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Abstract

Introduction In vitro evidence suggests that PIK3CA
(phosphatidylinositol 3-kinase, catalytic, alpha polypeptide)
activation may be associated with altered chemotherapy
sensitivity in cancer.

Methods Tumor DNA from 140 patients with stage II–III breast
cancer undergoing neoadjuvant chemotherapy was sequenced
for PIK3CA mutations on exons 1, 9, and 20. Mutation status
was correlated with clinical/pathological parameters and
chemotherapy response as (a) pathological complete response
(pCR) versus residual cancer or (b) quantitative residual cancer
burden (RCB) scores, including stratification for estrogen
receptor (ER) expression status, type of chemotherapy, and by
exons.

Results Twenty-three patients (16.4%) harbored a PIK3CA
mutation, with 12, 11, and 0 mutations located in exons 9, 20,
and 1, respectively. PIK3CA exon 9 mutations were more
frequent among node-negative (52% versus 25%; P = 0.012)
than node-positive tumors, particularly among ER-positive
tumors. pCR rates and RCB scores were similar among patients
with the wild-type and mutant PIK3CA genes, even after
stratification by ER status, chemotherapy regimen
(anthracycline versus anthracycline plus paclitaxel), or exon.
Conclusion PIK3CA mutations are not associated with altered
sensitivity to preoperative anthracycline-based or taxane-based
chemotherapies in ER-positive and ER-negative breast tumors.
In this study, PIK3CA mutation was associated with a
decreased rate of node-positive disease, particularly among ER-
positive tumors.

Introduction
Phosphoinositol 3-kinase (PI3K) is a heterodimer that is com-
posed of a p85 regulatory and a p110 catalytic subunit (coded
for by the PIK3CA [PI3K, catalytic, alpha polypeptide] gene)

[1,2]. PI3K activity controls multiple cellular functions through
its second messenger, 3,4,5'-phosphatidylinositol trisphos-
phate, and its downstream targets, including the serine/threo-
nine protein kinases Akt and mammalian target of rapamycin
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(mTOR) [3]. Activation of the PI3K/Akt pathway is involved in
the regulation of cell proliferation and suppression of apopto-
sis [4]. Activating mutations in the catalytic subunit are onco-
genic in vivo [5]. Almost all activating mutations (>90%) in
human tumors occur in exons 9 (helical domain E542K and
E545K) and 20 (kinase domain H1047R); the remainder seem
to be distributed evenly over the entire PIK3CA coding
sequence. Activating mutations induce a gain of function that
results in constitutive signaling through the PI3K/Akt and
mTOR pathways [6]. PIK3CA is frequently mutated in different
human tumors, including head and neck, cervical, gastric, lung,
and breast tumors [7]. In breast cancer, PIK3CA mutations
occur in approximately 18% to 40% of human cases and are
also observed in up to 50% of breast cancer cell lines [8-14].

In vitro evidence suggests that PIK3CA activation is associ-
ated with decreased sensitivity to several different chemother-
apeutic agents, including paclitaxel, doxorubicin, or 5-
fluorouracil [15,16]. The goal of this study was to examine
whether there is a correlation between activating mutations in
the catalytic subunit of PI3K and response to therapy in stage
II–III human breast cancer treated with preoperative chemo-
therapy. We hypothesized that activation of this pathway
through somatic mutations may be associated with decreased
response to cytotoxic treatment and increased residual cancer
volume after chemotherapy. We examined this potential effect
separately for estrogen receptor (ER)-positive and for ER-neg-
ative breast tumors and also for anthracycline-based and
anthracycline/paclitaxel-based chemotherapies. To our knowl-
edge, this is the first breast cancer study to directly examine
the association between PIK3CA mutation status and
response to chemotherapy in breast cancer.

