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Abstract

Introduction The C677T polymorphism of the
methylenetetrahydrofolate reductase (MTHFR) gene has been
hypothesized to increase breast cancer risk. However, results
have been inconsistent, and few studies have reported the
association by menopausal status or by intakes of nutrients
participating in one-carbon metabolism. Our aims were to
investigate whether MTHFR C677T was associated with
postmenopausal breast cancer risk and whether this relation
was modified by intakes of folate, methionine, vitamins B2, B6,
and B12, and alcohol.

Methods We studied 318 incident breast cancer cases and
647 age- and race-matched controls participating in a nested
case-control study of postmenopausal women within the
VITamins And Lifestyle (VITAL) cohort. Genotyping was
conducted for MTHFR C677T and dietary and supplemental
intakes were ascertained from a validated questionnaire.
Adjusted odds ratios (OR) and 95% confidence intervals (CI)
were calculated using unconditional logistic regression.

Results We observed a 62% increased risk of breast cancer
among postmenopausal women with the TT genotype (OR =
1.62; 95% CI: 1.05 to 2.48). Women with a higher number of
variant T alleles had higher risk of breast cancer (P for trend =
0.04). Evidence of effect-modification by intakes of some B
vitamins was observed. The most pronounced MTHFR-breast
cancer risks were observed among women with the lowest
intakes of dietary folate (P for interaction = 0.02) and total (diet
plus supplemental) vitamin B6 (P for interaction = 0.01), with no
significant increased risks among women with higher intakes.

Conclusions This study provides support that the MTHFR
677TT genotype is associated with a moderate increase in risk
of postmenopausal breast cancer and that this risk may be
attenuated with high intakes of some one-carbon associated
nutrients.

Introduction
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the
irreversible reduction of 5,10-methylenetetrahydrofolate to 5-
methyltetrahydrofolate, the primary circulating form of folate
and methyl donor in DNA methylation. MTHFR is a critical
enzyme in one-carbon metabolism, redirecting the pool of
folate from DNA synthesis/repair to methylation. It is of interest
because aberrations in DNA synthesis, repair, and methyla-
tion, have been implicated with cancer risk. The substitution of

cytosine (C) with thymine (T) at nucleotide 677 in the MTHFR
gene is a common polymorphism (C677T) and is correlated
with increased thermolability and reduced MTHFR activity [1].
Homozygotes (677TT) have approximately 30% and heterozy-
gotes (677CT) have approximately 65% the activity of
homozygous wild-types (677CC), respectively [1,2].

The C677T polymorphism has been studied extensively, yet
for breast cancer risk, three recent meta-analyses suggest that
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the association with the MTHFR C677T polymorphism has
been largely inconsistent [3-5]. Several reviews suggest that
for breast cancer, the relation may vary by menopausal status
and also, highlight the importance of examining potential effect
of risk modification by nutrients that contribute to or interrupt
one-carbon metabolism [3,4]. However, few studies have
reported estimates by menopausal status, and most have not
examined additional nutrient effect modifiers other than folate
or alcohol [3-5]. A further limitation among investigations
examining dietary effect modifiers is that most have utilized
diet recalled after cancer diagnosis which has the potential for
recall bias.

We, therefore, investigated the relationship between the
MTHFR C677T polymorphism and breast cancer risk among
postmenopausal women in a nested case-control study within
the VITamins And Lifestyle (VITAL) cohort. We also examined
whether this relation was modified by prediagnostic intakes of
nutrients involved in one-carbon metabolism (that is, folate,
methionine, vitamins B2, B6, and B12, and alcohol). Previously,
in the VITAL cohort, we observed a protective association
between folate intakes and breast cancer risk [6].

Materials and methods
VITAL cohort
The VITAL cohort was principally designed to investigate sup-
plement use and cancer risk. Details have been previously
reported [7]. Briefly, men and women were eligible to join the
VITAL cohort if they aged 50 and 76 years and living in the
western area of Washington State covered by the Surveil-
lance, Epidemiology, and End Results (SEER) cancer registry.
A 24-page baseline questionnaire was sent to participants,
using names from a commercial mailing list. Data collection
occurred from October 2000 to December 2002. Among the
40,339 women who were eligible, 25.6% responded to the
baseline questionnaire.

