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Abstract

Introduction Proteasome inhibition provides an attractive
approach to cancer therapy and may have application in the
treatment of breast cancer. However, results of recent clinical
trials to evaluate the effect of the proteasome inhibitor
Bortezomib (Velcade®, also called PS-341) in metastatic breast
cancer patients have shown limited activity when used as a
single agent. This underscores the need to find new and more
efficacious proteasome inhibitors. In this study, we evaluate the
efficacy of the novel proteasome inhibitor BU-32 (NSC
D750499-S) using in vitro and in vivo breast cancer models.

Methods We have recently synthesized a novel proteasome
inhibitor (BU-32) and tested its growth inhibitory effects in
different breast cancer cells including MCF-7, MDA-MB-231,
and SKBR3 by in vitro cytotoxicity and proteasomal inhibition
assays. The apoptotic potential of BU32 was tested using flow
cytometry and analyzing cell cycle regulatory proteins. In vivo
tumor xenograft studies for solid tumor as well as tumor
metastasis were conducted using MDA-MB-231-GFP cells.

Results We report for the first time that BU-32 exhibits strong
cytotoxicity in a panel of cell lines: MDA-MB-231 (IC5, = 5.8
nM), SKBR3 (ICg, = 5.7 nM) and MCF-7 cells (IC5,= 5.8 nM).
It downregulates a wide array of angiogenic marker genes and
upregulates apoptotic markers, including Bid and Bax.
Incubation of MDA-MB-231 cells with BU-32 results in the
accumulation of cell cycle inhibitor proteins p21 and p27 and
stabilization of the tumor suppressor protein p53. Studies in in
vivo solid tumor and metastasis models show significant effect
with a 0.06 mg/kg dose of BU-32 and marked reduction in
tumor burden in the skeleton.

Conclusions We have shown that BU-32 is effective in cultured
breast cancer cells and in breast cancer xenografts. The results
suggest its potential benefit in breast cancer treatment.

Introduction

The proteasome is a multi-catalytic, multi-subunit protease
complex that is responsible for the ubiquitin-dependent turno-
ver of cellular proteins [1-3]. The proteolytic component of this
system, the 26S proteasome, consists of two 19S regulatory
particles, involved in substrate recognition and unfolding, and
a core particle, the 20S proteasome [4]. The proteolytic activ-
ity of the proteasome measured against fluorogenic substrates
illustrates three distinct cleavage preferences, termed chymo-
tryptic-like activities, tryptic-like activities, and caspase-like
activities [5,6]. Catalytic activity of each proteasome active
site is associated with the N-terminal threonine residue, which
acts as a nucleophile in hydrolysis [3,7,8]. Since proteasomes

play a central role in the cytoplasmic turnover of the vast major-
ity of proteins, the manipulation of proteasomal activity is a key
goal in controlling the stability of regulatory proteins [3,9]. Inhi-
bition of the proteasome results in abnormal accumulation of
many intracellular proteins, thereby disrupting cellular home-
ostasis [10], and results in the induction of tumor cell apopto-
sis [11,12].

The most studied and best characterized proteasome inhibitor
is Bortezomib (PS-341, Velcade®; Millenium Pharmaceuticals
Inc., Cambridge, MA, USA and Johnson Pharmaceutical
Research and Development, LLC, Raritan, NJ, USA), a dipep-
tide boronic acid that works by reversibly inhibiting the effects

Ct: cycle threshold number; DMEM: Dulbecco's modified Eagle's medium; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GAPDH: glyc-
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of the proteasome and inducing apoptosis in several tumor cell
lines and animal models [13-15]. Bortezomib has a wide range
of molecular effects, including stabilization of cell cycle regula-
tory proteins, inhibition of NF-kB activation, induction of apop-
tosis, and override of Bcl-2 resistance and angiogenesis
[14,16]. The mechanism of action of Bortezomib has been
shown to involve the inhibition of the B5-subunit (chymotrypsin-
like activity) and the f3;-subunit (caspase-like activity), with the
Bs-subunit as the predominant target [17].

Bortezomib has been approved by the US Food and Drug
Administration for the treatment of chemorefractory multiple
myeloma patients [18-20] and for some forms of non-Hodg-
kin's lymphoma [21,22], and the inhibitor is in further clinical
development in multiple tumor types, including breast cancer
[23-25]. Despite its clinical success, dose-limiting toxicities
including grade 4 arthralgia, diarrhea, vomiting, grade 3 throm-
bocytopenia, anemia, febrile neutropenia, gastrointestinal tox-
icity, pain, fatigue, neuropathy, and electrolyte disturbances
[26-28] have restricted Bortezomib to a twice-weekly day 1/
day 4 dosing schedule to allow complete recovery of proteas-
ome activity between doses [26-29].