Materials and methods
Patient characteristics
The study population consisted of 140 patients who partici-
pated in a pharmacogenomic predictive marker discovery
study at the University of Texas M. D. Anderson Cancer Center
(MDACC) [17]. During this research, patients were asked to
undergo pretreatment fine needle aspiration (performed with a
23- or 25-gauge needle) of the primary breast tumor. Cells
from two or three passes were collected into vials containing
1 mL of RNAlater™ solution (Ambion, Inc., Austin, TX, USA)
and stored at -80°C. All patients subsequently received 6
months of preoperative chemotherapy: 63 patients (45%)
received six courses of 5-fluoruracil, doxorubicin (or epiru-
bicin), and cyclophosphamide (FAC or FEC, respectively)
chemotherapy, and 77 patients (55%) received 12 weekly
courses of paclitaxel followed by four courses of 5-fluoruracil,
doxorubicin (or epirubicin), and cyclophosphamide (TFAC or
TFEC, respectively). None of these patients received preoper-
ative treatment with trastuzumab, lapatinib, or endocrine ther-
apy. All patients underwent modified radical mastectomy or
lumpectomy and sentinel node dissection after completion of
chemotherapy. All patients with ER-positive tumors subse-

quently received adjuvant endocrine therapy. Each patient
gave informed consent to allow molecular analysis of her
tumor, and this study was approved by the institutional review
board of the MDACC. Patient characteristics are summarized
in Table 1.

Pathology assessment
ER expression status and progesterone receptor (PR) expres-
sion status were assessed by immunohistochemistry (IHC)
(6F11; Novocastra Laboratories Ltd., Newcastle, UK) and
human epidermal growth receptor 2 (HER2) status was
assessed by either fluorescence in situ hybridization (FISH) or
IHC as part of routine clinical care. ER positivity and PR posi-
tivity were defined as greater than 10% positive tumor cells
with nuclear staining. HER2 positivity was defined as either
HER2 gene amplification on FISH analysis (>2.0 CYP16/
HER2 gene copy number ratio) or 3+ signal on IHC evalua-
tion. Nuclear grade was assessed using modified Black's
nuclear grading system. Pathological response was deter-
mined at the time of surgery by microscopic examination of the
excised tumor and lymph nodes. Pathological complete
response (pCR) was defined as no residual invasive cancer in
either tumor or lymph nodes as opposed to residual disease
(RD). Cases with in situ carcinoma in the absence of an inva-
sive component were also included among the cases with
pCR [18]. Cases with residual cancer (RD) represent a con-
tinuum of responses and it has long been recognized that the
larger the residual cancer after preoperative chemotherapy,
the worse the prognosis. We recently developed a method to
quantify residual invasive cancer after preoperative chemo-
therapy on a continuous scale. This method combines the larg-
est diameter of the invasive tumor, the percentage cellularity of
the tumor, the number of lymph nodes involved, and the largest
diameter of the nodal involvement into a residual cancer bur-
den (RCB) score [19,20]. The RCB score correlates with sur-
vival and also can be used to define four distinct pathological
response categories: RCB-0 (same as pCR), RCB-I (near
pCR), RCB-II (moderate residual cancer), and RCB-III (exten-
sive residual cancer). These RCB categories are predictive of
long-term survival; patients who achieve RCB-I pathological
response have overall and disease-free survival rates similar to
those of patients achieving pCR (that is, RCB-0) whereas
patients with RCB-III have a very poor prognosis, particularly if
they have ER-negative disease [20].

DNA isolation and mutation analysis
DNA was extracted from the flow-through of the RNA extrac-
tion step performed with a Qiagen RNEasy Mini Kit (#74104;
Qiagen Inc., Valencia, CA, USA) using a Qiagen DNA extrac-
tion kit (#69504; Qiagen Inc.) according to the manufacturer's
instructions. DNA concentration and purity were determined
using a NanoDrop ND-1000 Spectrometer (NanoDrop Tech-
nologies, Wilmington, DE, USA).
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Sequences for all annotated exons and adjacent intronic
sequences containing the kinase domain of the PIK3CA gene
were extracted from the Celera (Rockville, MD, USA) [21] or
public [22] draft human genome sequences. Primers for
polymerase chain reaction (PCR) amplification and sequenc-
ing were designed using the Primer3 program [23] and were

synthesized by MWG (High Point, NC, USA) or Integrated
DNA Technologies, Inc. (Coralville, IA, USA). PCR amplifica-
tion and PIK3CA sequencing were performed using a 384-
capillary automated sequencing apparatus (Spectrumedix,
State College, PA, USA). Sequence traces were assembled
and analyzed to identify potential genomic alterations using

