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Abstract

Introduction Knowledge of tumor growth is important in the
planning and evaluation of screening programs, clinical trials,
and epidemiological studies. Studies of tumor growth rates in
humans are usually based on small and selected samples. In the
present study based on the Norwegian Breast Cancer
Screening Program, tumor growth was estimated from a large
population using a new estimating procedure/model.

Methods A likelihood-based estimating procedure was used,
where both tumor growth and the screen test sensitivity were
modeled as continuously increasing functions of tumor size. The
method was applied to cancer incidence and tumor
measurement data from 395,188 women aged 50 to 69 years.

Results Tumor growth varied considerably between subjects,
with 5% of tumors taking less than 1.2 months to grow from 10

mm to 20 mm in diameter, and another 5% taking more than 6.3
years. The mean time a tumor needed to grow from 10 mm to 20
mm in diameter was estimated as 1.7 years, increasing with age.
The screen test sensitivity was estimated to increase sharply
with tumor size, rising from 26% at 5 mm to 91% at 10 mm.
Compared with previously used Markov models for tumor
progression, the applied model gave considerably higher model
fit (85% increased predictive power) and provided estimates
directly linked to tumor size.

Conclusion Screening data with tumor measurements can
provide population-based estimates of tumor growth and screen
test sensitivity directly linked to tumor size. There is a large
variation in breast cancer tumor growth, with faster growth
among younger women.

Introduction
Mammography screening is now an established part of the
health service in developed countries. There is, however, still
an ongoing discussion related to optimizing mammography
screening, including determining optimal time intervals
between screenings and which age groups to invite. For these
decisions, adequate estimates of breast cancer tumor growth
and screening test sensitivity (STS) are crucial. In addition,
better knowledge of tumor growth will benefit the evaluation of
screening programs [1], as well as the interpretation of clinical
trials and epidemiological studies. There are some observa-
tional studies of patients that were initially overlooked at earlier
mammograms [2-4] or were refused treatment [2,3], but these
studies are small and are probably influenced by length of time

bias, since slow-growing tumors spend relatively longer times
in preclinical stages visible on mammograms. To our knowl-
edge, no large-scale population-based clinical observational
studies of untreated cancers have therefore been performed
as cancers are usually treated in populations with good cancer
surveillance.

Tumor growth can also be indirectly observed as tumor pro-
gression, estimated from variations in cancer incidence in
screening trials or programs. These studies [1] are usually ana-
lyzed using Markov models [5,6], where the mean time for a
breast cancer tumor to growth from screening-detectable size
to clinical detection without screening – the so-called mean
sojourn time – and the STS are estimated. The Markov model,
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however, has no separate variable for individual variation, and
the estimated variables are highly correlated with contributions
from both the underlying biological processes and the given
screening method. The estimated parameters therefore have
no explicit relation to the biological process of tumor growth,
and are often difficult to compare between different countries,
as the STS is defined as 'the proportion of cancers detected
at screening among screening detectable cancers', using the
evaluated procedural as its own reference.

Tumor growth can be estimated by comparing tumor sizes
from clinical-detected and screening-detected cases, but the
applied statistical models only partly utilize these data. Chen
and colleagues [7] used tumor size in a classical Markov
model, and van Oortmarssen and colleagues [8] used tumor
size in a simulation approach – but both studies only catego-
rized tumor size into two or three groups. On the contrary,
some clinical observation studies fully utilize tumor size meas-
urements with tumor growth modeled as a continuous function
of tumor size [2,9], but these studies of nontreated or over-
looked cancers are small and the results may not be valid due
to either selection bias or length of time bias.

The aim of the present study was to utilize modern computer
power on data from a population-based screening program,
with precise standardized measurements of tumor size, to reli-
ably estimate tumor growth and STS.

Materials and methods
Setting: data
In 1995 the Norwegian Government initiated an organized
population-based service screening program [10], in which
mammography results and interval cancer cases are carefully
registered by the Cancer Registry of Norway. The Norwegian
Breast Cancer Screening Program (NBCSP) originally
included four counties. Other counties were subsequently
included, and by 2004 the screening program achieved

nationwide coverage. All women between 50 and 69 years of
age receive a written invitation biannually, and two-view mam-
mograms from participating women are independently evalu-
ated by two readers.

A high-quality population-based Cancer Registry and a unique
personal identity number for each inhabitant in the country
enables close follow-up over time [11], and the possibility to
link data from several sources (Figure 1). Reporting cancer
cases to the Cancer Registry is mandatory, and information is
obtained separately from clinicians, pathologists, and death
certificates.