Selection of cases and controls
Breast cancer cases were identified by linkage to the SEER
cancer registry. From baseline to December 30, 2003, 514
breast cancer patients were identified. To form the nested
case-control dataset, we excluded women who reported a his-
tory of breast cancer (n = 48), had rare breast histologies (that
is, sarcoma, phyllodes, or lymphoma, n = 4), did not provide
buccal cell samples needed for genotyping (n = 127), or did
not complete the breast-cancer risk-factor page of the base-
line questionnaire (n = 1), leaving 334 cases. We further
excluded 12 women who were not postmenopausal and four
women who failed to be genotyped for MTHFR. After these
criteria, 318 postmenopausal VITAL women who had been
diagnosed with incident breast cancer (invasive and in situ)
remained.

Controls were women who were not diagnosed with any type
of cancer since baseline (based on linkage to SEER) and had

not reported a history of breast cancer on the baseline ques-
tionnaire. There were 36,096 VITAL women without a cancer
diagnosis (any type of cancer) since baseline and had never
been diagnosed with breast cancer. Of these possible con-
trols, 11,798 were excluded because they did not provide a
buccal cell sample, and 185 were excluded because the
breast-cancer risk-factor page of the baseline questionnaire
was not completed. Two controls for each case were randomly
selected from the remaining 24,113 possible (pre- and post-
menopausal) controls by frequency matching on age at base-
line (in five-year intervals) and race resulting in 668 controls.
We also ensured that the follow-up times of the controls (time
from baseline to death, a move out of area, or December 31,
2003) were greater than or equal to the follow-up times of the
cases (time from baseline to breast cancer diagnosis). Infor-
mation on deaths and moves out of the area were obtained by
linking the VITAL cohort to the Washington State death files
and the National Change of Address system. For this current
analysis, we excluded 19 controls who were not postmeno-
pausal and two controls whose samples failed to be geno-
typed for MTHFR, leaving 647 postmenopausal controls. This
study was approved by the Fred Hutchinson Cancer Research
Center Institutional Review Board (IRB), Seattle, Washington.
Voluntary return of the questionnaire was considered implied
consent.

Genotyping
DNA was obtained from buccal cells collected from cyto-
brushes. Women who completed the VITAL baseline ques-
tionnaire were mailed a DNA kit containing three sterile
cytobrushes, detailed instructions with pictures for use of kit,
and a consent form. Genotyping was done by InterGenetics
Incorporated (Oklahoma City, OK, USA). Genotyping of
MTHFR C677T was determined using a microsphere-based,
allele-specific primer extension (ASPE) assay followed by
analysis on the Luminex 100 flow cytometer (Luminex, Austin,
TX, USA) as previously described [8]. DNA was amplified by
multiplex PCR using HotStar Taq DNA polymerase (Qiagen
Inc., Valencia, CA, USA). To ensure quality control, cases and
controls were mixed on genotyping plates, and genotyping
was performed with blinding to case-control status. To ensure
there was no signal in wells without DNA added, each plate
had at least three buffer blanks that were carried through the
entire PCR/ASPE/Luminex process. Moreover, at least 5% of
the samples were randomly selected and genotyped in dupli-
cate with a concordance rate >99%.

Effect modifiers and covariates
Information on diet, medical history, reproductive history, life-
style factors, personal characteristics, and family history of
breast cancer was collected at baseline using a 24-page self-
administered questionnaire. Women were considered post-
menopausal if they had a natural menopause with no periods
in the year before baseline, had ever used postmenopausal
hormones (PMH), had bilateral oophorectomy, or were 60
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years or older at baseline. Because women with a hysterec-
tomy without bilateral oophorectomy cannot report on meno-
pause, they were considered to be postmenopausal if they had
ever used hormone therapy or were 55 years or older at base-
line.