These observations suggest that the search for additional pro-
teasome inhibitors is warranted. We have recently designed
and synthesized a new proteasome inhibitor, BU-32, a bis-
dipeptidyl boronic acid analog of Bortezomib containing an
additional dipeptide boronic acid moiety on the pyrazine ring,
intended to potentially achieve stronger binding affinity and
increased potency . Bivalent proteasome inhibitors, either het-
ero-bivalent or homo-bivalent, have been reported to increase
inhibition potency by as much as two orders of magnitude
compared with the monovalent analogs, although in these
compounds the active moieties are typically separated by a
linker of 18 to 22 carbon atoms long [30-32]

In the present study, we describe the in vitro and in vivo char-
acterization of BU-32 in breast cancer cell lines and xenograft
and metastatic models. In order to test the activity of BU-32,
irrespective of estrogen receptor status, we used a panel of
breast cancer cell lines: MCF-7 (estrogen receptor-positive,
progesterone receptor-positive), MDA-MB-231 (estrogen
receptor-negative, progesterone receptor-negative, HER2-
negative) and SKBR3 (HER-positive). We show that BU-32 is
a potent and selective inhibitor of the chymotrypsin-like activity
of the proteasome in vitro. In addition, we show that BU-32
modulates cell-cycle-dependent kinase inhibitors, upregulates
p53 and proapoptotic factors Bax and Bid, downregulates NF-
kB expression at the protein level, induces apoptosis, and
inhibits various angiogenic factors in a panel of breast cancer
cell lines. In addition, we show that BU-32 has in vivo anti-
tumor activity and inhibits breast cancer-initiated bone metas-
tasis in experimental animals.
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Materials and methods
Proteasome inhibitor BU-32

BU-32 (pyrazyl-2,5-bis-CONH(CHPhe) CONH(CHisobutyl)
B(OH),) was synthesized in our laboratory using standard syn-
thetic procedures and was characterized by 'H and 13C
nuclear magnetic resonance and mass spectrometry. The
detailed synthetic procedure will be reported elsewhere. BU-
32 was dissolved in dimethylsulfoxide and stored at -20°C
until use. BU-832 was diluted in culture media immediately
before use. Both BU-32 and control media contained < 0.1%
dimethylsulfoxide.

Cell culture

MCF-7 and MDA-MB-231 human breast cancer cells were
maintained in DMEM supplemented with 10% FBS. SKBR3
human breast cancer cell line obtained from the American
Type Culture Collection (Manassas, VA, USA) was maintained
in McCoysbA, 10% FBS.

Animals

Two-week-old to 4-week old Balb/c female nude mice
(obtained from Harlan Sprague Dawley, Inc., Indianapolis, IN,
USA) were used in the in vivo animal experiments. All animal
protocols were approved and monitored by the Institutional
Animal Care and Use Committee. The animals were housed
under specific pathogen-free conditions.

Cell viability

Cell viability was determined by quantification of 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
reduction by mitochondrial dehydrogenases. In brief, cells (4
x 104 cells per well) were incubated with 4 to 18 nM Borte-
zomib and BU-32 for 48 hours. Thereafter, MTT in a final con-
centration of 1.2 mmol/l was added and further incubated for
3 hours at 37°C. The formazan dye solubilized in 20% SDS in
50% dimethyl formamide was added and the plate was incu-
bated at room temperature for 1 hour. The absorption was
measured at 550 nm versus 690 nm in a microplate reader
(Molecular Devices, Corning, New York, USA).

20S proteasome assay

Proteasome chymotrypsin-like activities, caspase-like activi-
ties, and trypsin-like activities were determined using the Pro-
teasome-Glo™ Assay System (Promega, Madison,
Wisconson, USA) according to the manufacturer's protocol.
Proteasome-Glo™ buffer was mixed with luciferin detection
reagent, and then the substrate was added to the mixture and
incubated at room temperature for 1 hour. An equal volume of
proteasome-Glo™ reagent was added to the samples and fur-
ther incubated for 15 minutes. The luminogenic substrate con-
taining the Suc-LLVY sequence is recognized by the
proteasome. Following proteasome cleavage, the substrate
for luciferase (aminoluciferin) was released, allowing the luci-
ferase reaction to proceed and produce light. The



luminescence was measured with a luminometer (Thermo
Fisher Scientific, Waltham, MA, USA).

Western blotting

Cell lines were harvested into a lysis buffer containing a cock-
tail of protease inhibitors (Sigma, St Louis, MO, USA). The
protein content was assessed by the Bradford assay. Equal
protein concentrations were prepared for loading with Lae-
mmli sample buffer and were run on SDS-PAGE. Separated
proteins were then transferred to nitrocellulose membrane,
and the protein-bound membranes were incubated for 2 hours
at room temperature with Tris-buffered saline containing
0.05% Triton X-100 and 5% nonfat dry milk to block nonspe-
cific antibody binding. The membranes were then incubated
with the respective primary antibodies in Tris-buffered saline
milk overnight at 4°C, and specific binding was visualized
using species-specific IgG followed by enhanced chemilumi-
nescent detection (ECL kit; Amersham Bioscience, Pittsburg,
PA, USA) and exposure to enhanced chemiluminescent X-ray
film. Antibodies against B-actin, p53 and NF-xB were pur-
chased from Santa Rosa (Santa Rosa, CA, USA). Antibodies
against p21 and p27 were obtained from Lab Vision (Thermo
Fisher Scientific, Fermont, CA, USA). Antibodies against p44/
42, phospho p44/42, Bid and Bax were purchased from Cell
Signalling Technology (Danvers, MA, USA).