The present study includes screening data from 1995 to
2002. A total of 78% of the invited women attended the
screening program during this period, resulting in 364,731
screened women 50 to 69 years of age. Among these women,
336,533 answered a question regarding former screening
experience – and 113,238 reported no previous (private or
public) mammography experience before entering NBCSP.
While interval data in this study include the two subsequent
years following the first NBCSP attendance of all participating
woman, we have chosen to only include screening data from
the first NBCSP attendance of women having reported no pre-
vious mammography. Eligible women receive a new invitation
to mammography screening 16 to 24 months after their previ-
ous screening (with most women receiving their invitation 22
to 23 months after the previous screening). All observations
are censored 2 days after the new invitation was mailed (or on
death, emigration, or after 2 years of observation for women
passing the NBCSP upper age limit of 69 years of age). An
overview of the data used in the estimation is shown in Figure
2.

To make the results comparable with estimates provided in
previous studies [5,12-15], all cases of ductal carcinoma in
situ (DCIS) – a noninvasive form of breast tumor – were

Figure 1

Data sources used in the estimationData sources used in the estimation. *Norwegian Breast Cancer Screening Program (NBCSP). **Statistics Norway (SSB). ***Norwegian Cancer 
Registry.
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included. In addition, estimates were also deduced excluding
DCIS cases to check the potential effect of DCIS cases. Sev-
eral tumors detected at the same time in one woman were
counted as one case, with size measurements given for the
largest tumor. Only new primary breast cancers were included
in this study.

In the NBCSP, tumor measurements are performed on patho-
logical sections after surgery, and tumors are measured diag-
onally between the outer edges. All measurements were
performed in a standardized manner according to specifica-
tions given in a national quality assurance manual. Tumor size

measurements were available for 92% of the cancers
detected at screening. There were several reasons for missing
tumor measurements: some tumors were torn up at the surgi-
cal operation before tumor measurements were taken, others
were difficult to measure on pathological cross-sections, and
some tumors had grown into the outer skin. In addition, a sub-
stantial part had received tumor-reducing treatment before the
pathological material was removed. Tumors of unknown size
are therefore probably somewhat different from tumors with an
observed tumor size. Patients who received tumor-reducing
treatment will typically have larger tumors, which in practice
could have biased our estimates – leading to higher growth

Figure 2

Summary of dataSummary of data. (a) Distribution of tumor sizes. (b) Observed number of cases at first screening and in the following interval. Tumor measure-
ments from before the official screening program started come from a database at Haukeland Hospital (1985 to 1994). Screening data include only 
the first appearance of women reporting no earlier screening history, while interval data are based on all available observations. *Cases per 100,000 
person-years.
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rates. Sensitivity analyses related to possible bias in tumor
sizes were therefore performed.

Tumor size measurements of clinical breast cancers that
emerge without screening are needed for the tumor growth
model suggested in the present article. Since women who do
not attend screening represent a selected group, possibly with
different alertness to early symptoms, tumor size measure-
ments made before the start of the official screening program
were used. The Cancer Registry of Norway did not receive reli-
able information on tumor size prior to the official screening
program. At Haukeland University Hospital (covering Bergen,
Norway's second largest city), however, a good database for
tumor measurements of clinical invasive breast cancers exists
[16]. We were able to use these data, where 503 women
aged 50 to 69 years were diagnosed with breast cancer
between 1985 and 1994. Among these cases, 433 women
(86%) had registered tumor measurements in millimeters. A
comparison of tumor measurements found at screening and in
the Haukeland University Hospital database of clinically
detected cases is shown in Figure 2.

Growth model specification
Although the growth rates vary throughout the lifespan of each
tumor, a smoothly increasing function is likely to serve as a
good model for growth rates at the population level, as depar-

tures from one individual to the next probably are smoothed
out at the population level. For small tumors, growth is mostly
governed by the cell reproduction rate of the given tumor cells.
This constantly higher growth rate leads to an exponential
growth curve with constant doubling times. When tumors
grow larger, growth velocity is likely to decrease with the
increasing burden on the host, as the tumor receives more lim-
ited nutrition. One family of curves starting with near-exponen-
tial growth, before gradually leveling off below a given
maximum level, is the general logistic function (see examples
in Figure 3).

