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Abstract

Background Breast carcinoma is accompanied by changes in
the acellular and cellular components of the microenvironment,
the latter typified by a switch from fibroblasts to myofibroblasts.

Methods We utilised conditioned media cultures, Western blot
analysis and immunocytochemistry to investigate the differential
effects of normal mammary fibroblasts (NMFs) and mammary
cancer-associated fibroblasts (CAFs) on the phenotype and
behaviour of PMC42-LA breast cancer cells. NMFs were
obtained from a mammary gland at reduction mammoplasty, and
CAFs from a mammary carcinoma after resection.

Results We found greater expression of myofibroblastic
markers in CAFs than in NMFs. Medium from both CAFs and
NMFs induced novel expression of o-smooth muscle actin and
cytokeratin-14 in PMC42-LA organoids. However, although
conditioned media from NMFs resulted in distribution of
vimentin-positive cells to the periphery of PMC42-LA organoids,
this was not seen with CAF-conditioned medium. Upregulation
of vimentin was accompanied by a mis-localization of E-
cadherin, suggesting a loss of adhesive function. This was
confirmed by visualizing the change in active B-catenin, localized
to the cell junctions in control cells/cells in NMF-conditioned

medium, to inactive -catenin, localized to nuclei and cytoplasm
in cells in CAF-conditioned medium.

Conclusion We found no significant difference between the
influences of NMFs and CAFs on PMC42-LA cell proliferation,
viability, or apoptosis; significantly, we demonstrated a role for
CAFs, but not for NMFs, in increasing the migratory ability of
PMC42-LA cells. By concentrating NMF-conditioned media, we
demonstrated the presence of factor(s) that induce epithelial-
mesenchymal transition in NMF-conditioned media that are
present at higher levels in CAF-conditioned media. Our in vitro
results are consistent with observations in vivo showing that
alterations in stroma influence the phenotype and behaviour of
surrounding cells and provide evidence for a role for CAFs in
stimulating cancer progression via an epithelial-mesenchymal
transition. These findings have implications for our
understanding of the roles of signalling between epithelial and
stromal cells in the development and progression of mammary
carcinoma.

Introduction
In the mammary gland, the extracellular matrix (ECM) influ-
ences cell growth, migration, morphology, proliferation, differ-

entiation and biosynthetic activities [1]. Stromal-epithelial
interactions in the mammary gland also play an important role
in cancer development. This so-called reactive stroma differs
from the stroma of the normal mammary gland, exhibiting
changes similar to those seen with wound healing, such as

CAF = cancer-associated fibroblast; DMEM = Dulbecco's modified Eagle medium; ECM = extracellular matrix; EGF = epidermal growth factor; EHS
= Engelbreth-Holm-Swarm sarcoma; EMT = epithelial-mesenchymal transition; FAP = fibroblast activation protein; FBS = foetal bovine serum; FGF
= fibroblast growth factor; IGF = insulin-like growth factor; NMF = normal mammary fibroblast; PBS = phosphate-buffered saline; SMA = smooth
muscle actin; TBS = Tris-buffered saline; TGF = transforming growth factor.
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fibroblast proliferation and extracellular matrix remodelling,
although in an uncontrolled manner [2]. The stromal-epithelial
interactions between fibroblasts and the luminal and myoepi-
thelial cells of the mammary gland are important for normal
development [3], and it has been postulated that cancer may
be a physiological response to abnormal extracellular environ-
ment, and that disruptions in stroma-epithelium reactions may
accelerate carcinogenesis [4-8]. Conversely, normal stroma
can efficiently inhibit the expression of characteristics of neo-
plasm [4]. Most notably, it has previously been demonstrated
that irradiation of the cleared mammary fat pad of mice causes
malignant progression of transplanted normal mammary cells

[al.

Fibroblasts produce stromal ECM proteins [10] and secrete
many growth factors and hormones, including hepatocyte
growth factor, insulin-like growth factor (IGF)-I, IGF-II, epider-
mal growth factor (EGF), transforming growth factor (TGF)-a,
TGF-B,, TGF-B,, TGF-B,, fibroblast gowth factor (FGF)-7,
FGF-2, FGF-10 and interleukin-6 [10]. Fibroblasts are also
involved tumourigenesis, through the synthesis, deposition
and remodelling of the ECM that occurs in mammary carci-
noma, and are also the main source of paracrine factors that
influence the growth of carcinoma cells [10]. /n vitro culture
and in vivo tissue recombination systems demonstrate that
factors derived from tumour fibroblasts stimulate tumour pro-
gression of nontumourigenic epithelial cells [11,12].