Table 1

Patient characteristics

Number Percentage

Pathological complete response (pCR) versus residual disease (RD) RD 113 80.7

pCR 24 17.1

Unknown 3 -

Residual cancer burden 0 24 22.6

I 7 6.6

II 47 44.3

III 28 26.4

Unknown 34 -

Estrogen receptor (ER) status ER- 62 44.3

ER+ 78 55.7

Progesterone receptor (PR) status PR- 82 58.6

PR+ 58 41.4

HER2 status HER2- 125 89.3

HER2+ 15 10.7

Grade Grade 1–2 56 48.7

Grade 3 59 51.3

Unknown 25 -

Nodal status and T stage N0 41 29.3

N1 62 44.3

N2 30 21.4

N3 7 5.0

T1 9 6.4

T2 71 50.7

T3 21 15.0

T4 39 27.9

Ethnicity Asian 3 2.1%

Black 13 9.3%

Hispanic 50 35.7%

Caucasian 74 52.9%

Systemic therapy FAC/FEC 63 45.0%

TFAC/TFEC 77 55.0%

Median age (minimum-maximum), years 51 (28–73)

FAC, 5-fluoruracil, doxorubicin, and cyclophosphamide; FEC, 5-fluoruracil, epirubicin, and cyclophosphamide; TFAC, paclitaxel followed by 5-
fluoruracil, doxorubicin, and cyclophosphamide; TFEC, paclitaxel followed by 5-fluoruracil, epirubicin, and cyclophosphamide.
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the Mutation Surveyor software package (SoftGenetics, LLC,
State College, PA, USA). Primer sequences and conditions for
PCR amplification and sequencing have been reported previ-
ously [7,24]. Exon-specific and sequencing primers were syn-
thesized by Invitrogen Corporation (Carlsbad, CA, USA).
Purified PCR products were sequenced using a BigDye® Ter-
minator version 3.1 Cycle Sequencing Kit (Applied Biosys-
tems, Foster City, CA, USA) and analyzed with a 3730 ABI
capillary electrophoresis system. Mutational analysis was car-
ried out in the laboratory of author AB at the University of
Torino [24].

Statistical analysis
The correlation between PIK3CA mutation status and dichot-
omous clinical/pathological parameters was examined by
means of the chi-square test. ER, PR, and HER2 receptor
expression status (positive versus negative), nuclear grade (1/
2 versus 3), and lymph node status (negative versus positive)
were considered as dichotomous variables. Tumor size (T0–
T4) and patient ethnicity (Asian, Black, Hispanic, and Cauca-
sian) were treated as categorical variables, and patient age
was treated as a continuous variable. Pathological response
was examined as both a dichotomous variable comparing pCR
versus all RD and as an ordinal categorical variable (RCB-0, -
I, -II, and -III). The associations between continuous variables
and PIK3CA mutation status were determined using the une-
qual variance t test. A P value of less than 0.05 was consid-
ered significant.

Results
PIK3CA mutation status of study cohort
The mutational status of the PIK3CA gene was assessed in all
140 tumors by direct sequencing of the gene regions encod-
ing the helical domain (exon 9) and the catalytic domain (exon
20) of the PIK3CA gene. Tumor DNA was used from needle
aspiration biopsy material that contains 75% to 90% cancer
cells. One hundred seventeen tumors (83.6%) had the wild-
type PIK3CA gene and 23 patients had an activating mutation
in the PIK3CA gene (16.4%). Among the cases with a PIK3CA
mutation, 12 had a missense mutation in exon 9 (8 E545K
type, 3 E542K type and 1 Q546R) and 11 cases had a muta-
tion in exon 20 (all but 2 were H1047R). Table 2 lists all of the
detected mutations. We also examined mutations in exon 1
but no mutation was found in any of the cases.