Several studies have examined growth curves, both in general
and for human breast cancer tumors in particular. The conclu-
sion has often been that the growth curves can be described
by either a logistic function [17] or a Gompertz function [9,18].
For the range of tumor sizes that are relevant for screening,
there are only minor differences between logistic and Gom-
pertz growth given probable parameters. Spratt and col-
leagues used a variant of the general logistic growth curve
with a maximum tumor volume of 40 cell doublings, equaling a
ball of 128 mm in diameter, after testing several models on a
clinical dataset that mostly consisted of overlooked tumors
[9,19]. To make the comparison with Spratt and colleagues'
observations [9,19], we used the same variant of the log-nor-
mal logistic growth model in the present study. This implies an

Figure 3

Overview of the new cancer growth modelOverview of the new cancer growth model. New cancer growth model: assumptions, model parameters, and likelihood function.
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almost exponentional growth for the smallest tumors, with
decelerating growth as the tumors approaches the maximum
of 128 mm in diameter (see examples in Figure 3). In addition
to the chosen model, model fits for several alternative choices
of maximum tumor volume were evaluated, with moderate
effects on the estimated values.

Growth rates vary between individual tumors, and both a study
of overlooked cancers [9] and a thymidine-labeling study of
tumors observed in a laboratory [20] found that variations in
net productive growth rates (cell production minus cell death)
can be described by a log-normal distribution. We therefore
modeled the individual growth rates, κi, by a log-normal distri-
bution with two variables; the mean α1, and the variance α2.
Mathematically, this gives the following specification of tumor
volume, Vi(t), as a function of time, t, for a given woman (i):

where κi is a log normally distributed growth rate with mean α1
and variance α2, Vmax is the maximum tumor volume (set to a
tumor of 128 mm in diameter), and Vcell is the volume of one
cell. (As all calculations in the present paper use a relative can-
cer time, the choice of Vcell does not affect the given
estimates.)

Overall, this can be seen as a mixed effects model with individ-
ual logistic growth curves and a log-normally distributed ran-
dom effect.

Assuming tumors have a ball shape, tumor volumes can be cal-
culated from the tumor diameter, Xi(t), by:

As tumor measurements in the NBCSP are the maximum
diameter, the real tumor volume will in practice be smaller. The
most important part of the model, however, is the modeled
growth curve, and sensitivity analyses show little effects of a
general reduction in modeled tumor volume as a function of
tumor diameter.

Screening test sensitivity model specification
Since larger tumors are easier to detect on mammograms than
smaller tumors, the STS was modeled as an increasing func-
tion of the tumor size, X, in millimeters. As used for the tumor
growth curve, a variant of the logistic function was used for the
STS. Mathematically, the modeled STS, S(X), can be written
as:

where β1 defines how fast tumor sensitivity increases by tumor
size and β2 relates STS to tumor size, with β2 = 0 equaling S(0)
= 0.5 (places the sensitivity curve in relation to tumor size).

Parameter estimation
Since mammography screening detects a higher proportion of
the larger prevalent tumors compared with the smaller preva-
lent tumors, the pool of undiagnosed tumors is expected to
have a clear overrepresentation of small tumors shortly after
screening. One would suspect this could lead to relatively
small tumors detected shortly after screening, followed by
gradually increasing tumor sizes with the time since last
screening. This trend is severely damped, however, as each
tumor before detection must reach a certain individual size to
produce sufficient symptoms to alarm the woman. In practice,
the relationship between tumor size and clinical detection
results in only a vague trend in interval cancer tumor sizes by
time since screening (correlation = 0.01 in the NBCSP),
whereas the number of interval cancers increases sharply. We
have therefore chosen to disregard the size distribution of
interval cancers, and build our estimation procedure on the
observed frequency of interval cancers by the time since
screening, the number of cases found at screening, the tumor
size distribution of screening cancers, the assumed back-
ground incidence, and the size distribution of clinical tumors
without screening (based on historical data).

Combining these data with our model, the model parameters
can be estimated by maximum likelihood calculation. As the full
likelihood includes several integrals, the actual maximum likeli-
hood calculations are performed discretely, grouping the data
into sufficiently small time and tumor size intervals.

To ease the calculations, the likelihood contributions from the
screening and interval data have been taken as independent.
This is possible since the number of cases is small relative to
the total population of screened women, and since there prob-
ably are considerable variations in tumor growth with several
screening detected cancers arising after the observed interval.
To test the assumption in a relevant setting, we performed a
simulation of the suggested growth model, without the inde-
pendence assumption, using the estimated parameter values
and a 100% overlap in screening and interval populations.
This revealed only a weak correlation of 0.019 between the
total number of screening and interval cancers (based on
10,000 simulations), giving no indication of problems with the
assumed independence. Conditional on the assumed
background incidence without screening and the clinical
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distribution of tumor sizes, the likelihood of a given dataset can
be written as:

where the first part is calculated by a multinomial distribution:

where i is an indicator for the size group, sn is the number of
screened women, sci is the number of screening cases in size
group i, and spi is the probability of a woman having a tumor in
size group i at screening, given the parameter set {α1, α2, β1,
β2}.