Breast carcinoma is accompanied by changes in both the
acellular and cellular components of the microenvironment,
the latter typified by a switch from normal mammary fibroblasts
(NMFs) to myofibroblasts during cancer progression. Myofi-
broblasts, also known as cancer-associated fibroblasts
(CAFs), have smooth muscle phenotypic properties [13], typ-
ified by the expression of a-smooth muscle actin (SMA) in vivo
and in vitro. [1] In primary cultures from normal human breast
tissue, there are few or no o-SMA-positive stromal cells,
although high frequencies have been observed in primary cul-
tures from breast carcinomas. CAFs also express fibroblast
activation protein (FAP), a 93 kDa cell surface protein of reac-
tive-tumour stromal cells that is not present in most normal
human adult tissue.

CAFs were first identified over 30 years ago in healing rat
wounds [14], and may influence the propensity of luminal epi-
thelial cells to undergo an epithelial-mesenchymal transition
(EMT) and hence become malignant [15]. CAFs differ from
NMFs also in their increased expression of growth factors
[16,17], and different profiles of ECM molecule synthesis [18-
20] and ECM-altering proteases and protease inhibitors
[21,22]. The role played by fibroblasts in the development or
progression of cancer is not yet fully understood, and the use
of physiologically relevant co-culture models using fibroblasts
from normal and cancer stroma may provide a tool for the anal-
ysis of the effect of fibroblasts.
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PMCA42-LA is a heterogeneous human breast cancer cell line
with stem cell-like properties [23,24]. When cultured within a
reconstituted extracellular matrix (Engelbreth-Holm-Swarm
sarcoma [EHS] matrix) PMC42-LA cells form hollow, alveolar-
like structures, or organoids, that express -casein in the pres-
ence of lactogenic hormones [25]. In the presence of EGF,
PMCA42-LA cells in two-dimensional culture undergo an EMT
[25,26]. Depending on the tissue culture environment,
PMCA42-LA can exhibit luminal epithelial or myoepithelial mark-
ers [27]. These inducible features of PMC42-LA, in addition to
the many breast-like characteristics originally described
[23,24,26,28], make PMC42-LA an attractive cell culture
model for investigation of the differential effects NMFs and
CAFs.

We previously showed that fibroblasts induce a myoepithelial
switch in PMC42-LA cells, with primary mammary fibroblasts
being more effective than immortalized skin fibroblasts [27]. In
the present study we investigated the differential effects of
CAFs compared with NMFs on the phenotype and behaviour
of PMC42-LA cells and organoids. Our results provide direct
evidence for a role for CAFs in contributing to cellular disor-
ganization and loss of cell-cell adhesion, and demonstrate that
CAFs, as compared with NMFs, significantly increase the
migratory/invasive ability of PMC42-LA cells.

Materials and methods

Cell culture

PMC42-LA cells were grown at 37°C in RPMI-1640 medium
with 10% (vol/vol) foetal bovine serum (FBS; Thermo Trace,
Melbourne, Australia). Primary human NMFs were isolated
from human breast tissue with appropriate consent from
women undergoing reduction mammoplasty, in accordance
with the standards of St. Vincent's Hospital Human Ethics
Committee. Primary mammary CAFs were obtained from
minced tumour tissue of a mammary tumour biopsy. Tissue
was minced and digested with 200 ml collagenase (Sigma-
Aldrich, St. Louis, MO, USA) and 100 ml hyaluronidase
(Sigma-Aldrich) in Dulbecco's modified Eagle medium
(DMEM)/Ham's F-12 (1:1) with 10% (vol/vol) FBS containing
penicillin, streptomycin and amphoporicin B (Thermo Electron
Corporation, Melbourne, Australia) overnight at 37°C and 5%
carbon dioxide with gentle rocking. Digested tissue was cen-
trifuged at 600 g for 10 min, and the cell pellet was resus-
pended in medium and filtered through a 40 um cell strainer.
The cells were allowed to attach overnight, cultured in growth
medium as above, and used within 10 passages. SV40 immor-
talized human skin fibroblasts (GM847), obtained for diagnos-
tic purposes, were grown and maintained in basal medium
(Eagle's) with 10% (vol/vol) FBS (Sigma-Aldrich) for use as a
control. Cells were passaged in 0.05% trypsin/EDTA (Sigma-
Aldrich) when confluent; primary cells were passaged a maxi-
mum of 11 passages.



To induce organoid formation of PMC42-LA cells, 150 pl undi-
luted EHS (Sigma-Aldrich) was spread with a cell scraper on
chilled PET track-etched/porous membrane cell culture inserts
(0.4 um pore size; Becton Dickinson Labware, Franklin Lakes,
NJ, USA). The filters were incubated at 37°C for 30—45 min to
allow the EHS to set. Once set, 150 ul diluted (4% vol/vol in
chilled distilled water) EHS was placed on the surface of the
set EHS, followed by 2 ml of RPMI 10% FBS (ThermoTrace)
containing 108 PMC42-LA cells. Then, 3 ml RPMI 10% FBS
was placed beneath the filter using a pipette. Cells were incu-
bated for 5 days at 37°C with 5% carbon dioxide before
processing. For EHS matrix with fibroblasts beneath the filter,
the same procedure was followed except that 0.5 x 105 previ-
ously trypsinised fibroblasts (NMFs or CAFs) were placed in
the well beneath the filter insert with 1 ml DMEM/Ham's F-12
(10% FBS; Thermo Electron Corporation) and 2 ml RPMI
(Thermo Trace).