RNA analysis and PCR

Total RNA was extracted using Tri Reagent (Sigma) according
to the manufacturer's protocol. Gene expression was then
examined by real-time quantitative RT-PCR, using the Gene-
Amp RNA PCR kit (Perkin-Elmer, Foster City, CA, USA) and
platinum Taq polymerase (Invitrogen, Carlsbad, CA, USA)
according to the manufacturers' instructions. Depending on
the abundance of the specific mMRNA species, 70 to 250 ng
total RNA was used as starting template in the RT reaction
mixture. To detect amplicon synthesis in the Smart Cycler real-
time PCR thermal cycler (Cepheid, Sunnyvale, CA, USA), 0.25
x Cyber green dye (Roche, Indianapolis, IN, USA) was added
to the reaction mixture. For quantification, the cycle threshold
number (Ct) exhibiting the maximum curve growth rate was
determined. The relative gene expression of each sample, nor-
malized to that of glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), was calculated by the formula:

Relative gene expression = 2 C(GAPDH)-Ct(gene)
Apoptosis assays

Annexin staining was conducted with the use of a kit (Annexin
V-FITC Apoptosis detection kit; BD Pharmingen, San Jose,
CA, USA). A sample of 108 cells per well was split and left to
recover for 24 hours before exposure to the proteasome inhib-
itor. The cells were then treated with indicated concentrations
of Bortezomib and BU-32 for 24 hours. After incubation, cells
were washed with Dulbecco's phosphate buffered saline
(DPBS) (Sigma, St. Louis, MO, USA) and resuspended in 100
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ul binding buffer (supplied by the vendor). Cells were stained
with annexin V-FITC and propydium iodide according to the
manufacturer's protocol before analysis by flow cytometry.
Results are presented as mean * standard deviation of three
independent experiments.

In vivo breast cancer metastasis to bone

For bone metastasis experiments, we specifically used MDA-
MB-231 cells that had been stably transfected with the gene-
encoding green fluorescent protein (GFP) to detect tumor
cells in live animals using noninvasive fluorescence imaging.
MDA-MB-231-GFP cells (105 in 100 ul PBS) were injected
intracardially. Animals were anesthetized with isofluorane and
positioned ventral side up. The left cardiac ventricle was punc-
tured through a percutaneous approach using a 27-gauge
needle. Based on an average body weight, Bortezomib (0.02
mg/kg and 0.06 mg/kg body weight) and BU-32 (0.02 mg/kg
and 0.06 mg/kg body weight) were given twice a week to ani-
mals by subcutaneous injection beginning on the day of tumor
cell inoculation (day 0), and continuing until the end of the pro-
tocol (day 35). All doses of each drug were given by subcuta-
neous injection in 50 pl PBS with 0.2% dimethylsulfoxide
(vehicle). Control mice received a daily treatment with vehicle
only.

On day 35 after tumor cell inoculation, radiographs (MX-20
cabinet X-ray system; Faxitron X-ray Corp. (Lincolnshire, IL,
USA)) of anesthetized mice were taken. For radiographs of
mice, the animals were anesthetized deeply with isofluorane,
laid in a prone position against the film and exposed to an X-
ray at 35 KVP for 6 seconds. Films were developed using a
RPX-OMAT processor (Eastman Kodak Company, Rochester,
NY, USA. All radiographs from nude mice were evaluated in a
blinded fashion. The number and area of osteolytic bone
metastasis were calculated on radiographs using a computer-
ized image analysis system.

Animals analyzed by radiography were also examined by non-
invasive, whole-body fluorescence imaging using a fluores-
cence scanning system (Nikon-SMZ1500; Nikon, Tokyo,
Japan) with a fluorescence stereoscope attached to a Cool
SNAP CCD camera (Photometrics, Tucson, AZ, USA). Meta-
static lesions in bone were identified on scanned images as
fluorescent regions. The area of fluorescent spots was meas-
ured using the Bio-Rad densitometer image analysis system
(Bio-Rad, Hercules, CA, USA). Anesthetized mice were killed
by cervical dislocation after radiography and fluorescence
imaging on day 35.

Human breast cancer cell xenograft

In tumorigenesis studies, MDA-MB-231-GFP tumor cells were
implanted subcutaneously into the right flank of 4-week-old to
5-week-old Balb/c female nude mice that had been anesthe-
tized by isofluorane inhalation. The subcutaneous tumor inoc-
ulation was performed using a 27-gauge needle attached to a
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1 ml syringe containing tumor cells at a concentration of 107
cells/100 ul PBS. After 10 days, tumor bearing mice were ran-
domly grouped (n = 10) and were treated by daily subcutane-
ous injection with therapeutic agents (Bortezomib and BU-32)
in a dose of 0.02 or 0.06 mg/kg body weight or with vehicle
(PBS, control) for 10 days. The tumor size was measured
every other day using calipers, and the tumor volumes were
calculated according to the standard formula:

Volume = (length x width)? / 2

The extent of tumor burden per animal was expressed in cubic
millimeters. Mice were sacrificed after 28 days of treatment.