Similarly, the second part of the likelihood, concerning the rate
of interval cancers, follows a Poisson distribution:

where icj is the observed number of cancers j months after
screening and iej is the expected number of cancers j months
after screening, given the parameter set {α1, α2, β1, β2}.

The probability of finding a cancer in a given size group at
screening (spi) and the expected number of interval cases (iej),
given a set of known parameters, (α1, α2, β1, β2), are therefore
needed for the estimation of model parameters. There is no
available knowledge regarding the number of tumors initiated
at different ages that have the potential of becoming screening
or clinically detected cancers later on. The expected number
of cases given a known tumor growth rate cannot therefore be
deduced directly. It is possible, however, to calculate the
expected number of cases at screening using back calcula-
tions from the expected number of clinical cancers seen with-
out screening. This idea is not unlike the theory behind Markov
models of cancer screening [12], utilizing known quantities
regarding the expected number of future cancers to calculate
the expected number of cases at an earlier stage.

Given a set of tumor growth parameters, we can calculate the
probability that a tumor arising clinically at a given age without
screening would have been in a given tumor size group some
months earlier. Combining this with given STS parameters, we
can calculate the probability that a tumor arising clinically at a
given time without screening is found (earlier) at a given
screening examination. Applying this on the expected number
of future clinical cancers for all size groups separately, we can
calculate the expected number of cancers that would be found

at screening and, consequently, the reduction in cancers seen
after screening. The probability of finding a given number of
cancers in different size groups at screening, and a given
number of interval cases each month after screening, can
therefore be calculated for a given set of model parameters:

where S(...) is the STS defined in equation (3), and r is the
expected breast cancer rate per time unit (month) without
screening – to simplify calculations, the rate is assumed con-
stant over time as in the earlier used Markov model [5,12],
probably giving a good approximation in the limited time span
used in the estimation – and gsf,i, is the probability that a clin-
ical cancer is in size group i f months before clinical detection.
Using our assumed tumor growth function, gsf,i can be calcu-
lated using back calculation of tumor sizes:

where pg is the relative proportion of breast cancers of size g
without screening.

Similarly, iej can be found by:

where PYRj is the number of person years in interval j and fsj,g
is the probability that a clinical cancer in size group g would
have been found if screened j months earlier.

Using back calculation of tumor sizes, fsj,g can be expressed
as:

In practice, both P(tumor of size g was of size i f months earlier
|α1, α2) in equation (8) and P(tumor of size gs was of size g j
months earlier |α1, α2) in equation (10) can be calculated in
the following three stages. First, by rearranging the growth for-
mula equation (1), expressing earlier tumor size as a function
of present tumor size and tumor growth rate (κi). Then calcu-
lating upper and lower limits for tumor growth (κi), constituting
the requested probability. Finally, calculating the probability for
tumor growth within the given limits using the log-normal dis-
tribution and assumed growth parameters {α1, α2}.
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Combining these formulas, maximum likelihood estimates of
the observed dataset can be deduced by numerically maximiz-
ing the log-likelihood.

Modeling choices: specifications
While the number of cancers in the interval between screen-
ings can be observed directly, the expected number without
screening has to be estimated. As the NBCSP offers screen-
ing to all women in a defined population, no parallel control
group is available to carry out this estimation. In addition, com-
mitment to screening can, and probably does, vary with indi-
vidual risk factors, so those who do not attend are not a
suitable control group either.

The background incidence was therefore calculated from his-
torical data combined with an estimated time trend. In prac-
tice, data from 1990 to 1994 were used with time trend
estimates from an age-period cohort model with additional
screening parameters [21]. Incidence rates vary among age
groups and counties, and the estimate was therefore weighted
by the number of person-years in each combination of age
group and county. Further, it may be a problem that the sharply
increased use of hormone replacement therapy (HRT) in the
1990s [22] has influenced the historical time trends in breast
cancer incidence. HRT is known to increase breast cancer risk
[23], and Bakken and colleagues [22] found a relative risk of
breast cancer of 2.1 for current versus never users in Norway.
Combining sales figures with risk estimates, Bakken and
colleagues estimated the proportion of breast cancer cases
that could be attributed to HRT use as 27% among Norwegian
women 45 to 64 years of age. HRT use increased sharply from
the period that was used to calculate the expected incidence
without screening (1990 to 1994) to our estimating period
(1996 to 2002). Therefore 21% was added to the estimated
background incidence (when otherwise not noted), on the
basis of information regarding increased breast cancer risk
and HRT sale figures found in Bakken and colleagues [22].
With this correction, the expected incidence without
screening was estimated as 190 cases/100,000 person-
years for women 50 to 59 years of age, and as 219 cases/
100,000 person-years for women 60 to 69 years of age.