Conditioned medium

For conditioned medium experiments, attached confluent
fibroblasts were rinsed in phosphate-buffered saline (PBS),
and fresh DMEM:Ham's F-12 (10% FBS) media added to
flasks. Flasks were returned to 37°C with 5% carbon dioxide,
and after 48 hours the conditioned medium was collected,
double filter sterilized using an eccentric tip syringe (Terumo
Corporation, Tokyo, Japan) and sterile nonpyrogenic 0.2 um
filter (Schleicher & Schuell BioScience, Keene, NH, USA), and
used at a 1:1 ratio in addition to fresh RPMI on top or beneath
the filter.

Media concentration

Either 10 ml (1x), 5 ml (2x), 2.5 ml (4x), or 1 ml (10x) fresh
DMEM:Ham's F-12 (10% FBS) was added to confluent
NMFs. After 24 hours, medium was collected and used to cul-
ture PMC42-LA cells on glass cover slips before scratch
wound assays.

Cell counts

Cell counting was conducted using a standard haemocytom-
eter, and cell viability tests were conducted using dye exclu-
sion with trypan blue solution (0.4%; Sigma-Aldrich).

Migration assay

Nitric acid-treated glass cover slips were used to culture
PMC42-LA cells in six-well plates (Nunc, Roskilde, Denmark)
for scratch tests. Using a sterilized plastic cafeteria fork, a
series of scratches were made on confluent cover slips and
these were processed for indirect immunocytochemistry as
described below. For each cover slip, four scratches were
made, averaging between 367 um (minimum) and 392 pum
(maximum) width, at time 0. Each scratch was measured at
several time points and averaged, and the extent of wound clo-
sure was measured microscopically, compared with the origi-
nal width of scratches and averaged. Data were processed
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and standard deviation calculated using Excel (Microsoft
Corp., Redmond, WA, USA).

Antibodies

Mouse anti-human B-actin, anti-human catenin- and goat anti-
human vimentin antibodies were purchased from Sigma-
Aldrich. Mouse anti-human vimentin and mouse anti-human E-
cadherin antibodies were purchased from Zymed laboratories,
Inc. (San Francisco, CA, USA) and mouse anti-human o-SMA
antibodies were purchased from Dako (Denmark, Europe).
Goat anti-human E-cadherin and rabbit anti-active caspase-3
antibodies were purchased from Chemicon International Inc.
(Temecula, CA, USA) and rabbit anti-human o-SMA antibod-
ies from Abcam plc. (Cambridge, UK); anti-human FAP anti-
bodies (muF19) from the biological production facility at
Austin Hospital were kindly donated by the Ludwig Institute of
Cancer Research (Heidelberg, Australia). The Alexa Fluor sec-
ondary antibodies used for immunocytochemistry were pur-
chased from Molecular Probes Inc. (Eurgene, OR, USA) and
included goat anti-mouse IgG labelled with Alexa 488, donkey
anti-sheep IgG labeled with Alexa 594 and donkey anti-rabbit
IgG labelled with Alexa 594. Anti-mouse horse-radish peroxi-
dase conjugated antibody from Sigma-Aldrich was used as a
secondary antibody in Western blot analysis.

Protein extraction and quantification

Confluent PMC42-LA cells cultured in flasks were treated with
0.05% (vol/vol) trypsin/EDTA solution (Sigma-Aldrich), cell
suspensions were centrifuged and the pellet re-suspended in
5 ml PBS. Following two washes in PBS and re-centrifugation,
the pellets were stored at -80°C until needed, or prepared for
quantification as described.

PMC42-LA cells cultured in EHS to form organoids were
washed twice in PBS, following which 2 ml of 5 mg/ml dispase
(Sigma-Aldrich; 20 mg/ml stock concentration) in RPMI/10%
FBS was added to the filters. The filters were incubated for 30
to 90 min, or until cells were detached. Cells were centrifuged
at 3,000 rpm for 5 min, washed twice with PBS, and the pellet
was dried and then stored at -80°C.