Intakes of folate, methionine, vitamins B2, B6, and B12, multivi-
tamins and alcohol reported on the baseline questionnaire
were examined as potential effect modifiers of the MTHFR-
breast cancer relationship. Intakes from diet over the past year
were determined from a semi-quantitative food frequency
questionnaire (FFQ), adapted from the Women's Health Initia-
tive and other studies [9-11]. Participants also reported
intakes of multivitamins and individual vitamin supplements,
taken singly or as mixtures (for example, stress/B-complex,
antioxidant mixtures), including questions on years of use in
the 10 years before baseline, days per week of use and dose
per day. The validity and reliability of supplement reporting in
this cohort has been previously examined [12].

We analyzed B vitamins from diet, supplement and diet plus
supplement (total) sources. Vitamin B2 was not asked as an
individual supplement, so only B2 as a multivitamin was consid-
ered, and therefore supplemental B2 was not considered
alone. Methionine was determined from diet only. Average
daily intake of dietary nutrients was calculated from the FFQ by
multiplying the adjusted serving frequency (calculated as fre-
quency times portion size) of each food/beverage item by its
nutrient content and summing the nutrient contributions of all
foods or beverages. The nutrient database used, the Minne-
sota Nutrient Data System for Research (University of Minne-
sota's Nutrition Coordinating Center, Minneapolis, MN, USA)
[13], took into account the U.S. mandated folic acid fortifica-
tion of grain products. Total alcohol intakes were calculated
from all reported past-year consumption of red wine, white
wine, beer, and liquor/mixed drinks.

Intakes of supplemental folate, other micronutrients, and mul-
tivitamins were averaged over 10 years, as previously
described [6]. We needed a conversion factor [14] for the cal-
culation of total folate because synthetic folate (folic acid) is
more bioavailable than naturally occurring folate (polygluta-
mates). Thus, total folate, expressed in dietary folate equiva-
lents (DFE), was obtained by first multiplying synthetic folate
(supplements and fortified in foods) by a conversion factor of
1.7 and then, adding intakes of natural food folate (μg). To
summarize intakes of micronutrients that act as cofactors in
the one-carbon pathway, we generated a one-carbon micro-
nutrient score by summing the z-scores of total folate, dietary
methionine, and total vitamins B2, B6, B12 and then, dividing
this score into high (upper median) and low (lower median) for
categorical analyses. Women were excluded from the dietary
and total (diet plus supplement) nutrient analyses if they did
not complete all pages the FFQ or if their reported total energy
intake was <600 or >4,000 kcal. Breast cancer risk factors

and demographic variables were reported on the baseline
questionnaire [6].

Statistical analyses
We compared baseline characteristics of cases and controls
using Wilcoxon signed-rank tests (for continuous variables) or
Chi-square tests (for dichotomous variables). Observed geno-
type frequencies were in Hardy-Weinberg equilibrium (P >
0.05). Odds ratios (OR) for breast cancer risk and 95% confi-
dence intervals (CI) were calculated using unconditional logis-
tic regression adjusting for the matching factors of age at
baseline (50 to 54 years, 55 to 59, 60 to 64, 65 to 69, 70 to
76) and race (white, other). For analyses of the MTHFR-breast
cancer association, we assigned the wild-type genotype
MTHFR 677CC as the reference group. Linear trend was cal-
culated by modeling the MTHFR genotype (CC, CT, and TT)
as one term, ordinally.

Intakes of folate, methionine, vitamins B2, B6, and B12, multivi-
tamins, and alcohol were examined as potential effect modifi-
ers of the MTHFR-breast cancer relationship. We
dichotomized dietary and total intakes of the B vitamins and
methionine by median intakes. Multivitamin intake was divided
into some and no intake over the 10 years prior to baseline,
and B vitamin consumption from supplements (that is, individ-
ual vitamins plus multivitamins) were dichotomized by levels at
or above the dose obtained by 10 year daily use of a standard
(Centrum®) multivitamin versus below that level. Based on pre-
vious literature on breast cancer risk [15], and the distribution
of alcohol consumption among VITAL women, alcohol was
dichotomized into <10 g/d and ≥ 10 g/d intakes (that is,
approximately one drink/day). Categorizations of all nutrients
were based according to the distribution of intakes among
controls. For our examination of effect modification, odds
ratios were adjusted for the matching factors of age and race
in addition to following standard breast cancer risk factors, as
described in the footnote of the last table. To best illustrate the
joint effects, we cross-classified women by their MTHFR gen-
otype and the dichotomous effect modifier and used a single
reference group for the odds ratios. The group hypothesized
to have the lowest risk was selected as the reference group.
Tests for interaction were performed by entering the product
term of the ordinal MTHFR variable and dichotomous effect
modifier in a multivariable-adjusted model and using Wald sta-
tistic to obtain a P-value. All statistical analyses were per-
formed using SAS, version 9.1, (SAS Institute Inc., Cary, NC,
USA). P values < 0.05 were considered statistically significant
and all statistical tests were two-sided.