In vivo toxicity study

In vivo toxicity was performed in Balb/c mice (Harlan Indus-
tries, Houston, TX, USA). Mice 2 to 4 weeks old were caged
for 1 week before the experiment to acclimatize them to the
environment. The mice were fed with standard mice chaw
(Harlan Industries) and water ad /libitum. For the experiment,
mice were given a dose range of BU-32 and Bortezomib (0.1
to 0.25 mg/kg twice weekly for 2 weeks) intraperitoneal injec-
tion. Each group consisted of 10 mice, and control or
untreated mice were given only vehicle (0.3% hydroxyl propyl
cellulose). The animals were monitored regularly for external
signs of toxicity or lethality.

Statistical analysis

Unless otherwise stated, all experiments were conducted at
least three times and results are expressed as the mean
standard deviation. Significant differences were calculated by
Student's ¢ test using SPSS statistical software (IBM Com-
pany, Chicago, IL), and significance was achieved when P <
0.05.

Results
BU-32 inhibits tumor cell proliferation

The ubiquitin-proteasome protein degradation pathway plays
an essential role in the orderly proteolysis of intracellular pro-
teins. In cancer cells, this pathway affects numerous activities
that are important for tumor development. The novel proteas-
ome inhibitor BU-32 shows promising inhibitory activity
against MDA-MB-231 cells in the human breast cancer
xenograft nude mouse model. We examined the potency of
BU-32 at inhibiting the viability of MDA-MB-231 breast cancer
cells in vitro using the MTT assay. BU-32 reduces the number
of viable cells in a dose-dependent manner (Figure 1a) with a
half-maximal inhibitory concentration (ICg,) of 5.8 nM.

Cell viability experiments were also conducted on two other
breast cancer cell lines, MCF7 and SKBR3. The results of an
MTT assay revealed that BU-32 inhibited cell viability, and pro-
liferation, after 48 hours of treatment in a dose-dependent
manner (Figure 1b, c). BU-32 therefore exhibits strong cyto-
toxicity on MCF7 cells (IC5, = 5.8 nM) and on SKBRS3 cells
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(IC5o = 5.7 nM). These values are comparable with those
obtained with PS-341 for the MDA-MB-231 (IC5,= 5.9 nM),
MCF?7 (ICg,= 6.4 nM) and SKBR3 (IC5,= 6.8 nM) cell lines.

BU-32 selectively inhibits proteasome chymotrypsin-like
activity

The proteasome plays a central role in regulation of cell cycle,
proliferation, cell death, angiogenesis, metastasis and resist-
ance to chemotherapy and radiation therapy. Bortezomib is a
potent and selective inhibitor of the chymotrypsin-like activity
of the 20S proteasome. To evaluate the potency and selectiv-
ity of BU-32 for the three proteasome catalytic active sites, we
monitored the rates of fluorogenic peptide substrate hydroly-
sis by the proteasome in intact cells. Our results showed that
BU-32 is potent and highly selective for the inhibition of the
chymotrypsin-like and caspase-like activities of the proteas-
ome (Figures 2 to 4). Incubation of a panel of breast cancer
cell lines (MDA-MB-231, MCF7, and SKBR3) with BU-32 for
24 hours resulted in a dose-dependent inhibition of all three
proteasome catalytic activities, with the chymotrypsin-like
activity exhibiting the greatest sensitivity for MDA-MB-231
cells (Figure 2), MCF?7 cells (Figure 3), and SKBR3 cells (Fig-
ure 4).

BU-32 upregulates apoptosis and downregulates NF-«<B
expression

Exposure to BU-32 induces the upregulation of proapoptotic
markers, cell-cycle-dependent kinase inhibitors and the tumor
suppressor gene, and downregulates NF-xB expression in
tumor cell lines. The proteasome is a hub for the regulation of
many cellular signaling pathways, and proteasome inhibition
therefore appears to induce apoptosis through a number of
mechanisms. Inhibition of the proteasomal chymotrypsin-like
activity, but not trypsin-like activity, has been shown to be
associated with apoptosis induction in cancer cells. To further
investigate the pathways activated by BU-32, western blot
analysis was carried out on cell lysates prepared from MDA-
MB-231, MCF7 and SKBR3 cell lines after 24 hours of treat-
ment with therapeutic compound. Exposure to BU-32 upregu-
lated apoptotic markers including Bid and Bax and
accumulation of cell cycle inhibitor proteins p21 and p27 as
well as stabilization of tumor suppressor protein p53 (Figure
5). The effect of BU-32 on accumulation of these markers was
comparable with that observed with Bortezomib, and is con-
sistent with the observed effects of BU-32 on cell viability and
apoptosis.