Correlation between PIK3CA mutation status and 
clinical/pathological variables
When all of the cases were considered together, PIK3CA
mutation was significantly associated with lymph node-nega-
tive status; 52% of mutant cases were node-negative com-
pared with 25% among the wild-type cases (P = 0.012).
There was also a trend for increased frequency of PIK3CA
mutations in older women. The median age of patients with a
PIK3CA mutation was 56 years compared with 51 years for
the wild-type cases (P = 0.0535). No other clinical or patho-

logical factor was significantly associated with PIK3CA muta-
tion status (Table 3). In a multivariate model that included
patient ethnicity, tumor grade (1/2 versus 3), tumor size, nodal
stage, ER, PR, and HER2 status, patient age as well as
response to chemotherapy, nodal status remained independ-
ently associated with PIK3CA mutation (P = 0.029).

Correlation between PIK3CA mutation status and 
clinical/pathological variables in ER-positive and ER-
negative subgroups
We also examined the association between clinical and path-
ological parameters and PIK3CA mutation status in ER-nega-
tive (n = 62) and ER-positive (n = 78) tumors separately. No
significant correlation was found between any clinical variable
and PIK3CA mutation status among the ER-negative tumors.
In contrast, among the ER-positive tumors, PIK3CA mutation
status was significantly and inversely associated with nodal
status. Patients with ER-positive tumors who were also posi-
tive for PIK3CA mutation had a higher incidence of node-neg-
ative disease (53% versus 22%; P = 0.025). No other clinical/
pathological factor was associated with PIK3CA status in
patients with ER-positive tumors (Table 4).

Association between PIK3CA mutation status and 
pathological response to chemotherapy
We examined the correlation between PIK3CA mutation sta-
tus and response to chemotherapy in all cases and after strat-
ification by ER status. When all of the cases were considered
together, there was no difference in pCR rate (pCR = extreme
chemotherapy sensitivity) among the PIK3CA mutant (pCR =
18%) and wild-type (pCR = 17%) cases (Table 3). In ER-pos-
itive tumors, the pCR rates were 8% and 13% (P = 0.62) in
tumors with wild-type and mutant PIK3CA, respectively. In ER-
negative tumors, the pCR rates were 28% and 29% (P = 1.0)
for the wild-type and mutant cases, respectively (Table 4).
Next, we examined pCR rates by type of chemotherapy and
PIK3CA mutation status. Sixty-three patients received neoad-
juvant FAC/FEC chemotherapy and the pCR rates were 6%
and 8% for the wild-type and mutant cases, respectively (P =
1.0). Seventy-seven patients received neoadjuvant TFAC/
TFEC chemotherapy and the pCR rates were 27% and 30%
for the wild-type and mutant cases, respectively (P = 1.0)
(Table 5).

It has been suggested that mutations in exon 9 may have dif-
ferent functional consequences than mutations in exon 20;
therefore, we also tested the association between mutation
type and response to chemotherapy [25]. There was no
difference in pCR rates associated with mutation in either exon
individually. However, in correlation analysis, nodal stage was
associated with PIK3CA mutation status only for those in exon
9, with patients harboring an exon 9 mutation having an
increased incidence of node-negative disease (66.7%) com-
pared with patients with wild-type or other mutation types
(24.8%; P = 0.023). Mutations in exon 20 were not signifi-
Page 4 of 10
(page number not for citation purposes)



Available online http://breast-cancer-research.com/content/10/2/R27
cantly associated with any clinical or pathological parameter
(Table 6).

RCB response category was available for 106 patients and
this provided an opportunity to correlate PIK3CA mutation
with graded pathological response. We compared PIK3CA
mutation frequency in all four RCB categories and also in the
two extreme response groups: RCB-0/I (highly chemotherapy-
sensitive cases) versus RCB-III (highly chemotherapy-resist-
ant tumors). No significant association was found between
RCB response categories and PIK3CA mutation status in
either analysis (P = 0.121 and 0.166, respectively) (Table 3).
Even after stratification for ER status, chemotherapy regimen,
and type of mutation, no significant association was found
between PIK3CA mutation status and response to therapy
(Tables 4, 5, 6).