Results
Participants were on average 64 years of age and mostly Cau-
casian (Table 1). As expected, cases were significantly more
likely than controls to have breast cancer risk factors such as
having a prior breast biopsy, having fewer births, using PMH,
and drinking more alcohol. Additionally, although not statisti-
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cally significant, more cases than controls had a first-degree
family history, young age at menarche, and were nulliparous.
The majority of breast tumors were invasive (n = 253). Among
controls, the frequencies of MTHFR genotypes were: 677CC
(46.5%), 677CT (43.9%), and 677TT (9.6%).

Postmenopausal women with the MTHFR 677TT genotype
had significantly higher risk of breast cancer (0R = 1.62; 95%
CI: 1.05 to 2.48) than 677CC individuals (Table 2). The test

for increasing breast cancer risk with increasing number of var-
iant T alleles was significant (P for trend = 0.04), although
there was no clear excess risk for the heterozygous MTHFR
677CT genotype (OR = 1.08; 95% CI: 0.81 to 1.43) (Table
2). We observed an increased breast cancer risk with MTHFR
677TT even after restricting to invasive breast cancer cases
(RR = 1.65; 95% CI: 1.03 to 2.63) and when restricting to
Caucasians (RR = 1.59; 95% CI: 1.03 to 2.46 for 302 cases)
(data not shown).

Table 1

Characteristics of postmenopausal breast cancer cases and controls, VITAL study *

Cases (n = 318) Controls (n = 647) P value †

Demographics

Age, years (mean ± SD) 64.4 ± 6.88 64.2 ± 6.86 0.67

White,% 95.0 95.1 0.95

Family history/breast-related procedures

Mother or sister with breast cancer,% 18.6 15.6 0.25

Mammography in past 2 years,% 93.1 93.7 0.73

Prior breast biopsy,% 28.0 21.8 0.03

Reproductive factors

Early age at menarche,% <12 years 20.1 18.1 0.44

Nulliparous, % 12.9 9.74 0.14

Age at first birth, years (mean ± SD) ‡ 24.1 ± 4.85 23.3 ± 4.39 0.05

Parity, number of births (mean ± SD) ‡ 2.60 ± 1.09 2.86 ± 1.21 <0.01

Age at menopause, years (mean ± SD) 47.9 ± 5.37 47.4 ± 5.84 0.37

Ever use of estrogen plus progestin
postmenopausal hormones, %

48.1 35.2 <0.01

Lifestyle/anthropomorphic factors

Height, in (mean ± SD) 64.9 ± 2.65 64.8 ± 2.61 0.36

Baseline BMI, kg/m2 (mean ± SD) 26.9 ± 5.63 27.2 ± 5.61 0.21

Total physical activity, MET-hour/week (mean ± SD) 9.44 ± 11.9 10.1 ± 13.9 0.90

Dietary factors

Total folate, DFE/day (mean ± SD) § 819 ± 420 856 ± 419 0.15

Dietary methionine, g/day (mean ± SD) 1.43 ± 0.57 1.48 ± 0.61 0.32

Total B2, mg/day (mean ± SD) § 2.53 ± 1.21 2.64 ± 1.28 0.16

Total B6, mg/day (mean ± SD) § 10.1 ± 30.3 7.97 ± 15.4 0.38

Total B12, μg/day (mean ± SD) § 22.5 ± 40.2 18.9 ± 29.3 0.57

Alcohol, g/day (mean ± SD) 5.96 ± 8.91 4.76 ± 9.76 0.03

Multivitamin use, days/week over 10
years (mean ± SD)

