogen receptor status
Positive 19 23 24
Negative 8 4 8
Progesterone receptor
status
Positive 20 21 20
Negative 7 6 12
TP53 mutations
Wild type 22 23 24
Mutant 5 4 8
Ki67
Positive 6 6 14
Negative 21 22 20
Grade, I to llland/or Ato C
Grade A/l (DCIS/invasive) 1 13 3/8
Grade B/Il (DCIS/invasive) 13 10 8/17
Grade C/Ill (DCIS/invasive) 12 4 15/7
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[21], IGF2 [22], MGMT [19], MLH1 [19], PPP2R2B [23],
PTEN [24], RASSFIA [25] or displaying variation in
breast cancer sub-type gene expression profiles; FOXCI.

In a series of 27 DCIS, 28 IDCs, 34 mixed cases (inva-
sive tumours with in situ components) and 28 normal tis-
sues we show that methylation of CpG islands is already
detectable in DCIS with the same frequency as within
IDCs.

Materials and methods

Patient material

Patients with fresh frozen tumour samples, collected at
the Fresh Tissue Biobank at the Department of Pathology,
Uppsala University Hospital, Sweden, were selected from
a population-based cohort of 854 women diagnosed
between 1986 and 2004, with either one of three types of
primary breast cancer lesions; a) pure DCIS, b) pure inva-
sive breast cancer, 15 mm or less, or ¢) mixed lesions
(invasive carcinoma with an in situ component). All his-
topathological specimens, both paraffin embedded (used
in IHC analyses) and frozen (used in methylation and
quantitative real-time polymerase chain reaction (qQRT
PCR) analyses), were re-evaluated by a breast pathologist.
Seventy-seven percent of the pure DCIS samples have a
DCIS component of >70%. Seventy-six percent of the
invasive samples have a tumour content of >70%, while
79% of the mixed samples have a tumour/DCIS compo-
nent of >70%. DCIS lesions were classified according to
the European Organisation for Research and Treatment
of Cancer (EORTC) classification system [26]. We
denoted the grades A to C (corresponding to grades I to
III) to make clear that in situ and invasive lesions were
classified based on different systems. Invasive breast can-
cers were classified based on the Elston-Ellis classifica-
tion system, grades I to III [27]. Twenty-eight samples of
normal breast epithelium were collected at the Akershus
University Hospital from women undergoing a biopsy for
the suspicion of malignant disease but without any histo-
logical findings. Five of the normal samples had enough
DNA to be used in the methylation analyses of all genes
in all patients. Twenty-three additional normal tissues
were included in the methylation analysis of FOXCI,
ABCBI, PPP2R2B and PTEN and qRT-PCR analyses of
FOXCI1. All patients signed a written consent to partici-
pate in the study, which has been approved by the
regional ethical committee. Clinicopathological details of
lesions are given in Table 1. This study was designed to
investigate differences in CpG methylation events
between different diagnostic groups with a particular
emphasis on identifying specific markers related to
tumour progression from in situ to invasive cancer. We
would like to emphasise that this study was not designed
to study prognosis. For example, none of the DCIS
patients died from breast cancer and only three experi-
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enced a local recurrence. Also, the patients were treated
differently according to tumour characteristics. Hence,
no follow-up data can be presented. The study was
approved by the Ethics Committee at Uppsala University
Hospital (Dnr 2005:118).

Clinical endpoints

The entire coding sequence of the TP53 gene (exon 2-11)
was analyzed for mutations by sequencing using the 3730
DNA Analyzer (Applied Biosystems, Foster City, Califor-
nia, USA) [10]. Immunohistochemical staining (IHC) of
paraffin embedded material was performed for the
oestrogen receptor (ER), progesterone receptor (PR) and
a proliferation marker (Ki-67). A cut-off limit for positive
staining was chosen for ER >10% (ER 6F11, Novocastra,
Newcastle, UK), PR >10% (PR 1A6, Novocastra) and Ki-
67 >10% (Ki-67 MIB-1, DAKO A/S, Glostrup, Denmark)
stained tumour cells, irrespective of the intensity of the
staining. Staining was performed in an automatic staining
machine (Ventana Medical Systems, Tucson, AZ, USA).