Discussion
Several lines of in vitro evidence suggest that activation status
of the PI3K/Akt signaling cascade might alter the chemosen-
sitivity of tumors. For example, in ovarian cancer, overexpres-
sion of constitutively active Akt in ovarian cancer cell lines
rendered them more resistant to paclitaxel than cancer cells
with a low level of Akt expression [26]. In breast cancer cells,
transfection of HER2 into MCF7 cells caused PI3K-depend-
ent activation of Akt, resulting in increased resistance to sev-
eral chemotherapy drugs, including paclitaxel, doxorubicin, 5-
fluorouracil, etoposide, and camptothecin. Selective inhibition
of PI3K or Akt activity through transfection with dominant-neg-
ative expression vectors increased the sensitivity to chemo-
therapy agents [16]. Activated Ras can also promote cell
proliferation and inhibit apoptosis through activation of the
PI3K/Akt pathway. When PI3K or MEK was selectively inhib-
ited in Ras-activated MCF7 breast cancer cells, these cells

Table 2

Types of PIK3CA mutations that were detected

Patient Treatment category Exon 9 Exon 20

1 FAC/FEC E545K

2 FAC/FEC H1047R

3 FAC/FEC H1047R

4 FAC/FEC E542K

5 FAC/FEC E545K

6 FAC/FEC H1047R

7 FAC/FEC E545K

8 FAC/FEC E545K

9 FAC/FEC H1047R

10 FAC/FEC E545K

11 FAC/FEC E545K

12 FAC/FEC E545K

13 TFAC/TFEC Q546R

14 TFAC/TFEC H1047T

15 TFAC/TFEC H1047R

16 TFAC/TFEC H1047R

17 TFAC/TFEC H1047R

18 TFAC/TFEC E545K

19 TFAC/TFEC E542K

20 TFAC/TFEC E542V

21 TFAC/TFEC G1049R

22 TFAC/TFEC H1047R

23 TFAC/TFEC H1047R

Exon 1 mutations were also examined but no mutations were found. FAC, 5-fluoruracil, doxorubicin, and cyclophosphamide; FEC, 5-fluoruracil, 
epirubicin, and cyclophosphamide; PIK3CA, phosphatidylinositol 3-kinase, catalytic, alpha polypeptide; TFAC, paclitaxel followed by 5-fluoruracil, 
doxorubicin, and cyclophosphamide; TFEC, paclitaxel followed by 5-fluoruracil, epirubicin, and cyclophosphamide.
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became increasingly sensitive to paclitaxel, doxorubicin, and
5-fluorouracil [15].

Based on these results, we hypothesized that PIK3CA activat-
ing mutations may be associated with lesser chemotherapy
sensitivity and more residual cancer after preoperative chem-
otherapy. We examined PIK3CA mutation status in 140
patients with stage II–III breast cancer and correlated the
results with clinical and pathological variables, including
response to preoperative chemotherapy. The amount of viable

invasive cancer after preoperative chemotherapy is a direct
measure of chemotherapy sensitivity and is an established sur-
rogate marker of long-term survival [27]. In particular, individu-
als with pathological complete (pCR) or near complete (RCB-
I) response have excellent rates of survival [20].

We did not find any association between PIK3CA status and
response to anthracycline-based or anthracycline-containing
and paclitaxel-containing chemotherapies. The frequency of
PIK3CA mutations was similar in patients with extremely

Table 3

Correlation between PIK3CA mutation status and clinical variables

PIK3CA wild-type PIK3CA mutated P valuea

Pathological complete response (pCR) versus residual disease (RD) RD 95 (83%) 18 (82%) 1.000

pCR 20 (17%) 4 (18%)

Unknown 2 1 -

Residual cancer burden 0 20 (22.0%) 4 (26.7%) 0.121 (0.166b)

I 7 (7.7%) 0 (0%)

II 37 (40.7%) 10 (66.7%)

III 27 (29.7%) 1 (6.7%)

Unknown 26 8 -

Estrogen receptor (ER) status ER- 54 (46%) 8 (35%) 0.365

ER+ 63 (54%) 15 (65%)

Progesterone receptor (PR) status PR- 71 (60.7%) 11 (47,8%) 0.259

PR+ 46 (39.3) 12 (52,2%)

HER2 status HER2- 104 (89%) 21 (91%) 1.000

HER2+ 13 (11%) 2 (9%)

Grade Grade 1–2 46 (47%) 10 (56%) 0.612

Grade 3 51 (53%) 8 (44%)