3.29 ± 2.90 3.50 ± 2.93 0.25

* Cases and controls were originally 2:1 matched on age and race; the number of cases and controls are not exactly 2:1 because women who 
were premenopausal or who did not have MTHFR genotype data were excluded.
†Wilcoxon rank-sum test for continuous variables and chi-square test for dichotomous variables
‡Among parous women only
§Intake from dietary plus supplemental sources
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We next examined whether the MTHFR-breast cancer associ-
ation was modified by intakes of nutrients involved in one-car-
bon metabolism (Table 3). In general, elevated risks of breast
cancer were observed among individuals with the 677TT gen-
otype in the lower nutrient intake groups, and statistically sig-
nificant trends with genotype were seen in these groups.
Furthermore, odds ratios appeared stronger among groups
defined by low intake of nutrients from total sources than from
diet or supplements alone. The similarity of these results
across nutrients is due, in part, to the high correlation between
intakes of total folate and vitamins B2, B6, and B12 (range of
correlations between nutrients (r): 0.60 to 0.79). However,
only two of these results showed a statistically significant inter-
action: the risk of breast cancer among women with the
MTHFR 677TT genotype was significantly higher among
women with low intakes of dietary folate (P for interaction =
0.02) and total B6 (P for interaction = 0.01) than those with
higher intakes. Results for total vitamin B6 were particularly
striking. Among women with high B6 intake, there was no
MTHFR-breast cancer association. However, among women
with low B6 intake, the TT genotype was associated with an
approximate four-fold risk (OR = 4.03 = 4.47/1.11). Alcohol
intake did not appear to modify the exposure-disease associa-
tion (P for interaction = 0.22), but few VITAL women drank ≥
10 g/d of alcohol.

Discussion
In this moderate-sized, nested case-control study, we
observed a 62% increase risk of breast cancer among post-
menopausal women with the TT genotype. The most pro-
nounced risks were observed among individuals with the TT
genotype and lowest intakes of folate and vitamin B6.

Results from 26 case-control studies [4,16-40] investigating
MTHFR C677T and breast cancer risk have been inconsist-
ent. Our results are consistent with two [18,19] of nine studies
[17-20,22,26,27,29,31] reporting separate estimates for
postmenopausal women. Ericson et al observed a significant
34% increase in breast cancer risk among postmenopausal
women in Sweden with CT and TT genotypes compared to
wild-type in a nested case-control study of the Malmo Diet and

Cancer cohort [19]. Suzuki reported a significant 83%
increased breast cancer risk among postmenopausal Japa-
nese women with the TT genotype compared to wild-type
[18]. Among 10 studies reporting estimates for premenopau-
sal women [16-19,22,26,27,29-31], three have reported sig-
nificant positive associations, ranging from a 64% to a 2.8-fold
increased risk among CT and/or TT individuals [16,17,30].
Two studies [23,32] observed statistically significant
increased risks among pre- and postmenopausal women com-
bined. Other investigations have not reported significant asso-
ciations. Differences in results may be due to variation
between populations with regards to prevalence of polymor-
phisms in genes related to one-carbon metabolism, intakes of
nutrients, and/or risk factors for breast cancer. Several studies
reporting no association had <150 breast cancer cases
[4,24,25,33,34,36,37,39], and thus, may have been too small
to detect an association. Our study tended to have a larger
population of postmenopausal breast cancer patients, and
thus, may have had more power to detect an effect.

Eight studies, to-date, have examined interactions between
MTHFR C677T and nutrients, including alcohol [17-23,25].
Among these, only a case-control study of Brazilian women
(458 age-matched pairs) observed statistically significant
gene-diet interactions [22]. However, the folate results were
opposite than expected; a significantly reduced risk of breast
cancer was observed among TT and CT individuals with the
lowest intakes of dietary folate. Major limitations were that diet
was collected after breast cancer diagnosis and recall of diet
was poor. While the tests of interaction were not significant,
three studies observed increased MTHFR-breast cancer risks
with low folate intakes which are in line with our results
[18,21,23].