Pyrosequencing

A total of 1 pug of DNA was bisulphite converted using the
MethylEasy™ HT Kit for Centrifuge (Human Genetic Sig-
natures, North Ryde, New South Wales, Australia)
according to the manufacturer's instructions. Quantita-
tive DNA methylation analysis of the bisulphite treated
DNA was performed by pyrosequencing or, in case of
several sequencing primers, by serial pyrosequencing
[28]. Oligonucleotides for PCR amplification and pyrose-
quencing were synthesized by Biotez (Buch, Germany)
and sequences are given in Additional file 1. Quantitative
DNA methylation analysis was carried out on a PSQ 96
MD system with the PyroGold SQA Reagent Kit (Pyrose-
quencing, Biotage, Uppsala, Sweden) and results were
analyzed using the Q-CpG software (V.1.0.9, Pyrose-
quencing AB). Unmethylated commercial DNA (Qiagen,
Valencia, CA, USA) and mixed human lymphocyte DNA
(Promega, Madison, W1, USA) was analyzed in parallel to
define the technical background. CpG-values for tumour
and normal tissue samples are given in Additional file 2.
Pyrograms for FOXCI in six tumour samples and three
normal tissue samples are given in Additional file 3.

cDNA synthesis and real-time PCR analysis

qRT-PCR was performed on 25 DCIS, 23 pure invasive
carcinomas from the same cohort and 28 normal tissues.
cDNA was synthesized in a total volume of 20 pl with 100
ng total RNA using the High Capacity cDNA Reverse
Transcription kit (Applied Biosystems,) and used as tem-
plate for real-time PCR analysis with the TagMan Gene
Expression Assay for FOXCI (Hs00559473_s1, Applied
Biosystems,) on an ABI Prism 7900HT sequence detector
system (Applied Biosystems). Universal human reference
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Figure 1 Methylation overview. A: Bar chart displaying promoter
methylation frequencies across the three diagnosis groups. Methyla-
tion frequency is defined as the number of methylated samples within
each category. The average values of methylation for all CpGs were cal-
culated for each sample and each gene. A sample was scored as hyper-
methylated if the measured methylation values were two times above
the standard deviation of the mean of the normal controls, and con-
versely, as hypomethylated if methylation values were below two
times the standard deviation of the mean of the normal control tissues.
DCIS = light grey, pure invasive = dark grey, and mixed = black. B:
Methylation overview per gene across the three diagnosis groups.
Black boxes indicate methylated and white boxes indicate unmethy-
lated samples. For the imprinted gene IGF2; white boxes indicate the
expected allele-specific methylation, black boxes indicate hypermeth-
ylation, and grey boxes indicate hypomethylation.

RNA (Stratagene, La Jolla, CA, USA) was used to gener-
ate standard curves. Each sample was run in triplicate.
Relative gene expression levels were determined using the
standard curve method and normalized to the reference
gene PGKI. PGKI was selected as a reference gene
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because the expression of this gene was not statistically
significant different across the patient groups [29,30]

Statistics

The average value of methylation for all CpGs in a target
region was calculated for each sample and each gene. A
sample was scored as aberrantly hypermethylated if the
measured methylation values were two times above the
standard deviation of the average of the normal controls,
and conversely, as hypomethylated if methylation values
were below two times the standard deviation of the aver-
age of the normal control tissues. Differences in the
degree of methylation were determined by two-sided
non-parametric Mann-Whitney test for two-categorical
clinicopathological factors and Kruskal-Wallis test for
three-categorical clinicopathological factors. The P-val-
ues were obtained by permutation procedure without any
assumption on specific distribution. Correlations
between concomitant methylated genes were calculated
using Spearman's test. All tests were performed using the
Statistical Package for Science version 15.0. For all
obtained p-values, the false discovery rate (FDR) was
assessed using Benjamini and Hochberg [31] in the Bio-
conductor multitest package [32].

Results

CpG promoter methylation patterns across three breast
cancer diagnosis groups

The results of the pyrosequencing analysis of 27 DCIS, 28
invasive tumours and 34 mixed tumours, are illustrated in
Figure 1A and 1B. All patient samples in all three groups
displayed widespread aberrant CpG island methylation in
the analyzed gene set. Aberrant DNA methylation
(defined as an increase of average methylation levels
beyond the average + two times the standard deviation
observed in the group of normal tissues) was observed in
all three diagnosis groups for the following genes (fre-
quency; % of DCIS vs. invasive vs. mixed): ABCBI (40.7%
vs. 39.3% vs. 44.1%), FOXC1 (22.2% vs. 53.6% vs. 67.6%),
GSTPI (22.2% vs. 14.3% vs. 26.5%), MGMT (3.7% vs. 3.6%
vs. 5.9%), MLHI (7.4% vs. 3.6% vs. 2.9%), PPP2R2B (55.0%
vs. 78.6% vs. 70.6%), CDKN2A/p16WNK4a (0% vs. 10.7% vs.
5.9%), PTEN (18.5% vs. 14.3% vs. 23.5%) and RASSFIA
(85.2% vs. 82.1% vs. 85.3%). Methylation of ABCBI,
FOXCI, PTEN and PPP2R2B in DCIS is reported here for
the first time (Figure 2). To rule out any artefact due to
inter-individual variation in ABCBI, FOXCI, PTEN and
PPP2R2B methylation patterns in normal tissue and to
confirm the presence of DNA methylation to be a tumour
specific event, we analyzed the methylation patterns in 23
additional normal tissues without histopathological find-
ings, confirming the initial findings of an absence of DNA
methylation around the transcription start site of these
genes in normal breast tissue (Figures 2 and 3A). Overall,
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Figure 2 Newly identified aberrantly methylated genes in DCIS.
Differences in the average DNA methylation (%) between normal and
DCIS tissue for the newly identified methylated genes in DCIS; PPP2R28B,
ABCBI, FOXC1 and PTEN. The average DNA methylation (%) value is the
average value of methylation for all CpGs calculated for each sample.
Abbreviations: N = normal tissue, D = DCIS.