When calculating the expected number of cases at screening,
we cannot include an infinite number of future time intervals.
We therefore limited the growth rates to realistic levels given
the women's current age, and reweighted the distribution.
Experiences with different limits show that the choice of
growth limit had little effect on the estimated values.

Statistical calculations
All calculations, simulations, and plots were performed using
the R statistical package [24]. Data were transformed from the
Norwegian breast cancer screening database and were sum-
marized using a combination of SQL commands and the sta-
tistical package S-PLUS (Insightful, Seattle, USA). To double

check the implemented R functions, new datasets were simu-
lated and the results compared with the expected number of
cases.

Maximum likelihood estimates were found by optimization over
all four parameters simultaneously, using the optimize function
found in the R package [24]. For these calculations, time inter-
vals of 1 month were used. Tumor sizes were categorized to 1
mm, 2 mm, 5 mm, 10 mm, 15 mm, ..., 100+ mm, as the back-
ground data revealed that many pathologists approximated
tumor sizes to the nearest 5 mm, 10 mm, 15 mm, ..., 100 mm
(data not shown). To look at possible age differences, esti-
mates were calculated separately for women aged 50 to 59
years and women aged 60 to 69 years, in addition to all age
groups combined. Calculations were very computer intensive,
with a huge number of probability calculations needed to cal-
culate the expected number of cases for a given parameter
set.

The main estimates are presented with (pointwise) confidence
intervals showing their (random) uncertainty. Robust 95%
confidence intervals were calculated by 1,000 smoothed bias-
corrected parametric bootstrap replications [25], resampling
all of the observed data except the assumed breast cancer
incidence without screening. Simulations were used to
deduce the overall STS and the mean sojourn time. As a vali-
dation of the model fit, observed values versus expected val-
ues were plotted. In addition, the traditional Markov model of
breast cancer screening [5,12,26] was compared with the
new method using one-fifth holdout cross-validation, measur-
ing the weighted mean square differences. For evaluation of
cross-validation results, P values calculated from 50 paramet-
ric bootstrap replications were used.

Results
Parameter estimates
For all age groups combined, model parameters were esti-
mated as {α1, α2, β1, β2} = {1.07, 1.31, 1.47, 6.51}, while the
two age groups 50 to 59 years and 60 to 69 years gave esti-
mates of {1.38, 1.36, 1.50, 6.33,} and {0.70, 1.18, 1.46,
6.65}, respectively. While parameters are hard to interpret and
compare, several relevant quantities can be deduced once
parameters are estimated.

Estimated tumor growth
The estimated tumor growth implies that tumors in women 50
to 59 years of age take a mean 1.4 years to grow from 10 mm
to 20 mm in diameter, while tumors in women 60 to 69 years
of age take a mean time of 2.1 years (Table 1). Overall, the
mean time taken to grow from 10 mm to 20 mm was estimated
as 1.7 years, but there were large individual variations with an
estimated standard deviation of 2.2 years. If we removed the
correction for a probable higher background incidence due to
increased HRT use, growth rates were somewhat lower (Table
1). There were generally large variations in tumor growth
Page 7 of 13
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(Figure 4a), and tumor-doubling times at 15 mm varied from
41 days for the first quartile to 234 for the last quartile (Table
1). Comparing the new estimates with earlier estimates based
on overlooked cancers found in Spratt and colleagues [9] we
found generally good concordance, with only slightly more
very fast-growing tumors (Table 2).

Estimated screening test sensitivity
The mammography STS was estimated to increase sharply
from around 2 mm to 12 mm, with the STS reaching 26% at 5
mm and 91% at 10 mm (Figure 4b). There was no significant
difference in the estimated STS between the two age groups
(P = 0.83 for the STS at 5 mm).

Overall screening test sensitivity and mean sojourn time
Using simulations to combine the STS and the given distribu-
tion of clinical tumors, we found that nearly all cancers were
likely to be visible at screening before reaching clinical detec-
tion (Table 1). Defining the mean sojourn time as the time
tumors are visible at screening before clinical detection, these
cancers have a mean sojourn time of 3.0 years – resulting in
an overall mean sojourn time of 2.9 years for all cases. In older
women the mean sojourn time was estimated to be signifi-
cantly longer. There were large variations in the sojourn time,
and the standard deviation was estimated as 5.0 years, indi-
cating that the Markov model (which equals the mean sojourn
time and standard deviation) does not allow for enough individ-
ual variation in growth rates.

Model fit
The overall model fit was very good (Figure 5). Comparing the
model fit by looking at the number of cancers at screening and
the following interval, the new model gave significantly (boot-
strap P < 0.0001) better model fit than the classical Markov
model [26]. Overall, the predictive power increased by 85%
(that is, an 85% reduced weighted difference between
observed and predicted values, when evaluated through
cross-validation).