Our results are biologically plausible. The TT genotype is asso-
ciated with approximately 65% less activity than wild-type
[1,2]. Reduced MTHFR activity among 677TT individuals may
increase cancer risk by leading to lowered availability of 5-
methyltetrahydrofolate and subsequently, impaired DNA meth-
ylation. DNA methylation plays a critical role in gene expres-
sion and the maintenance of genomic stability [41,42], and
dysregulation of methylation patterns have been implicated
with carcinogenesis [43,44]. Furthermore, our results suggest
a more pronounced risk of breast cancer among 677TT indi-
viduals when intakes of nutrients associated with one-carbon
metabolism are comparatively low. This finding is consistent
with multiple studies showing increases in risk of colorectal
adenomas or cancer under a low one-carbon status [45,46].
Furthermore, our results are supported by other reports sug-
gesting that when folate levels are low, the 677TT genotype is
associated with higher levels of homocysteine, lower levels of
methylated folate, and reductions in genomic DNA methylation
[47,48]. Our previous study in VITAL and other reports sug-
gest that folate intake lowers breast cancer risk [6]. Reasons
for not being able to replicate the earlier VITAL cohort findings

Table 2

Odds ratios (OR) for postmenopausal breast cancer by MTHFR 
C677T genotype, VITAL study

Cases, n Controls, n OR (95% CI)

CC 133 301 1.00

CT 139 284 1.08 (0.81 to 1.43)

TT 46 62 1.62 (1.05 to 2.48)

P for trend 0.04

* Adjusted for age in five year-age categories and race (white, other).
† P for trend calculated by modelling the MTHFR. genotypes CC, 
CT, and TT as one term, ordinally.
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Table 3

Joint association of MTHFR C677T genotype and nutrient intakes on postmenopausal breast cancer risk, VITAL study *,†

MTHFR C677T genotype

CC CT TT

Cases/
controls

Multivariate OR 
(95% CI)

Cases/
controls

Multivariate OR 
(95% CI)

Cases/
controls

Multivariate OR 
(95% CI)

P for 
trend ‡

P for 
interaction §

Multivitamin use

Some 92/218 1.00 108/213 1.20 (0.82-1.75) 29/51 1.46 (0.83-2.56) 0.24

None 41/83 1.24 (0.75-2.03) 31/71 0.90 (0.52-1.59) 17/11 6.24 (2.37-16.4) 0.02 0.27

Folate

Dietary folate (μg/day)

≥ 224 (median, high) 79/128 1.00 68/135 0.85 (0.55-1.30) 20/27 1.29 (0.66-2.52) 0.86

<224 43/139 0.41 (0.25-0.67) 55/126 0.60 (0.37-0.98) 26/27 1.31 (0.66-2.63) <0.01 0.02

Supplemental folate (μg/day) #

≥ 400 48/129 1.00 58/119 1.28 (0.80-2.06) 13/26 1.17 (0.54-2.54) 0.53

<400 85/172 1.34(0.87-2.07) 81/165 1.39 (0.89-2.15) 33/36 2.69 (1.48-4.88) 0.05 0.83

Total folate (DFE/day)

≥ 850 (median, high) 54/132 1.00 65/127 1.26 (0.79-2.01) 13/29 1.03 (0.48-2.22) 0.74

<850 68/134 1.32 (0.83-2.09) 57/130 1.19 (0.74-1.91) 32/23 4.09 (2.08-8.04) 0.01 0.19

Methionine

Dietary methionine (g/day)

≥ 1.38 (median, high) 60/133 1.00 56/135 0.91 (0.58-1.44) 19/23 1.89 (0.91-3.89) 0.29

<1.38 62/134 1.07 (0.65-1.77) 67/126 1.29 (0.78-2.13) 27/31 2.10 (1.07-4.14) 0.04 0.55

Vitamin B2

Dietary vitamin B2 (mg/day)