The expression of NF-kB is downregulated by BU-32. NF-xB
has been shown to inhibit apoptosis by promoting the expres-
sion of anti-apoptotic proteins such as Bcl-2 and Bcl-xL. Inhi-
bition of NF-xB by BU-32 can therefore lead to activation of
proapoptotic proteins that are normally bound and inhibited by
Bcl-2 and Bcl-xL, such as Bax and Bid. The disruption of cell
cycle and apoptosis regulators can alter cellular response to
proteasome inhibitor.
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Figure 2
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Effect of BU-32 on proteasomal catalytic activity of MDA-MB-231 cells.
Proteasome inhibition by Bortezomib and BU-32 in the MDA-MB-231
breast cancer cell line was measured. The cells were treated with dif-
ferent concentrations of proteasome inhibitor from 1 to 50 nM for 24
hours, and were then analyzed for the inhibition of chymotryptic-like,
caspase-like, and tryptic-like intracellular proteasome activities. Results
are mean of three individual experiments. RLU: Relative Luminescence
Units.

BU-32 downregulates angiogenic marker genes

Exposure to BU-32 causes downregulation of a wide array of
angiogenic marker genes in breast cancer cell lines. Angio-
genesis is essential for the development and progression of
both hematologic and solid malignancies, where new vessels
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Figure 3 Figure 4
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Effect of BU-32 on proteasomal catalytic activity of MCF-7 cells. Pro-
teasome inhibition by Bortezomib and BU-32 in the MCF-7 breast can-
cer cell line was measured. The cells were treated with different
concentrations of proteasome inhibitor from 1 to 50 nM for 24 hours,
and were then analyzed for the inhibition of chymotryptic-like, caspase-
like, and tryptic-like intracellular proteasome activities. Results are mean
of three individual experiments. RLU: Relative Luminescence Units.

deliver oxygen and nutrients to the burgeoning tumor. As such,
agents that block angiogenesis are highly desired in cancer
therapy. Suppression of angiogenesis is an important compo-
nent of the anti-cancer activity of Bortezomib, and is thought
to largely occur via inhibition of NF-xB - which induces the
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Concentration {(nM)

Effect of BU-32 on proteasomal catalytic activity of SKBR3 cells. Pro-
teasome inhibition by Bortezomib and BU-32 in the SKBR3 breast can-
cer cell line was measured. The cells were treated with different
concentrations of proteasome inhibitor from 1 to 50 nM for 24 hours,
and were then analyzed for the inhibition of chymotryptic-like, caspase-
like, and tryptic-like intracellular proteasome activities. Results are mean
of three individual experiments. RLU: Relative Luminescence Units.

expression of many proangiogenic factors, including vascular
endothelial growth factor (VEGF).

We investigated whether exposure to BU-32 affects the
expression of genes involved in the angiogenic cascade, such
as VEGF, VEGF-receptor 1 (FLT1), the angiopoietin-Tie sys-
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BU-32 upregulates apoptosis and downregulates NF-kB expression.
BU-32 exposure induces accumulation of proapoptotic markers, cell-
cycle-dependent kinase inhibitors and the p53 tumor suppressor gene,
and downregulates NF-kB expression in breast cancer cells. Western
blot analysis of total cell extracts of all three breast cancer cell lines
shows the effect of treatment with Bortezomib and BU-32 on the
expression level of the cyclin-dependent kinase inhibitor proteins p21
and p27, tumor suppressor p53, proapoptotic genes Bid and Bax, anti-
apoptotic NF-kB, and cell cycle regulatory protein p44/42, phospho
p44/42. Breast cancer cell lines were examined after 24 hours of expo-
sure to the proteasome inhibitors (6 nM) and a series of western blots
using specific antibodies was performed to detect relative levels of pro-
teins. Results are the average of three independent measurements.

tem (Ang1, Ang?2, Tiel, and Tie2), epidermal growth factor
receptor, and kinase insert domain receptor (KDR) in the
MDA-MB-231 (Figure 6a), MCF-7 (Figure 6b), and SKBR3
(Figure 6¢) cell lines, and compared the effect with that of
Bortezomib. We showed that exposure to BU-32 induces a
significant downregulation of these angiogenic markers in all
three cell lines and that the effect was generally more pro-
nounced for BU-32 than for Bortezomib. Breast cancer cell
lines treated with BU-32 also displayed a marked decrease in
a wide array of angiogenic marker genes (Figure 6). Proteas-
ome inhibitors block activation of NF-kB, thereby inhibiting the
secretion of VEGF which is associated with angiogenesis.

Exposure to BU-32 induces apoptosis in tumor cell lines
Annexin V-FITC was used to quantitatively determine the per-
centage of cells within a population that were actively under-
going apoptosis. Our results indicate that both Bortezomib
and BU-32 proteasome inhibitors induce apoptosis in different
breast cancer cells (MDA-MB-231, MCF7 and SKBR3). The
effect is more prominent in the case of BU-32-treated cells
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and the percentage of apoptotic cells increases in a dose-
dependent manner (Figure 7).