Unknown 20 5 -

Nodal status Negative 29 (25%) 12 (52%) 0.012

Positive 88 (75%) 11 (48%)

Tumor size T0 1 (1%) 1 (4%) 0.535

T1 7 (6%) 0 (0%)

T2 59 (50%) 12 (52%)

T3 18 (15%) 3 (13%)

T4 32 (27%) 7 (30%)

Ethnicity Asian 2 (2%) 1 (4%) 0.505

Black 11 (9%) 2 (9%)

Hispanic 40 (34%) 10 (43%)

Caucasian 64 (55%) 10 (43%)

Median age (minimum-maximum), years 50 (28–73) 52 (42–73) -

aChi-square test. bP value for comparison of residual cancer burden (RCB)-0 and RCB-I versus RCB-III. PIK3CA, phosphatidylinositol 3-kinase, 
catalytic, alpha polypeptide.
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chemotherapy-sensitive tumors indicated by pCR and those
with lesser response (RCB-I or RCB-II) or even with extensive
residual cancer (RCB-III). ER-positive and ER-negative tumors
represent two molecularly different diseases that differ in clin-
ical behavior as well as in chemotherapy sensitivity [28-30].
We previously suggested that different molecular markers may
be associated with response to treatment in these two distinct
types of breast cancer [31]. For example, high expression of

proliferation-related and genomic grade-related genes is asso-
ciated with chemotherapy sensitivity in both ER-negative and
ER-positive tumors. However, expression of genes involved in
the E2F3 pathway is associated with increased chemotherapy
sensitivity among ER-negative tumors only, whereas a mutant
p53 signature and the expression of ER-related genes are
associated with lower chemotherapy sensitivity in ER-positive
breast tumors [31]. We therefore examined whether the effect

Table 4

Correlation between PIK3CA mutation and clinical variables in estrogen receptor (ER)-positive and ER-negative tumors

Patients with ER-negative breast cancer Patients with ER-positive breast cancer

PIK3CA wild-type 
(n = 54)

PIK3CA 
mutation 
(n = 8)

P valuea PIK3CA wild-
type 

(n = 63)

PIK3CA 
mutation 
(n = 15)

P valuea

Pathological 
complete 
response (pCR) 
versus residual 
disease (RD)

RD 38 (72%) 5 (71%) 1.000 57 (92%) 13 (87%) 0.617

pCR 15 (28%) 2 (29%) 5 (8%) 2 (13%)

Unknown 1 1 - 1 - -

Residual cancer 
burden

0 15 (34.1%) 2 (50.0%) 0.616 (0.527b) 5 (10.6%) 2 (18.2%) 0.221 (0.543b)

I 3 (6.8%) 0 (0%) 4 (8.5%) 0 (0%)

II 15 (34.1%) 2 (50.0%) 22 (46.8%) 8 (72.7%)

III 11 (25.0%) 0 (0%) 16 (34.0%) 1 (9.1%)

Unknown 10 4 - 16 4 -

HER2 status HER2- 47 (87%) 7 (88%) 1.000 57 (90%) 14 (93%) 0.617

HER2+ 7 (13%) 1 (12%) 6 (10%) 1 (7%)

Grade Grade 1–2 9 (20%) 2 (33%) 0.598 37 (71%) 8 (67%) 0.739

Grade 3 36 (80%) 4 (67%) 15 (29%) 4 (33%)

Unknown 9 2 - 11 3 -

Nodal status Negative 15 (28%) 4 (50%) 0.235 14 (22%) 8 (53%) 0.025

Positive 39 (72%) 4 (50%) 49 (78%) 7 (47%)

Tumor size T0 0 (0%) 0 (0%) 0.937 1 (2%) 1 (7%) 0.715

T1 4 (7%) 0 (0%) 3 (5%) 0 (0%)

T2 26 (48%) 4 (50%) 33 (52%) 8 (53%)

T3 10 (18%) 1 (12%) 8 (13%) 2 (13%)

T4 14 (26%) 3 (38%) 18 (28%) 4 (27%)

Ethnicity Asian 1 (2%) 0 (0%) 0.326 1 (2%) 1 (7%) 0.478

Black 6 (11%) 2 (25%) 5 (8%) 0 (0%)