methylation was observed already in DCIS and the fre-
quency (that is, the number of methylated samples) was
unchanged with the advancement of the disease for most
of the genes except for FOXCI. The frequency of FOXCI
methylated samples increased from in situ to invasive
cancer. In addition, differential levels of DNA methyla-
tion (average DNA methylation) of FOXC1 among the
diagnosis groups were observed. For FOXCI significant
differences in methylation levels were observed between
normal breast tissue and IDC (P < 0.001) and mixed
tumours (P < 0.001) (Figure 3A). Significantly lower levels
of FOXCI methylation were observed in DCIS compared
to invasive and mixed tumours (P = 0.007, and P = 0.001,
respectively). No significant difference in DNA methyla-
tion levels between the diagnosis groups was observed for
any of the other genes studied. The number of methylated
genes was not different between DCIS, invasive and
mixed patients. ESRI did not show any difference in
methylation levels between tumours and normal tissues.
The imprinted gene IGF2 was hypomethylated in 10
DCIS, 11 invasive and 5 mixed tumours and hypermethy-
lated in 1 DCIS, 3 invasive and 10 mixed tumours.
Concomitant DNA methylation was observed between
genes at different chromosomes. Methylation at FOXCI
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(chr 6p) showed significant correlations to RASSFI1A (chr
3p), PPP2R2B (chr 5q), ABCBI (chr 7q) and GSTP1 (chr
11q) (P =7.6*10*and R2=0.34, P = 3.6*10->and R2=0.41,
P = 45*10% and R? = 0.46, P = 1.5*10%* and R2 = 0.38,
respectively). In addition methylation at PTEN (chr 10q)
was significantly correlated to ABCB1 (chr 7q) and
PPP2R2B (chr 5q) methylation (P = 1.4*10-%, R2= 0.48 and
P = 1.0*10%, R2 = 0.60, respectively). All P-values were
obtained with a false discovery rate <5%.

qRT-PCR validation of the expression of FOXC1

The functional impact of FOXCI methylation on its
expression level was investigated by TagMan qRT-PCR.
Both methylated (n = 19) and unmethylated (n = 29)
tumours showed significantly lower expression values
compared to normal tissue (n = 28, both P < 0.001) (Fig-
ure 3B), indicating that the transcriptional inactivation of
FOXCI is an early event during tumour progression.

Methylation profiles associated with clinicopathological
features

Using the nonparametric Mann-Whitney test we found
that FOXCI, GSTPI, ABCBI1 and RASSFIA displayed a
significantly different level of methylation between ER
positive and ER negative samples (P = 0.009, P = 0.003, P
= 0.003 and P = 0.003, respectively). Specifically samples
with a negative ER status showed the lowest degree of
methylation (Figure 4A). FOXC1, ABCB1, PPP2R2B and
PTEN displayed significant differences in methylation
levels in TP53 wild type and TP53 mutated samples (P =
0.006, P = 0.015, P = 0.025 and P = 0.01, respectively) with
the TP53 mutated samples having the lower DNA methy-
lation (Figure 4B). In addition ABCBI methylation was
lower in Ki67 positive tumours (P = 0.006) and GSTPI
methylation was lower in PR negative tumours (P =
0.009) (Figure 4C). No statistically significant difference
could be attributed to histopathological grade.

Discussion

In the present study we quantitatively determined the
methylation levels in the promoter regions of 11 cancer-
related genes in DCIS, small invasive breast cancers,
mixed lesions and normal breast tissues. Aberrant DNA
methylation was already present in DCIS for several of
the genes studied. No DNA methylation changes specific
for invasive breast cancer were identified.