A more exponential tumor growth curve modeled through a
higher maximum tumor volume weakened the overall model fit
(data not shown), supporting the assumption that the doubling
time of the tumor volume may increase with increasing tumor
size (as assumed by the logistic model). To explore possible
biases due to missing tumor measurements at screening, we
applied several different assumptions regarding the true tumor
diameter of the unknown tumors, revealing very stable param-
eter estimates (data not shown).

Discussion
The present study introduces a new way of modeling cancer
growth and STS, based on data from a large screening pro-
gram. Tumor growth was estimated to vary greatly between
individual tumors, with tumors taking a mean time of 1.7 years
to grow from 10 mm to 20 mm in diameter. The STS was esti-
mated to increase rapidly with tumor size, from 26% at 5 mm
to 91% at 10 mm.

Figure 4

Estimates of tumor growth rate variation and screening test sensitivity for all age groups combinedEstimates of tumor growth rate variation and screening test sensitivity for all age groups combined. Estimates for all age groups combined, 
with correction of background incidence (+21%) due to increased hormone therapy use. (a) Estimated variation of tumor growth rates, illustrated by 
growth curves for the 5th, 25th, 50th, 75th and 95th percentiles. (b) Estimated screening test sensitivity with 95% pointwise confidence intervals.
Page 8 of 13
(page number not for citation purposes)



Available online http://breast-cancer-research.com/content/10/3/R41
Applied to the NBCSP data, the new model gives a very good
model fit, and a significantly better predictive power than the
previously used Markov model [26]. Certain aspects of the
model need further investigation, however, and some have
argued that cancer growth either follows exponential [27] or
Gompertz [18] growth functions, and not the assumed logistic
growth curve [19]. The practical difference between the logis-
tic and Gompertz curve is relatively small, but an exponential

growth curve could probably alter the results significantly.
Mathematically, a logistic function with very large maximum
tumor volume almost equals the exponential curve. Several
alternative levels of maximum tumor volume were therefore
tested, giving weaker model fit as the maximum tumor volumes
increased, thereby strengthening our assumption of a
bounded growth function (rather than an exponential growth
function).

Table 1

Summary of results with 95% bias-corrected bootstrap confidence intervals

With supposed higher background incidence due to increased hormone 
therapy use (+21%)

Combined estimate (50 to 69 
years) with non-adjusted 
background incidence

Women aged 50 
to 59 years

Women aged 60 to 69 years Combined estimate 
(50 to 69 years)

Time taken from 10 mm to 20 mm 
(years)

Mean 1.4 (1.1, 1.5) 2.1 (1.8, 2.4) 1.7 (1.5, 1.8) 2.0 (1.8, 2.2)

Standard deviation 1.9 (1.7, 2.2) 2.4 (2.1, 2.7) 2.2 (2.0, 2.4) 2.7 (2.5, 2.9)

Volume doubling time at 15 mm 
(days)

25th percentile 29 (19, 36) 65 (47, 79) 41 (32, 48) 29 (21, 35)

50th percentile 73 (56, 86) 143 (116, 165) 99 (84, 111) 94 (77, 107)

75th percentile 180 (148, 205) 308 (253, 352) 234 (204, 259) 287 (243, 322)

Screening test sensitivity

5 mm 29 (21, 36) 24 (18, 30) 26 (22, 31) 26 (22, 31)

10 mm 92 (88, 99) 91 (86, 98) 91 (88, 96) 91 (87, 96)

Indicators of potential screening 
efficacy

Mean sojourn time (years) 2.3 (2.0, 2.6) 3.5 (3.1, 3.9) 2.8 (2.6, 3.1) 3.4 (3.1, 3.6)

Proportion of tumors visible on 
screening

0.95 (0.94, 0.96) 0.95 (0.95, 0.96) 0.95 (0.95, 0.96) 0.95 (0.95, 0.96)

Table 2

Estimates of tumor growth rates compared with Spratt and colleagues' [9] estimates based on overlooked and nontreated cancers

Percentile Growth parameter (κi in equation (1)) Time (years) tumor takes to grow from 10 mm to 20 mm

Estimate Spratt et al. Estimate Spratt et al.