Hispanic 16 (30%) 4 (50%) 24 (38%) 6 (40%)

Caucasian 31 (57%) 2 (25%) 33 (52%) 8 (53%)

Median age 
(minimum-
maximum), years

51 (28–73) 56.5 (42–73) - 50 (28–73) 52 (43–73)

aChi-square test. bP value for comparison of residual cancer burden (RCB)-0 and RCB-I versus RCB-III. PIK3CA, phosphatidylinositol 3-kinase, 
catalytic, alpha polypeptide.
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of PIK3CA mutation on response to chemotherapy is different
among ER-negative and ER-positive tumors. We found no evi-
dence that PIK3CA mutation is predictive of response in either
ER-positive or ER-negative tumors.

It was recently reported that PIK3CA mutations in different
exons may carry different prognostic values. In one study, exon
9 mutations correlated with unfavorable prognosis (that is,
early recurrence and death); in contrast, exon 20 mutations
were associated with favorable prognosis [25]. We therefore
also examined the association between PIK3CA mutation sta-
tus and clinical/pathological parameters separately for exon 9
and 20 mutations. We could not detect any difference
between response to chemotherapy and PIK3CA mutation
type. These observations do not exclude the possibility that
assessment of the activity of the PI3K pathway with other more
comprehensive protein or mRNA profile-based methods will
show predictive value to these or other drugs. PI3K can be
activated through many mechanisms other than mutations,
and loss of negative feedback loops such as inactivation of
PTEN (phosphatase and tensin homolog deleted on chromo-
some 10) can also activate this complex pathway [32]. Evalu-
ation of other methods to assess PI3K activity to determine its
potential predictive value requires further studies.

The sample size of this study is too small to allow for robust
analysis of multiple subsets defined by various combinations
of ER status, PIK3CA mutation type, and treatment regimen.
Stratification for any of these three variables could be done
only one at a time. Much larger studies will be needed to
address the predictive value of PIK3CA mutations in different

molecular subsets of breast cancer in the context of different
chemotherapies.

Among the various routine clinical and pathological character-
istics that were examined, only nodal status was found to be
significantly associated with PIK3CA mutation. Patients with
PIK3CA mutations more frequently had node-negative tumors
compared with patients with the wild-type gene (52% versus
25%; P = 0.012). After adjustment for ER expression, only
patients with ER-positive tumors showed this inverse relation-
ship between PIK3CA mutation and nodal status. Further-
more, this correlation was limited to patients harboring exon 9
mutations only. This mutation was significantly more frequent
among patients with node-negative disease (66.7% versus
24.8%; P = 0.023). The median follow-up for these cases is
short; therefore, no survival analysis can be performed cur-
rently to examine the prognostic value of PIK3CA mutation in
these data.

Conclusion
In this study, we did not find any evidence that PIK3CA muta-
tions are associated with chemotherapy sensitivity in human
breast cancer treated with anthracycline or anthracycline and
paclitaxel preoperative chemotherapies. This lack of associa-
tion between pathological response and mutation status held
true for both ER-positive and ER-negative tumors.
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Table 5

Correlation between PIK3CA mutation status and response to neoadjuvant FAC/FEC or TFAC/TFEC chemotherapies

FAC/FECa chemotherapy TFAC/TFECa chemotherapy

PIK3CA wild-
type 

(n = 51)

PIK3CA 
mutation 
(n = 12)

P valueb PIK3CA wild-
type 

(n = 66)

PIK3CA 
mutation 
(n = 11)

P valueb

Pathological complete 
response (pCR) versus 
residual disease (RD)

RD 48 (94%) 11 (92%) 1.000 47 (73%) 7 (70%) 1.000

pCR 3 (6%) 1 (8%) 17 (27%) 3 (30%)

Unknown - - - 2 1 -

Residual cancer burden 0 6 (17.6%) 1 (16.7%) 0.334 (0.474c) 14 (24.6%) 3 (33.3%) 0.438 (0.613c)

I 2 (5.9%) 0 (0%) 5 (8.8%) 0 (0%)

II 16 (47.1%) 5 (83.3%) 21 (36.8%) 5 (55.6%)