Previous candidate gene studies have investigated pro-
moter hypermethylation of in situ lesions and have shown
methylation for GSTP1, CyclinD2, RARB2, Twist,
RASSFIA, HIN-1, CDKN2A, 14-3-30 [12-14,16]. We
found frequencies of methylation for RASSFIA in both
DCIS and invasive tumours similar to previously pub-
lished reports ranging from 60 to 88% in different popula-
tions [14,15]. Results seem thus to be very consistent over
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Figure 3 Differential FOXC1 methylation across diagnosis groups and subsequent validation by qRT-PCR. A: Differences in FOXC1 average
DNA methylation (%) between normal breast tissue and the different diagnosis groups. The FOXCT average DNA methylation (%) value is the average
value of methylation for all CpGs calculated for each tumour sample. B: Differences in relative expression levels of FOXCT as measured by gRT-PCR in
normal breast tissue versus methylated and unmethylated tumours. Expression of FOXC1 was measured relative to the expression of the reference

gene PGK1. Black horizontal bars represent median value for each diagnosis group.

different technology platforms identifying the epigenetic
inactivation of RASSFIA as a very early step during breast
carcinogenesis. GSTPI has been found to be frequently
methylated in different stages of breast carcinomas.
Again, similar frequencies of 20 to 30% were found here
for GSTPI compared with recent reports [21,33-35]. In
this study, methylation of MGMT was rare in both DCIS
and invasive tumours, also in concordance with previous
studies [36]. Infrequent methylation was also observed
for the MLHI gene, in line with the absence of changes in
MLH]1 expression during early breast carcinogenesis as
assessed by IHC [37,38]. We also found minimal methyla-
tion of CDKN2A within the CpGs studied here, which is
in concordance with a previous study on DCIS and other
proliferative lesions of the breast [16]. No methylation of
ESRI was observed in this study, although we have used
the commonly studied region 400 bp downstream of
ESRI transcription start site. A previous study observed
methylation in DCIS samples [15], however they could
not show significant differences between normal and dis-
eased tissue in North-American and Korean populations.
A study by Feng et al. (2007) shows the same result as we
report with no increase in ESRI methylation in malignant
compared to normal breast tissues [39]. However, we can
not exclude the possibility that the reason why we are not
able to detect any ESRI methylation is that pyrosequenc-

ing is less sensitive compared to the Q-MSP technology
used in [15].

A novel finding of our study was the identification of
aberrant DNA methylation of ABCBI, FOXCI1, PPP2R2B
and PTEN in DCIS. The methylation frequencies were
similar in all diagnosis groups for ABCBI, PPP2R2B and
PTEN. PTEN and PPP2R2B are both candidate tumour
suppressor genes [23,40] and our results suggest that epi-
genetic silencing might be involved in dysregulation of
these genes in DCIS. We have observed the methylation
of PPP2R2B in locally advanced breast tumours (Dejeux
et al, submitted for publication), and PTEN has been
found to be frequently methylated in breast carcinomas
[24,41]. ABCBI1 is an ATP dependent p-glycoprotein
involved in the efflux of various small molecules and xen-
obiotics in extra and intracellular membranes. Associa-
tion of DNA methylation of ABCBI and drug resistance
in breast cancer cell-lines has been reported [42], and
ABCBI expression has been associated with poor out-
come in breast cancer patients [43]. We have observed
that ABCBI methylation is important for treatment
response and overall survival in patients with advanced
breast cancer treated with doxorubicin (Dejeux E, et al.
submitted). In this study, ABCBI methylation was associ-
ated with non-proliferative, Ki67 negative tumours sup-
porting a positive role for ABCBI methylation in breast
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Figure 4 Association between clinicopathological factors and DNA methylation. A: FOXC1, GSTP1, ABCB1 and RASSF1A were significantly differ-
entially methylated between ER-positive and ER-negative tumours. B: FOXC1, ABCB1, PPP2R2B and PTEN were significantly differentially methylated be-
tween TP53 wild type and mutated tumours. C: ABCBT was significantly differentially methylated between Ki67-negative and Ki67-positive tumours
and GSTPT was significantly differentially methylated between PR-positive and PR-negative tumours. All types of lesions were combined for these anal-
yses. All P-values were obtained by using a false discovery rate <5%.