Cell pellets were re-suspended in 500 pl of 1% (weight/vol)
SDS in 10 mmol/l Tris-HCI (pH 7.5) on ice and homogenized
by passaging through a 21-guage needle 15 times on ice,
after which cells were sonicated (40% power output, 30%
duty cycle) twice using a Microson Ultrasonic cell disrupter
(Misonix Incorporated, Farmingdale, NY, USA). Samples were
centrifuged and the supernatant quantified using the Pierce
BCA Protein Assay Reagent Kit (Perbio, Rockford, IL, USA), in
accordance with the manufacturer's instructions. The protein
concentrations were determined by measuring the absorb-
ance at 595 nm.
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SDS-PAGE and Western blot analysis

Proteins were separated using SDS-PAGE and transferred to
a nitrocellulose membrane at 10 V for 40 min. The membranes
were blocked in 1% (weight/vol) casein/Tris-buffered saline
(TBS) overnight at 4°C in a sealed bag. Following this, the
membrane was exposed to the appropriate antibody diluted in
1% casein/TBS at varying concentrations overnight at 4°C,
and then washed three times for 10 min each in 1% (weight/
vol) casein/TBS. The membrane was then exposed to anti-
mouse horse radish peroxidase conjugated antibody, diluted
at 1:2,000 in 1% (weight/vol) casein/TBS, for 2 hours at room
temperature. The membrane was then washed twice in 1%
(weight/vol) casein/TBS for 10 min and, finally, in TBS Tween
20 solution twice for 15 min each. A Roche BM chemilumines-
cence Blotting substrate POD kit (Roche, Indianapolis, IN,
USA) was used, in accordance with the manufacturer's
instructions, and placed on membranes for 2 min, after which
the membranes were placed inside a LAS-3000 Fuji Film intel-
ligent dark box. The illuminated bands were detected and the
image captured using Image reader LAS-3000 software. For
each result given, Western blot analysis was performed on
three separate occasions with new cell lysates.

To re-probe membranes and analyze protein loading, mem-
branes were stripped with a re-blot solution (Re-blot plus
strong; Chemicon International Inc.) at a 1:10 dilution, in
accordance with the manufacturer's protocol. The membrane
was then blocked with 1% (weight/vol) casein/TBS for 1 hour
at room temperature and re-probed with anti-B-actin (1:5,000
in 1% casein/TBS) as a control for protein loading and proc-
essed, as described above, as a control for protein loading.

Densitometry

To determine the density of the bands present in Western
blots, a Multi-Gauge V2.3 program (FUJIFILM Medical Sys-
tems Inc., Stamford, Connecticut, USA) was used to read
band densities. Data were processed, standard deviations cal-
culated, and t-tests performed using Microsoft Excel software.

Indirect immunocytochemistry of cultured cells

Once confluent, cells cultured on glass cover slips were
washed three times with PBS, fixed in 4% (weight/vol) para-
formaldehyde (PFA/PBS; Sigma-Aldrich) for 10 min at room
temperature, and washed again three times in PBS. To perme-
abilize the cells, 0.1% (vol/vol) Triton X-100/PBS (Amresco
Inc., Solon, OH, USA) was applied to cells for 10 min at room
temperature, after which the cells were washed three times in
PBS and incubated with 1% (weight/vol) bovine serum albu-
min in PBS (BSA/PBS; Sigma-Aldrich) for 2 hours at room
temperature to reduce nonspecific binding of primary antibod-
ies. Following this, 30 pl of the appropriate primary antibody,
diluted in 1% (weight/vol) bovine serum albumin/PBS was
placed on each cover slip, and the cover slips incubated over-
night at 4°C. Cover slips were then washed three times at 15
min each with PBS and were incubated with 30 pl of the sec-
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ondary antibody (Alexa goat anti-mouse IgG) diluted 1:2000
with 1% (weight/vol) bovine serum albumin/PBS, for 2 hours
at room temperature. Cover slips were then washed three
times for 5 min each with PBS, and stained with ethidium bro-
mide (diluted 1:10,000 in PBS; Sigma-Aldrich) for 3 to 4 min
to visualize nuclei. A final series of three PBS washes of 5 min
each was then performed, after which the cover slips were
dried and mounted on 1.5 pl of Bio-Rad FluoroGuard™ Anti-
fade Reagent (Bio-Rad, Hercules, CA, USA) and cover slip
edges sealed with nail polish.

For cells cultured on EHS gel, the filter was inverted and the
membrane cut into six to eight segments using a razor. Seg-
ments were placed in 35 mm sterile Petri dishes and gently
washed three times for 5 min each with PBS. The same pro-
cedure was followed for indirect immunocytochemistry, as
previously described.

Microscopy

Cells were viewed using a Leica TCS SP2 AOBS laser scan-
ning confocal microscope (Leica, New South Wales, Aus-
tralia), using oil immersion and a 40x or 100x objective.
Images were captured by the photomultiplier tube using the
Leica TCS SP2 laser, and viewed on a workstation using Leica
microsystems TCS SP2 software. Images were presented
using Microsoft PowerPoint software.