≥ 1.81 (median, high) 63/127 1.00 59/133 0.92 (0.58-1.44) 18/29 1.23 (0.62-2.45) 0.72

<1.81 59/140 0.85 (0.52-1.37) 64/128 1.03 (0.63-1.68) 28/25 2.53 (1.25-5.12) <0.01 0.06

Total vitamin B2 (mg/day)

≥ 2.70 (median, high) 59/125 1.00 60/139 0.94 (0.59-1.48) 16/26 1.27 (0.61-2.64) 0.96

<2.70 63/142 1.02(0.64-1.63) 63/122 1.23 (0.76-1.98) 39/28 2.73 (1.40-5.33) 0.02 0.10

Vitamin B6

Dietary vitamin B6 (mg/day)

≥ 1.61 (median, high) 59/129 1.00 54/132 0.93 (0.58-1.48) 16/31 1.20 (0.59-2.45) 0.97

<1.61 63/138 1.08 (0.66-1.77) 69/129 1.26 (0.77-2.07) 30/23 3.23 (1.58-6.61) <0.01 0.07

Supplemental vitamin B6 (mg/
day) #

≥ 2.00 49/108 1.00 55/103 1.17 (0.72-1.90) 10/25 0.69 (0.30-1.60) 0.93

<2.00 84/192 0.87 (0.57-1.34) 83/177 0.97 (0.62-1.50) 36/35 2.31 (1.28-4.15) <0.01 0.11

Total vitamin B6 (mg/day)

≥ 3.32 (median, high) 57/132 1.00 62/130 1.11 (0.70-1.76) 12/32 0.72 (0.33-1.56) 0.83

<3.32 65/135 1.11 (0.70-1.75) 61/131 1.11 (0.70-1.76) 34/22 4.47 (2.28-8.75) <0.01 0.01

Vitamin B12

Dietary vitamin B12 (μg/day)

≥ 5.30 (median, high) 52/131 1.00 57/133 1.13 (0.70-1.80) 19/26 2.01 (0.99-4.11) 0.15

<5.30 70/136 1.38 (0.85-2.22) 66/128 1.38 (0.85-2.26) 27/28 2.58 (1.31-5.08) 0.10 0.85
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Supplemental vitamin B12 (μg/
day) #

≥ 6.00 56/120 1.00 69/109 1.30 (0.83-2.05) 14/25 1.06 (0.50-2.25) 0.44

<6.00 76/180 0.81 (0.53-1.24) 70/171 0.83 (0.54-1.29) 29/34 1.72 (0.94-3.15) 0.04 0.65

Total vitamin B12 (μg/day)

≥ 11.4 (median, high) 60/130 1.00 69/131 1.17 (0.75-1.83) 17/33 1.15 (0.57-2.33) 0.48

<11.4 62/137 0.98 (0.62-1.53) 54/129 0.92 (0.58-1.47) 29/21 3.06 (1.55-6.04) <0.01 0.17

Micronutrient score**

High (median) 57/129 1.00 62/134 1.09 (0.69-1.73) 13/27 1.05 (0.48-2.28) 0.96

Low 65/138 1.12 (0.70-1.80) 61/127 1.15 (0.71-1.87) 33/27 3.20 (1.66-6.19) <0.01 0.10

Total alcohol (g/d)

<10.0 (low) 100/254 1.00 105/229 1.15 (0.81-1.65) 38/53 2.12 (1.26-3.56) 0.01

≥ 10.0 32/42 1.80 (1.02-3.15) 30/48 1.34 (0.76-2.38) 8/8 2.32 (0.79-6.85) 0.84 0.22