1st 0.2 0.2 10.9 12.9

5th 0.4 0.6 6.3 4.6

25th 1.3 1.7 2.0 1.5

50th 3.0 3.2 0.9 0.8

75th 7.2 5.2 0.4 0.5

95th 25.4 11.8 0.1 0.2

99th 61.9 33.7 0.0 0.1
Page 9 of 13
(page number not for citation purposes)



Breast Cancer Research    Vol 10 No 3    Weedon-Fekjær et al.
Another possible objection to the model is that the STS is
assumed to always increase towards 100% as the tumor size
increases, while some cancers probably never become visible
on mammograms [28]. To test this alternative hypothesis, a
three-parameter STS function with a parameter for maximum
STS was tested, giving no indication of a lower maximum STS
level. To limit the complexity of the estimation procedure and
the presentation of the new model, only data from the first
screening round were used in this study. Data from subse-
quent screening rounds were still available, and while the
model predicted a 71% decline in detected cancers from first
screening to second screening, the observed decline was only
46%. This is a considerable predicted–observed difference,
and the NBCSP generally has shown a surprisingly high can-
cer rate at the second screening. In addition to possible prob-
lems with the model itself, this can be an effect of changes in
HRT use in the study period (increasing the general breast
cancer risk), of increased sensitivity in the second round due
to use of earlier mammograms, of better training of staff with
time, or of an overrepresentation of communities with high
cancer risk in the second screening round.

Even with a high-quality cancer registry, problems with the
applied data may cause more bias to the estimated values than
the applied model assumptions. Studying the fit of the new
model (Figure 5), there are some signs of discrepancy in the
last half of the interval following screening, with too many
observed cases. This may be an effect of unregistered oppor-
tunistic screening, since opportunistic screening has been
available at many private institutions, and cancers detected

outside the NBCSP have in practice been registered as inter-
val cancers. Unfortunately, no detailed information is available
on the extent of opportunistic screening in the different age
groups, and there is no precise information on whether interval
cancers have been detected by opportunistic screening or
clinical symptoms. Preliminary studies by the Norwegian Can-
cer Registry indicate that approximately 10% of the NBCSP's
invited women are screened outside the program each year.
This percentage may, however, be lower since the level of
opportunistic screening may be higher among nonattendees
of the public screening. Preliminary attempts to estimate the
level of opportunistic screening, and to correct the estimated
STS and growth rates, indicate little bias in the estimated
mean cancer growth and the STS, while the variation in cancer
growth rates decreased substantially.

Another problem can be the assumed background incidence
without screening, as the estimates changed somewhat
(Table 2) when removing the correction for a probable higher
background incidence due to increased use of HRT [22]. The
correction probably improves the estimates, but there is uncer-
tainty. Based on typical user patterns, it is possible that HRT
use could have been higher than assumed among woman 50
to 59 years of age, and somewhat lower among the 60 to 69
years age group. The correction may therefore be too small for
the younger age group and too strong for the older age group.
In addition, HRT use fluctuated during the study period, and
may have influenced the cancer incidence, the STS and the
tumor growth in different ways. Most importantly, HRT use is
known to reduce the STS [29-31], at least partially due to

Figure 5

Model fit using the new cancer growth modelModel fit using the new cancer growth model. (Left) Tumor sizes on screening. (Right) Number of interval cancers. HRT = hormone replacement 
therapy.
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increased breast density. Since HRT use has been quite com-
mon in Norway, the STS may have been even higher with mod-
erate levels of HRT use. Tumor growth estimates may also be
affected by HRT use, and both the STS and tumor growth esti-
mates should be viewed in the light of the relatively high HRT
use during the study period.

Overall, sensitivity investigations indicate that the new model
is probably less vulnerable to several potential biases than the
Markov model [5,12], possibly as a result of more utilized data.
The model is substantially different from the Markov model,
rendering direct comparisons difficult, but the slightly different
overall screening efficiency indicators confirm the estimated
mean sojourn time and STS from other studies [32,33], with a
shorter mean sojourn time and a higher STS than found in a
recent Norwegian study [26].

More importantly, the new model estimates tumor growth
directly connected to tumor measurements, similar to the ear-
lier nonpopulation-based studies of overlooked cancers [4,9],
but using a much larger population-based material. The results
confirm previously reported growth rates (Table 2), large vari-
ances in tumor growth, and a probable bounded growth func-
tion, suggesting less selection bias in studies of (earlier)
overlooked cancers than previously assumed [9].

Earlier studies have shown decreasing tumor progression and
higher STS with increasing age [32,33]. The present study
confirms the previously reported decrease in tumor growth
with age, but we found no trend in STS associated with age.
This is surprising, but very few new breast cancers were diag-
nosed in the first months after screening among women 50 to
59 years of age (Figure 1), indicating a surprisingly high STS
for the younger age group. An investigation of which aspects
of the data influence the various parameters revealed that dif-
ferences in tumor size between screening and clinically
detected tumors are vital for STS estimates. In the Norwegian
screening program there is little difference in screening and
clinical tumor sizes between the two age groups, a fact that
indicates small differences in STS by age. This could of course
be an artifact due to the modeling, but could also be an effect
of very different recall rates in the two age groups [34]. Indeed,
the issue clearly motivates further examinations of the STS
among younger women.