Results

CAFs demonstrate greater expression of
myofibroblastic markers than NMFs

The phenotypes of human primary NMFs, obtained from
reduction mammoplasty tissue, and human primary mammary
CAFs, obtained from minced mammary tumour biopsy tissue,
were determined by analysis of protein markers associated
with the myofibroblast phenotype.

Western blot analysis revealed that a-SMA (Figure 1a) was
expressed by both NMFs and CAFs; however, densitometry
revealed 2.7-fold higher expression of o-SMA in CAFs as com-
pared with NMFs. A control sample derived from human
immortalized skin fibroblasts (GM847) was negative for o-
SMA expression (Figure 1a). Western blot analysis indicated
that FAP was expressed by both NMFs and CAFs, but not by
the GM847 control fibroblasts (Figure 1b). An increase in
band density by twofold was seen for CAFs as compared with
NMFs (Figure 1Db).

Fibroblasts cause changes in key myoepithelial- and
luminal epithelial-specific protein expression by PMC42-
LA organoids

PMC42-LA cells cultured on ECM gel coated filters to form
organoids with fibroblasts beneath the filter or fibroblast-con-
ditioned medium were analyzed for myoepithelial-specific and
luminal epithelial-specific protein markers.



Figure 1

(a) =

— 42kDa aSMA,

| — B ACTIN

3
(b) ‘#_x_\\‘-

— 93kDa FAP

| — B ACTIN

Characterisation of cancer and normal mammary fibroblast lines. (a) No
0o-SMA detected in control GM847 skin fibroblasts (lane 1), but 0-SMA
was detected in NMFs (lane 2) and in CAFs (lane 3), with an average
2.7-fold increase in band densities for CAFs compared to NMFs. (b)
FAP was expressed by both NMFs and CAFs (lanes 2 and 3, respec-
tively), but it was not detected in control GM847 skin fibroblasts (lane
1). An average 2-fold increase in band density for CAFs, compared
with NMFs, was observed. CAF, cancer-associated fibroblast; FAP,
fibroblast activation protein; NMF, normal mammary fibroblast; SMA,
smooth muscle actin.

Compared with control, expression of the luminal epithelial
marker E-cadherin, as measured by Western blot analysis, was
not significantly upregulated by PMC42-LA organoids cul-
tured with either NMFs (fold increase: 1.8 £ 1.17) or CAFs
(fold increase: 1.8 + 1.31) beneath the filter (Figure 2a, lanes
1 and 2, respectively). Similar values were seen when fibrob-
last-conditioned medium was used in place of the fibroblasts
(fold increase compared with control: 1.5 £ 2.13 with NMF-
conditioned medium and 2.4 * 1.10 with CAF-conditioned
medium; Figure 2a, lanes 3 and 4). Immunocytochemistry con-
firmed that E-cadherin was expressed by most cells in all con-
ditions tested, with no obvious changes in the organization of
E-cadherin expressing cells within organoid structures (Figure
2a, lanes 1 to 4).
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In the absence of fibroblasts or their conditioned medium, o-
SMA was not expressed by PMC42-LA organoids (Figure 2b).
When cultured with NMFs beneath the filter, PMC42-LA orga-
noids exhibited a significant 2.5 (+ 1.16)-fold increase in o-
SMA (P < 0.01), similar to that seen in PMC42-LA cultures
with CAFs beneath the filter (fold increase: 2.7 + 0.42, P <
0.01; Figure 2b, lanes 1 and 2, respectively). Compared with
control, conditioned medium from NMFs caused a significant
6.7 (£ 2.76)-fold increase in a-SMA expression (P < 0.01) in
PMC42-LA cells, which was similar to the significant 7.4 (£
1.20)-fold increase seen in PMC42-LA cells (P < 0.001) cul-
tured in CAF-conditioned medium (Figure 2b, lanes 3 and 4,
respectively). Immunocytochemistry revealed that o-SMA-
expressing cells were organized similarly within organoids in
all fibroblast treatment conditions (Figure 2b, lanes 1 to 4).

Cytokeratin 14 was not expressed by PMC42-LA organoids in
the absence of fibroblasts/conditioned medium (Figure 2c).
However, expression of cytokeratin 14 was induced signifi-
cantly by the presence of either NMFs (fold increase: 11.5
9.1, P<0.01) or CAFs (fold increase: 12.3 £ 9.3, P < 0.01)
beneath the filter (Figure 2c, lanes 1 and 2, respectively).
Fibroblast-conditioned medium induced expression of cytok-
eratin 14 similarly, with a significant 10.9 (* 8.8)-fold increase
by PMC42-LA in NMF-conditioned medium (P < 0.01), and a
14.4 (£ 10.2)-fold increase by cells in CAF-conditioned
medium (P < 0.01; Figure 2c, lanes 3 and 4, respectively).
Immunocytochemistry confirmed no obvious changes in the
organization of cytokeratin 14-expressing cells within orga-
noids in all fibroblast treatment conditions (Figure 2c, lanes 1
to 4).