BU-32 treatment is efficacious in blocking breast tumor
growth and bone metastases

We evaluated the effect of BU-32 in in vivo xenograft tumor
studies using MDA-MB-231-GFP cells, and found that there
was localized accumulation of breast cancer cells in the
tumors of control mice but the tumor burden was significantly
reduced in the group treated with BU-32 (0.06 mg/kg). The
tumor volume was reduced from 1.2 cm3 (control) to 0.3 cm3
(BU-32 0.06 mg/kg) on day 28 of the experiment (Figure 8a to
8c). Both Bortezomib and BU-32 decreased the tumor burden
in a dose-dependent manner (Figure 8d).

The anti-tumor activity of BU-32 was evaluated and compared
with Bortezomib in Balb/c nude mice bearing established
human tumor xenografts derived from the tumor cell line MDA-
MB-231-GFP. The dosing (0.06 mg/kg) regimen was there-
fore chosen to compare the effects of BU-32 and Bortezomib
on the formation of MDA-MB-231-GFP breast cancer bone
metastases. Noninvasive fluorescence imaging on day 35 after
tumor cell injection showed that metastatic mice treated with
Bortezomib and BU-32 had statistically significantly lower
metastatic lesions compared with control mice (Figure 9a to
9c). Radiographic analysis on day 35 after intracardial tumor
cell injection revealed that metastatic animals treated with BU-
32 had 75% lower metastatic tumor burden than those of
tumor-bearing mice treated with the vehicle (Figure 9d).

In vivo toxicity study

In vivo toxicity studies were conducted in Balb/c mice at two
different doses of BU-32 and Bortezomib (0.1 to 0.25 mg/kg
twice weekly for 2 weeks). Each group consisted of 10 mice
and the control or untreated group were given only vehicle
(0.83% hydroxylpropyl cellulose). The animals were monitored
regularly for external signs of toxicity or lethality. The group of
mice administered 0.25 mg/kg Bortezomib showed one death
on day 3 and a total of nine deaths by day 9 (Table 1). On the
other hand, the same dose (0.25 mg/kg) of BU-32 showed
only two deaths but the rest of the mice appeared tired and
showed increased furring as in the remaining Bortezomib
group. The furring and weakness or fatigue was sustained in
mice treated with the lower dose of Bortezomib (0.1 mg/kg)
and two deaths were noticed. Interestingly, the BU-32 group
treated with 0.1 mg/kg drug showed no lethality or any other
external signs of toxicity.

Discussion

In the present article we show that the novel diboronated ana-
log of Bortezomib BU-32 (NSC D750499-S) is a potent and
selective inhibitor of the chymotrypsin-like activity of the 20S
proteasome and has potent in vitro anti-tumor activity against
a panel of breast cancer cells as well as in vivo efficacy in
mouse xenograft and metastasis models. In the present study,
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Figure 6
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BU-32 downregulates the expression of genes involved in angiogenesis. Expression levels of vascular endothelial growth factor (VEGF), VEGF-
receptor 1 (FLT1), kinase-insert domain-containing receptor (KDR), Ang1, Ang2, Tiel, Tie2, and epidermal growth factor receptor (EGFR) genes
were measured by RT-PCR in (a) MDA-MB-231, (b) MCF7 and (c) SKBR3 breast cancer cell lines exposed to proteasome inhibitors BU-32 and
Bortezomib, as evaluated by real-time RT-PCR. The RT-PCR was performed on 200 ng total RNA extracted with Trizol reagent from breast cancer
cell lines and was cultured for 24 hours with 5 nM concentrations of Bortezomib and BU-32. Results are mean * standard deviation of three inde-
pendent determinations.
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Figure 8
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Exposure to BU-32 induces apoptosis in tumor cell lines. Annexin stain-
ing was conducted with the use of a kit (Annexin V--FITC Apoptosis
detection kit; BD Pharmingen (San Jose, CA, USA)). The breast cancer
cells were treated with 5 nM, 50 nM, and 500 nM Bortezomib and BU-
32 for 24 hours. Cells were stained with annexin V--FITC and propy-
dium iodide according to the manufacturer's protocol before analysis
by flow cytometry. Results are mean * standard deviation of three inde-
pendent experiments for (a) MDA-MB-231, (b) MCF7 and (c) SKBR3
cell lines.

we first compared the cytotoxicity of BU-32 with Bortezomib,
which has been validated clinically for the treatment of multiple
myeloma and non-Hodgkin's lymphoma, and works by reversi-
bly inhibiting the effects of the proteasome and by inducing
apoptosis in several tumor cell lines and animal models [13-
15]. The results of our MTT experiments demonstrate that BU-
32 induces strong growth arrest at clinically relevant concen-
trations in vitro ( < 10 nM) with MDA-MB-231, MCF-7, and
SKBR-3 cell lines, and that MDA-MB-231-GFP tumor
xenografts treated with intravenous BU-32 displays substan-
tial inhibition of proliferation /in vivo in a dose-dependent man-
ner. Interestingly, the cytotoxicity of BU-32 against the panel
of three breast cancer cell lines is comparable with that of