* All analyses adjusted for the following:age (50-54 years, 55-59, 60-64, 65-69, 70-76), race (white, other), family history of breast cancer (no, 1 affected mother or 
sister, ≥ 2 affected mother or sister(s)), mammography within two years preceding baseline(no, yes), history of breast biopsy (no, yes), age at menarche (≤ 11 
years,12,13, ≥ 14), age at first birth (nulliparous, ≤ 19 years, 20-24, 25-34, ≥ 35), age at menopause (≤ 44 years,45-49, ≥ 50), years of combined estrogen and 
progestin postmenopausal hormones (PMH, never or <1 years,1-4,5-9, ≥ 10), height (<62 in, 62-<65, 65-<68, ≥ 68), body mass index (BMI) (<25 kg/m2,25-<30, ≥ 
30), total physical activity (none, 1-3 tertiles of MET-hours/week), total energy intake (kcal/day), and for non-alcohol exposures, past-year alcohol intake (<1.5 g/day, 
1.5-4.9, 5.0-9.9, ≥ 10). Energy was added to the models for all dietary and total nutrient exposures.
† Case/control numbers do not add up to total due to missing data on nutrient intakes
‡ P for trend testing trend for MTHFR genotypes by strata of nutrient/alcohol intakes and calculated by modelling the MTHFR genotypes (CC, CT, and TT) as one term, 
ordinally
§P for interaction testing whether the association between MTHFR and breast cancer varies by nutrient/alcohol intake
Median intakes, based on distribution of nutrient intake from controls
# Intakes of all supplements over 10 years; cutpoints represent amount in a 10 year daily use of standard multivitamin or greater
** Micronutrient score computed by summing the z-scores of folate, methionine, and vitamins B2, B6, B12 and then, dividing this sum into high (upper median) and low 
(lower median) groups.

Table 3 (Continued)

Joint association of MTHFR C677T genotype and nutrient intakes on postmenopausal breast cancer risk, VITAL study *,†
may be that this nested case-control study had approximately
three-years shorter follow-up and fewer cases (334 versus
743 cases in the cohort study publication). Vitamin B6 has an
important role in one-carbon metabolism in that it acts as a
cofactor for methionine synthesis and is a coenzyme of serine
hydroxymethyltransferase, which is involved in nucleotide syn-
thesis. We did not observe an overall statistically significant
association between B6 intake and breast cancer risk, previ-
ously [6]. However, it is possible that intakes below a certain
threshold may make 677TT individuals more susceptible.

Our study has some limitations. First, we did not have data on
other MTHFR polymorphisms, such as A1298C and G1793A.
However, data suggest that C677T is the major genetic deter-
minant of MTHFR activity [49]. Second, the high correlation
between nutrient intakes (r ≥ 0.60) made it difficult to sepa-
rately examine effect modification of individual nutrients. Lastly,
nutrient and supplement intakes were based on self-report;
however, because this information was collected prior to diag-
nosis, any misclassification would have been non-differential
and would most likely have attenuated the associations.
Another source of measurement error, apart from inaccuracies
in self-report, is that the folate content of food changed over
time. Food manufacturers began fortifying grain products
starting in 1996 to 1998 in response to U.S. governmental
regulations, a few years before the VITAL baseline question-
naire (2000 to 2002). Thus, the high levels of intake in this

population represent the post-fortification period, while intake
earlier during the pre-fortification period may be more predic-
tive of breast cancer risk. Since low folate intake is of most
interest in MTHR effect modification, use of post-fortification
folate values may have weakened our ability to detect effect
modification by low folate intakes.

Our study adds to the literature by being the first study, to our
knowledge, examining effect modification of MTHFR by multi-
ple nutrients involved in the one-carbon metabolism pathway;
data on supplement use also allowed for analysis by nutrient
type (diet, supplement, and total). This study also adds to cur-
rent knowledge regarding the association of MTHFR among
postmenopausal women. An advantage of this study's pro-
spective design is that it avoids recall bias for the recall of
nutrients. An additional strength is that we had a broad range
of information on possible confounders for adjustment. Also,
selection bias is highly unlikely, because this was a prospec-
tive study and participants would not have known their future
breast cancer status when deciding to give buccal cells or
complete the breast cancer risk questions.

Conclusions
In summary, this study provides support that the MTHFR
677TT genotype is associated with a moderately increased
risk of postmenopausal breast cancer and with a substantial
increase among women with low intakes of folate and vitamin
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B6. From a public health standpoint, these results are of inter-
est in that they suggest that the increased risk associated with
the TT genotype may be attenuated with intakes of some one-
carbon associated nutrients.
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