Fibroblasts induce upregulation of vimentin and a
change in the orientation of vimentin-positive cells in
PMC42-LA organoids

Compared with control, vimentin expression was significantly
increased in cells cultured with NMFs beneath the filter (fold
increase: 3.9 + 2.50, P < 0.001) and in cells with CAFs
beneath the filter (fold increase: 4.4 + 2.70, P< 0.001; Figure
2d, lanes 1 and 2, respectively). In the presence of NMF-con-
ditioned medium, vimentin expression was significantly upreg-
ulated by 3.2 (+ 1.30)-fold (P < 0.001), which was similar to
the 3.3 (+ 1.80)-fold (P<0.001) increase by cells in CAF-con-
ditioned medium (Figure 2d, lanes 3 and 4, respectively) com-
pared with control. In control PMC42-LA organoids, vimentin-
positive cells were distributed throughout the organoids with
no apparent pattern in organization (Figure 2d, control). How-
ever, when cells were cultured with NMFs beneath the filter,
vimentin-positive cells became more organized, and were only
visible on the outer layer of organoids (Figure 2d, lane 1). This
was also the case when cells were cultured with CAFs
beneath the filter (Figure 2d, lane 2) and in NMF-conditioned
medium (Figure 2d, lane 3). Surprisingly, PMC42-LA cells cul-
tured in CAF-conditioned medium appeared to form organoids
with the same organization as control cells, with vimentin-pos-

Page 5 of 15

(page number not for citation purposes)



Breast Cancer Research Vol 9 No 1 Lebret et al.

Figure 2
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Effect of fibroblasts on major protein expression by PMC42-LA. Western blot analysis for a range of markers on control PMC42-LA organoids (con-
trol), and organoids cultured with NMFs beneath the filter (lane 1), with CAFs beneath the filter (lane 2), in medium conditioned by NMFs (lane 3), or
in medium conditioned by CAFs (lane 4). Controls had no fibroblasts or fibroblast conditioned-medium. Immunocytochemistry was performed to
view organization within organoid structures, and ethidium bromide was used to stain nuclei (red). (a) E-cadherin was not significantly upregulated in
any of the fibroblast conditions, with no obvious changes in organization. (b) o-SMA expression was found to be significantly upregulated by all
fibroblast conditions, with no obvious changes in organization. (c) Cytokeratin 14 expression was found to be significantly induced by all fibroblast
conditions, with no obvious changes in organization. (d) Vimentin expression was also found to be significantly upregulated in all fibroblast condi-
tions, with slight changes in organoid organization detected by immunocytochemistry. In control PMC42-LA cells (control lane in panel d), intermedi-
ate filament protein vimentin is localized in the cytoplasm of cells throughout organoids. With NMFs beneath the filter (panel d lane 1), vimentin
remains localized in the cytoplasm of PMC42-LA cells and vimentin-positive cells are more organized, visible only on outer layer of organoids. With
CAFs beneath the filter (panel d lane 2), the same organizational changes are observed. With NMF-conditioned media (panel d lane 3), the same
organizational changes are observed. With CAF-conditioned medium (panel d lane 4), no change in organization is observed, with vimentin expres-
sion throughout organoids. CAF, cancer-associated fibroblast; NMF, normal mammary fibroblast; SMA, smooth muscle actin.
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itive cells being dispersed throughout organoids (Figure 2d,
lane 4).

Fibroblasts induce an intracellular change in localisation
of E-cadherin in PMC42-LA cells away from the cell
junctions

In the absence of fibroblast influences, E-cadherin appeared
to have a junctional localization in PMC42-LA cells (Figure 3a
part A, left and right panels). The presence of either NMFs or
CAFs beneath the filter, or their respective conditioned media,
induced a change in E-cadherin localization from cell-cell junc-
tions (Figure 3a part A, left and right panels) to cytoplasm,
where it adopted a granular distribution (Figure 3a parts B to
E). To better visualize this change in localization within individ-
ual cells and obtain sections through cells, PMC42-LA monol-
ayers cultured in fibroblast conditioned medium were also
immunostained for E-cadherin; confocal sections through
these cells clearly demonstrate some junctional and granular
cytoplasmic localization in cells cultured in NMF conditioned
medium (Figure 3a part B, right panel). Significantly, the E-
cadherin localization appeared more cytoplasmic in PMC42-
LA cells in the presence of CAF-conditioned medium (Figure
3a part C, right panel).