cancer progression and outcome. FOXCI is a transcrip-
tion factor with an important role in the regulation of
ocular development [44]. FOXCI is hypomethylated and
highly expressed in CD44+ breast progenitor cells and
might play an important role in the differentiation of
mammary epithelial cell phenotypes [45]. In our data set,
FOXC1I displayed a significantly increased methylation
levels from normal breast tissue to invasive tumours with
simultaneously lower FOXCI gene expression as mea-
sured by qRT-PCR. The tumours with less methylation
and somewhat higher expression of FOXCI (Figure 3B)
tended to be of the basal-like and normal-like breast can-
cer subtypes, as determined by gene expression profiling.
Luminal B-like and ERBB2-like tumours had significantly
lower FOXCI expression (P = 0.026 and P = 0.018,

respectively) compared to the basal-like tumours whereas
no statistical significance was found for basal vs. luminal
A-like tumours (P = 0.134) (Muggerud A et al., unpub-
lished results). This supports the view of heterogeneous
FOXCI expression across molecular subtypes, which is in
concordance with previously reported results [45].
Bloushtain-Qimron et al reported also increased methy-
lation in matched distant metastases compared to the pri-
mary tumours, supporting a differential role for FOXCI-
methylated cells in the progression of the disease. The 28
normal breast tissue samples analysed in this study dis-
played on average significantly higher levels of FOXCI
gene expression compared to the DCIS, small invasive
and mixed lesions. Both the methylated and unmethy-
lated DCISs and invasive tumours displayed significantly
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lower levels of FOXCI gene expression. This might indi-
cate that histone modifications or other mechanisms in
addition to promoter hypermethylation silence FOXCI in
the unmethylated tumours. Further studies are needed to
investigate the functional consequence of this increase of
DNA methylation and the potential role of FOXCI in the
progression from DCIS to invasive carcinoma.

Concomitant DNA methylation was observed between
some of the genes studied suggesting connected epige-
netic programs within tumours. In line with our result,
significant correlation between GSTPI and RASSFI1A
hypermethylation has previously been reported [46]. The
chromosomal region 6p25 harbouring the FOXCI gene is
frequently gained in ER negative tumours [47] in line with
our observation of low DNA methylation and high
expression in basal and normal-like tumours. The other
chromosomal regions harbouring the genes with a high
correlation to FOXCI methylation have all been reported
to either have gain or losses in breast cancer [48-50]. It is
possible that concomitant DNA hypomethylation in
these regions could induce chromosomal instability of the
same regions as reported in colon cancer [51].

By unsupervised hierarchical clustering analysis of a
number of methylation markers and tumours from 148
breast cancer patients, Widschwendter et al. (2004) [52],
showed that the tumours segregated naturally into groups
with distinct methylation profiles that differed signifi-
cantly in their hormone receptor status. Further, other
studies have focused on the epigenetic differences
between ER positive and ER negative breast cancers and
their results imply that methylation profiles of ER-posi-
tive tumours are different from those of ER-negative
tumours [39,46]. Moreover they found that promoter
hypermethylation of RASSFIA and GSTP1 was more fre-
quent in ER-positive than in ER-negative tumours in both
early and advanced breast tumours. Our data are consis-
tent with these previous reports suggesting that ER (or
hormone receptor) expression may influence epigenetic
changes.

Lower levels of DNA methylation were observed in
TP53 mutated tumours, especially at FOXCI, ABCBI,
PPP2R2B and PTEN promoters. The association of
ABCBI and PPP2R2B with TPS3 status is also observed
in more advanced tumours (Dejeux et al. submitted). It
has also been reported that breast tumours with 7P53
mutations lacked methylation in a number of regulatory
genes [39]. Further in concordance with our results, Toy-
ota et al. [53] found a high number of 7P53 mutations in
unmethylated colorectal tumours suggesting that TP53
mutations and epigenetic alterations of other growth-
suppressing genes can be two distinct mechanisms that
inactivate tumour-suppressor genes in breast cancer.
Similar to the results of [52] we could not find associa-
tions between histopathological grade and DNA methyla-
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tion patterns among the samples and genes investigated.
This might be due to independency of grade for this lim-
ited gene panel investigated or the relatively small cohort
size.

Almost all genes methylated in DCIS and IDC have
been identified using candidate gene approaches.
Genome-wide methylation studies might provide useful
in identifying new DNA methylation events occurring
during early breast tumourigenesis. Since this study was
designed to find differences related to tumour progres-
sion from in situ to invasive breast cancer, follow-up
studies are needed to investigate these biological markers
and their potential in predicting prognosis.

Conclusions

This study has identified four novel genes as methylated
in DCIS; ABCBI1, FOXCI, PPP2R2B and PTEN. Their role
in the progression from in situ to invasive carcinoma
needs further investigation. Furthermore, these analyses
demonstrate that promoter methylation is an early and
frequent event in breast cancer and most of the genes
that are found to be methylated in advanced breast
tumours are already found methylated in DCIS.
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