Compared with studies of overlooked cancers and with stud-
ies of women who refused treatment, the population-based
approach greatly increases the number of observed cases and
applies data that are probably less biased. Generally, this
model combines many of the advantages of the large popula-
tion-based Markov methods [5,12], with more specific tumor
growth estimates found in clinical studies of overlooked can-
cers. This makes the model suited for both optimizing screen-
ing designs and cost–benefit analyses.

By combining the present tumor growth and STS estimates
with death rates, different screening designs may be evaluated
even more efficiently than seen in earlier studies. Plevritis pre-
sented an advanced simulation approach with continuous
tumor growth [35]. The approach was based on similar tumor
size back-calculation techniques to those used in our study,
but the lack of estimates probably limited the practical impact
of that study. In practice, Markov models have often been used
to evaluate screening designs [36], but without a direct link to
tumor size it is difficult to separate and compare the mean
sojourn time and the STS between screening programs [26].
In recent years, more advanced simulation models have been
suggested – as seen in the US National Cancer Institute Can-
cer Intervention and Surveillance Modeling Network [1,37] –
further emphasizing the need for precise tumor growth
estimates.

Whereas screening with mammography has been related to
reduced mortality in several randomized trials [32,38], so-
called overdiagnosis remains a controversial topic. Following
the conservative definition of the number of overdiagnosed
cases as 'the number of women who would not had breast
cancer in their life time without participating in mammography
screening', our new model can be used to estimate the level of
overdiagnosis under different screening designs. As a motiva-
tion for further studies, we have estimated the probable age at
which screening-detected cancers would have become clini-
cally detected without screening, given one screening exami-
nation at different ages. Figure 6 illustrates why screening in
higher age groups is controversial, since a large proportion of
cancers would never have surfaced in the absence of screen-
ing. On the other hand, our estimates indicate that the vast
majority of screening cancers in the current NBCSP age
group (50 to 69 years) would at one stage been detected clin-
ically without screening. The new method presented here pro-
vides a toolbox for estimating this and other central issues
related to mammography screening.

Although the new model may be closer to the underlying bio-
logical process than the Markov model [5,12], there is a poten-
tial for improvements of the model. For example, the model
assumes that tumors do not regress but in the literature there
are a few reports of regressive breast cancers [39], and it is
possible that a certain proportion of cancers stop growing or
regress. This may particularly apply to noninvasive disease. To
test the vulnerability of this possibility in our estimates, we cal-
culated the estimates excluding DCIS cases – assuming that
all DCIS cases regress, showing very little effect on estimated
values (Table 3). Still there could be a significant proportion of
DCIS cases that do regress, with great relevance for DCIS
treatment. Hence, an expansion of the model could, for exam-
ple, be to add a separate parameter for regressive DCIS.
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Conclusion
To summarize, tumor growth and STS estimates can be
directly linked to tumor size in a full population study, resulting
in very useful growth estimates directly connected to a biolog-

ically relevant measure. Tumor growth seems to vary greatly
between tumors, with higher growth rates among younger
women. Most tumors become visible at screening when they
reach a diameter of 5 mm to 10 mm.

Figure 6

Illustration of potential use of the new cancer growth modelIllustration of potential use of the new cancer growth model. Age at which screening tumors would have become clinical without screening, by 
tumor size at the time of screening detection. (a) Screening at 55 years of age. (b) Screening at 65 years of age. (c) Screening at 75 years of age. 
(d) Screening at 85 years of age. Vertical lines mark the expected time at which 25%, 50% and 75% of the screened women are suspected to have 
died, based on death rates from Statistics Norway. Panel (c) and (d) are based on the screening test sensitivity and growth estimates from the 60 to 
69 years age group.

Table 3

Estimates with and without ductal carcinoma in situ (DCIS)

Data used Time taken (years) to grow 
from 10 mm to 20 mm

Volume doubling time (days) at 15 mm Screening test sensitivity Indicators of potential 
screening efficacy

Mean Standard 
deviation

25th 
percentile

50th 
percentile

75th 
percentile

5 mm 10 mm Mean 
sojourn time 
(years)

Proportion 
of tumors 
visible on 
screening

With ductal 
carcinoma in 
situ

1.7 2.2 41 99 234 26 91 2.9 0.95

Without ductal 
carcinoma in 
situ

1.5 1.9 44 96 209 23 91 2.5 0.95

All other estimates in the present article are given including ductal carcinoma in situ.
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