CAF-conditioned medium causes disruption of the
cadherin-catenin complex in PMC42-LA cells

In the absence of fibroblast-conditioned media, E-cadherin
and B-catenin colocalized to the cell junctions in PMC42-LA
monolayer cells (yellow in Figure 3b part A), with sparse areas
of independent localization (red/green). When PMC42-LA
cells were cultured in NMF-conditioned medium, this colocali-
zation was still apparent (yellow in Figure 3b part B), with
some areas of non-colocalization (green/red). However, in the
presence of CAF-conditioned medium, B-catenin exhibited a
predominantly cytoplasmic label, with some nuclear label (red
in Figure 3b part C), with E-cadherin also localised to the cyto-
plasm (green/yellow in Figure 3b part C). This was performed
on PMC42-LA monolayer cultures to allow one to visualize
clearly the localization of these two proteins within individual
cells.

CAFs may stimulate more rapid proliferation of PMC42-
LA cells than NMFs

Using total cell counts at 24 hours, 3 days and 5 days, some
differences in rates of proliferation of PMC42-LA cells in rela-
tion to fibroblast-conditioned medium were seen (data not
shown). No significant difference was detected at 24 hours,
but at 3 days numbers of PMC42-LA cells in CAF-conditioned
medium were considerably greater than numbers of PMC42-
LA cells cultured in NMF-conditioned medium. At 5 days, this
difference was still evident although not significant. This pat-
tern was also seen in three-dimensional culture, with no differ-
ence in PMC42-LA proliferation in NMF-conditioned media or
CAF-conditioned media at 24 hours; considerably higher cell
numbers in CAF-conditioned media at 3 days; and slightly
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Figure 3

(a)

A

NMF BENEATH FILT.

CAF BENEATH FILT.

CAF COND._MEDIA

Effect of fibroblasts and conditioned media on E-cadherin and 3-cat-
enin (co)localization in PMC42-LA organoids. (a) Using immunocyto-
chemistry and confocal microscopy, localization of E-cadherin was
analyzed. Nuclei were visualized using ethidium bromide (red). (Part A)
In control PMC42-LA organoids (no fibroblasts or conditioned media),
E-cadherin staining was observed at cell junctions, which was con-
firmed by confocal microscopy sectioning of PMC42-LA in 2-dimen-
sional culture (right panel). (Part B) In NMF-conditioned medium E-
cadherin label was detected as both junctional and cytoplasmic in
PMC42-LA organoids, as confirmed by confocal microscopy section-
ing of PMC42-LA in 2-dimensional culture containing NMF-conditioned
media (right panel). (Part C) In CAF-conditioned media E-cadherin was
also detected as junctional and cytoplasmic in PMC42-LA organoids,
with more predominant cytoplasmic localization. This was confirmed in
2-dimensional PMC42-LA culture containing CAF-conditioned media
by confocal microscopy sectioning (right panel). With (part D) NMFs
beneath filter or (part E) CAFs beneath the filter, E-cadherin was again
detected at cell junctions and within cytoplasm. (b) E-cadherin and j-
catenin are indicated by green and red label, respectively. Areas of
colocalization appear yellow. (Part A) In control PMC42-LA cells (no
fibroblasts or conditioned media), E-cadherin and B-catenin colocalized
at cell junctions with some areas of non-colocalization. (Part B) When
in NMF-conditioned medium, colocalization was detected at cell junc-
tions with some independent localization. (Part C) In CAF-conditioned
medium, E-cadherin localized to cytoplasm and [-catenin to cytoplasm
and nuclei, with some overlap. CAF, cancer-associated fibroblast;
NMF, normal mammary fibroblast.
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higher, but not significant, proliferation of PMC42-LA in CAF-
conditioned medium at 5 days compared with NMF-condi-
tioned medium (data not shown).

Effects of CAFs and NMFs on cell viability and apoptosis
of PMC42-LA cells do not differ

No differences were seen in viability of PMC42-LA cell cul-
tures in the presence of NMFs or CAFs at 24 hours, 3 days
and 5 days (Figure 4a), as determined by trypan blue dye
exclusion (viable cells calculated as a percentage of total cells
counted). Western blot analysis for active caspase-3, a marker
of apoptosis, revealed no differences in expression levels for
PMC42-LA cells cultured with NMFs beneath the filter as
compared with CAFs beneath the filter (densitometry ratio
1:1.2), or in cells cultured in NMF-conditioned medium as
compared with those in CAF-conditioned medium (densitom-
etry ratio 1:1.4; Figure 4b).