<
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Effect of proteasome inhibitor on established human breast cancer cell
(MDA-MB-231-GFP) tumor xenograft. Subcutaneous tumors were gen-
erated by injecting 1 x 107 MDA-MB-231-GFP cells into the flanks of
nude mice. Tumors were established for 10 days before the initiation of
therapy. Representative images were taken under microscope at the
end of week 3 of therapy and show results for (a) vehicle-treated con-
trols, (b) Bortezomib-treated mice and (¢) BU-32-treated mice. Doses
of 0.02 and 0.06 mg/kg body weight were used for Bortezomib and
BU-32. (d) Tumor volumes were measured 1, 2, and 3 weeks after initi-
ation of therapy. Results are mean + standard deviation (n = 10).

Bortezomib in spite of the more bulky size of BU-32 and the
possibility of steric hindrance at the binding pocket of the pro-
teasome. While a definitive evidence for the nature of the inter-
actions of BU-32 with the binding pockets of the proteasome
awaits further studies, it is clear from our in vitro and in vivo
data that there is reasonably good interaction with the active
site given the observed potency of BU-32 in these cell lines.

We tested the active site selectivity of BU-32 in our panel of
breast cancer cell lines, and found that it blocks all three pro-
teasomal activities in the MDA-MB-231, MCF-7, and SKBR3
cell lines - with the chymotrypsin-like and caspase-like activi-
ties being the most predominant, and to a lesser degree the
trypsin-like activity. Our observation is consistent with the
active site selectivity profile reported for Bortezomib [3,17,33-
38].

Proteasome-induced cytotoxicity could potentially result from
multiple events, including the stabilization and deregulated
function of cyclins, cell-cycle-dependent kinase inhibitors,
tumor suppressor proteins, kB, proapoptotic proteins, and a
large number of other proteins associated with cell cycle pro-
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Figure 9

Fold change after S weeks in fluorescence intensity of MDA-MB-231 GFP cells
injected (i.c) into mice
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Inhibition of breast cancer metastasis in bone by proteasome inhibitor. Mice were injected intracardially with 1 x 10® MDA-MB-231-GFP cells. The

mice were then treated with Bortezomib and BU-32 using a dose of 0.06 mg/kg body weight or with vehicle PBS as control. Whole-body high-reso-
lution fluorescence images of MDA-MB231-GFP-expressing breast cancer metastatic cells in the skeleton of live intact animals were measured after
5 weeks. Representative fluorescence images are shown for (a) the control group, (b) Bortezomib-treated mice and (¢) BU-32-treated mice. (d) The
fluorescence intensities were quantified. GFP, green fluorescent protein; i.c., intracisternal.

gression[14]. Indeed, proteasome inhibition has been shown tumor suppressor gene and the proapoptotic proteins Bid and
to stabilize the cyclin-dependent kinase inhibitors p21 and Bax, and downregulation of NFkB at the protein level in MCF-
p27, the tumor suppressor p53, and the proapoptotic proteins 7, MDA-MB-231, and SKBRS cell lines. There is no significant
Bid and Bax [15,39-45]. The increased levels of activated difference in the levels of expression of the mitogen-activated
p21, p27, p53, Bid, and Bax result in inhibition of cell cycle protein kinases p42, p44, phospho-p42 and phospho-p44
progression and/or promotion of apoptosis in response to compared with the controls. Although the p21 and p27 levels
Bortezomib [45]. As with the proteasome inhibitor Borte- increased in all three cell lines for both BU-32 and Bortezomib,
zomib, BU-32 exposure leads to accumulation of the cell- our results show that the effect is cell line dependent.
cycle-dependent kinase inhibitors p21 and p27, the p53

Table 1

In vivo toxicity study of BU-32 compared with Bortezomib

Untreated control BU-32 Bortezomib
0.1 mg/kg 0.25 mg/kg 0.1 mg/kg 0.25 mg/kg
Total number of mice/group 10 10 10 10 10
Week 1 10 10 10 10 9
Week 2 10 10 8 8 1

Ten mice in each group were treated twice a week for 2 weeks with vehicle (control) or with 0.1 and 0.25 mg/kg BU-32 and Bortezomib. BU-32-
treated mice showed more tolerance than Bortezomib at higher dose (0.25 mg/kg), and the lower dose of BU-32 (0.1 mg/kg) was completely safe
to the animals after 2 weeks of treatment.
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These observations are consistent with an earlier report that
the effect of proteasome inhibition on different markers varies
by drug, cell line, and time point of analysis [46]. BU-32 expo-
sure caused greater accumulation of Bax in all three cell lines.
It is known that p53 plays important roles in cell cycle regula-
tion and apoptosis [47-49]. Exposure to BU-32 resulted in
accumulation of the p53 tumor suppressor gene in all three
breast cancer cell lines we studied. The effect was more pro-
nounced for BU-32 in the cell lines MDA-MB-231 and SKBR3
than in MCF-7 cells compared with Bortezomib. Proteasome
inhibitor-induced apoptosis has been described as p53
dependent [12]. Other reports have shown that sensitivity to
proteasome inhibition was partially dependent on the p53 sta-
tus of the breast [50] and lung cancers in vitro [47], but Bort-
ezomib-induced apoptosis was p53 independent in prostate
cancer cells [14], multiple myeloma [15], and colon cancer
cells [51]. As with Bortezomib [45], the degree of variability in
the sensitivity to BU-32 with respect to p53 status appears to
be cell line dependent.