III 10 (29.4%) 0 (0%) 17 (29.8%) 1 (11.1%)

Unknown 17 6 - 9 2 -

aFor description, please refer to text. bChi-square test. cP value for comparison of residual cancer burden (RCB)-0 and RCB-I versus RCB-III. FAC, 
5-fluoruracil, doxorubicin, and cyclophosphamide; FEC, 5-fluoruracil, epirubicin, and cyclophosphamide; PIK3CA, phosphatidylinositol 3-kinase, 
catalytic, alpha polypeptide; TFAC, paclitaxel followed by 5-fluoruracil, doxorubicin, and cyclophosphamide; TFEC, paclitaxel followed by 5-
fluoruracil, epirubicin, and cyclophosphamide.
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Table 6

Correlation between PIK3CA mutation type and clinical variables, including pathological response to chemotherapy

Exon 9 mutation status Exon 20 mutation status

Wild-type 
(n = 117)

Mutation 
(n = 12)

P valuea Wild-type 
(n = 117)

Mutation 
(n = 11)

P valuea

Pathological complete response 
(pCR) versus residual disease (RD)b

RD 95 (82.6%) 10 (83.3%) 0.656 95 (82.6%) 8 (80.0%) 0.689

pCR 20 (17.4%) 2 (16.7%) 20 (17.4%) 2 (20.0%)

Unknown 2 - - 2 1 -

Residual cancer burden 0 20 (22.0%) 2 (25.0%) 0.524 (0.513c) 20 (22.0%) 2 (28.6%) 0.243 (0.492c)

I 7 (7.7%) 0 (0%) 7 (7.7%) 0 (0%)

II 37 (40.7%) 5 (62.5%) 37 (40.7%) 5 (71.4%)

III 27 (29.7%) 1 (12.5%) 27 (29.7%) 0 (0%)

Unknown 26 4 26 5

HER2 status HER2- 104 (88.9%) 11 (91.7%) 0.617 104 (88.9%) 10 (90.9%) 0.659

HER2+ 13 (11.1%) 1 (8.3%) 13 (11.1%) 1 (9.1%)

Grade Grade 1–2 46 (47.4%) 4 (50.0%) 0.561 46 (47.4%) 6 (60.0%) 0.112

Grade 3 51 (52.6%) 4 (50.0%) 51 (52.5%) 4 (40.0%)

Unknown 20 4 - 20 1 -

Nodal status Negative 29 (24.8%) 8 (66.7%) 0.023 29 (24.8%) 4 (36.4%) 0.761

Positive 88 (75.2%) 4 (33.3%) 88 (75.2%) 7 (64.6%)

Tumor size T0 1 (0.9%) 1 (8.3%) 0.322 1 (0.9%) 0 (0%) 0.854

T1 7 (6.0%) 0 (0%) 7 (6.0%) 0 (0%)

T2 50 (50.4%) 6 (50.0%) 59 (50.4%) 6 (54.5%)

T3 18 (15.4%) 2 (16.7%) 18 (15.4%) 1 (9.1%)

T4 32 (27.4%) 3 (25.0%) 32 (27.4%) 4 (36.4%)

Ethnicity Asian 2 (1.7%) 0 (0%) 0.544 2 (1.7%) 1 (9.1%) 0.290

Black 11 (9.4%) 0 (0%) 11 (9.4%) 2 (18.2%)

Hispanic 40 (34.2%) 6 (50.0%) 40 (34.2%) 4 (36.4%)

Caucasian 64 (54.7%) 6 (50.0%) 64 (54.7%) 4 (36.4%)

Median age (minimum-maximum), 
years

50 (28–
73)

53 (42–72) 0.313 50 (28–73) 50 (28–73) 0.084

aChi-square test. bTFAC (paclitaxel followed by 5-fluoruracil, doxorubicin, and cyclophosphamide) or FAC (5-fluoruracil, doxorubicin, and 
cyclophosphamide) chemotherapies combined. cP value for comparison of residual cancer burden (RCB)-0 and RCB-I versus RCB-III. PIK3CA, 
phosphatidylinositol 3-kinase, catalytic, alpha polypeptide.
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