We next examined whether exposure to BU-32 downregulated
the transcription factor NF-kB. We found that BU-32 down-
regulated the expression of NF-kB in our panel of breast can-
cer cell lines and that the effect was comparable with
Bortezomib. The initial rationale for the use of Bortezomib in
multiple myeloma was inhibition of NF-kB activity by blocking
proteasomal degradation of inhibitor of kBa. [52]. Interestingly,
recent reports indicate that there is a paradigm shift in mye-
loma with respect to ascribing the mechanism of Bortezomib's
anti-tumor activity to NF-xB inhibition [563], and suggest that
Bortezomib-induced cytotoxicity cannot be fully attributed to
inhibition of canonical NF-«xB activity [54].

We also investigated whether exposure to BU-32 affects the
expression of genes involved in the angiogenic cascade, such
as VEGF, VEGF-receptor 1 (FLT1), the angiopoietin-Tie sys-
tem (Ang1, Ang2, Tiel, and Tie2), epidermal growth factor
receptor, and KDR in MCF7, MDA-MB-231, and SKBR3 cell
lines, and compared the effect with that of Bortezomib. Their
expression in endothelial cells increases with the angiogenic
switch and persists throughout angiogenesis - except during
vessel stabilization, when inhibitors prevail [55]. It has been
shown that VEGF triggers blood vessel formation [56]. Ang1
and Ang2 are mandatory for vessel sprouting and remodeling
[57]. Ang1 promotes sprouting in the presence of VEGF,
induces branching networks with the typical organization of
mature vessels, and stabilizes perivascular endothelial cell
interactions [566]. Ang2 exerts a vessel destabilizing effect,
which allows VEGF-mediated vascular reorganization [56].
The angiopoietin-Tie2 system appears to govern maturation
and stabilization of blood vessels. It is well understood from
previous studies that VEGF mainly binds to and activates two
different receptor tyrosine kinases: fms-like tyrosine kinase 1
(Flt-1) and KDR [58]. It is also reported in human vascular
endothelial cells that KDR mediates the majority of VEGF tran-

Available online http://breast-cancer-research.com/content/11/56/R74

scription-regulating activities [69] and recent studies have
demonstrated that KDR mediates the mitogenic, chemotactic,
tubulogenic, and survival activities of VEGF [60]. In the
present article we showed that exposure to BU-32 induces a
significant downregulation of these angiogenic markers in all
three cell lines and that the effect was generally more pro-
nounced for BU-32 than Bortezomib. These data suggest that
BU-32 exerts anti-angiogenic activity through the downregula-
tion of genes required for growth of endothelial cells, and that
angiogenesis is a possible mechanism of its cytotoxicity.

We also investigated the anti-breast cancer activity of BU-32
in vivo in a human breast cancer mouse model. In a xenograft
model of breast cancer, BU-32 treatment resulted in signifi-
cant inhibition of tumor growth. We also showed that BU-32
significantly reduces breast-cancer-initiated bone metastasis
in vivo. These effects were not associated with any significant
toxicity when compared with Bortezomib. We also showed
from our toxicity study that BU-32 has a broader safe dosing
range compared with Bortezomib. From this toxicity study, BU-
32 showed a promising tolerance profile and therefore can
offer a wide range of therapeutic index. Even though BU-32
appears to be an appealing therapeutic candidate, further
pharmacokinetic studies as well as pharmacodynamic studies
need to be conducted to validate the activity and safety
profiles.

Conclusions

Taken together, the results described in the present study
demonstrate that the novel proteasome inhibitor BU-32 pos-
sesses several in vitro and in vivo properties that suggest it
may be a promising anti-cancer therapeutic, and provide the
rationale for further clinical trials of BU-32 either alone or in
combination with other therapies in breast cancer patients.
BU-32 is a highly selective and potent inhibitor of 26S protea-
some. Preclinical studies currently being conducted by the
National Cancer Institute against a panel of 60 cell lines show
that BU-32 has broad anti-tumor activity (data not shown), and
numerous biochemical studies are currently ongoing to inves-
tigate its efficacy as a single agent and in combination with
other active anti-tumor agents against a variety of malignan-
cies. Our preclinical observation that treatment with BU-32
may be associated with less toxicity suggests its promise as
an anti-cancer agent.
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