CAF-conditioned medium enhances the migratory ability
of PMC42-LA cells

PMC42-LA cells were cultured on glass to enable the scratch
removal of cells and the measurement of wound closure over
a period of 48 hours. In the presence of NMF-conditioned
medium, PMC42-LA cell wound closure was similar to that in
control medium after 48 hours (Figure 5 panels d to f versus
panels a to c). Cells cultured in CAF-conditioned medium
exhibited rapid wound closure, with most wounds being com-
pletely closed by 48 hours (Figure 5 panels g, h and i part ii),
visible only by the areas of intense vimentin label among areas
of less label (Figure 5i part ii). When the widths of the wounds
were measured and averaged, control cells had wounds of
approximately 367 = 29 um at O hours, 188 £ 21 um at 24
hours and 81 £ 29 um at 48 hours. Cells in NMF-conditioned
medium had wounds of approximately 383 + 38 um at O
hours, 213 *+ 33 um at 24 hours and 52 + 16 um at 48 hours,
and cells cultured in CAF-conditioned medium had wounds of
approximately 392 * 52 um at O hours, 58 £ 52 um at 24
hours and 17 £ 29 um at 48 hours (Figure 5j). Vimentin
expression in control cells did not appear changed at 24 hours
and was not increased until 48 hours after wound infliction
(Figure 5c¢), whereas cells cultured in the presence of NMF-
conditioned medium exhibited a slight increase in vimentin
expression by 24 hours (Figure 5e). Cells cultured in CAF-con-
ditioned medium appeared to express more vimentin at 24 and
48 hours (Figure 5h and 5i part i), as compared with control
cells and cells cultured in NMF-conditioned medium. In addi-
tion to this, some cells in CAF-conditioned medium cultures
exhibited an elongated/spindle shape, with some detached
cells, neither of which were seen in control or NMF cultures
(Figure 5h and 5i part ii).

Concentration of NMF-conditioned media enhances the
migratory ability of PMC42-LA

PMC42-LA cells were cultured on glass to enable the scratch
removal of cells and the measurement of wound closure 24
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Effect of fibroblast conditioned on apoptosis and cell viability. For
PMCA42-LA cells cultured in fibroblast-conditioned medium, trypan blue
dye exclusion was used to analyze cell viability, and total number of
cells were counted and averaged to determine the average percentage
of viable cells. (a) There was a slight variation in cell viability at 24
hours (75-100% viable cells [average 91.67 £ 14.43% in NMF-condi-
tioned medium] and 85-100% [91.90 + 7.33%)] in CAF-conditioned
medium). Similar cell viability was observed at 3 days (97-100%
[99.21 £ 1.37%] in NMF-conditioned medium and 98-100% [average
99.40 £ 1.05%] in CAF-conditioned medium). There was no difference
at 5 days (97-98% [98.48 % 0.69%] in NMF-conditioned medium and
97-100% [98.93 *+ 1.13%] in CAF-conditioned medium). (b) There
was no significant difference in active caspase-3 expression between
cultures. CAF, cancer-associated fibroblast; NMF, normal mammary
fibroblast.

hours after scratch. In the presence of NMF-conditioned
medium at a 1x concentration/control, PMC42-LA cell
wounds at 24 hours averaged 307 + 24.29 um (Figure 6a).
Cells cultured in a 2x NMF-conditioned medium had an aver-
age wound width of 319 + 23.15 um (Figure 6b) at 24 hours.
Cells cultured in a 4x NMF-conditioned medium had wounds
of 232 + 49.65 um (Figure 6c) at 24 hours and cells cultured
in a 10x NMF-conditioned medium had wounds of 160 *
62.43 um (Figure 6d) 24 hours post-scratch. Vimentin locali-
zation did not appear changed in any of the concentrated
media compared with control, but PMC42-LA cells cultured in
10x NMF-conditioned medium cultures exhibited an elon-
gated/spindle shape, with some detached cells, neither of
which were seen in the less concentrated NMF-conditioned
media cultures (Figure 6d versus a to c). Average wound
widths of these cultures are displayed graphically (Figure 6e).



Available online http://breast-cancer-research.com/content/9/1/R19

Figure 5
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Effect of different fibroblast-conditioned media on cell migration in two-dimensional cultures. PMC42-LA cells were cultured on glass in either nor-
mal medium (control), NMF-conditioned medium, or CAF-conditioned medium. Using scratch tests, over a period of 48 hours, PMC42-LA cells were
analyzed to determine the rate and extent of wound closure, and vimentin expression. Four scratches averaging between 367 pum (minimum) and
392 um (maximum) in width were made at time 0. Scratches were measured and averaged, and the extent of wound closure calculated and aver-
aged. (a-c) Cells in normal medium (control) exhibited some wound closure at 24 hours (179 £ 21.4 um), and this had progressed by 48 hours (106
+ 29.0 um) with small, sparing vimentin expression appearing at 48 hours. (d-f) Cells in NMF-conditioned medium exhibited similar rates of wound
closure at 24 hours (171 £ 32.9 um) and 48 hours (160 £ 15.6 um), with vimentin expression appearing at wound edges at 24 hours. (g-i) Cells in
CAF-conditioned medium exhibited an accelerated wound closure rate, with the width of scratches reduced by 24 hours (333 *+ 52.0 um) and
almost full wound closure by 48 hours (panel i part i: 41.63 + 28.8 um). Vimentin expression in these cells was abundant around wound area. (Panel
i part i) Closed wounds were identified at 48 hours by visualizing areas of elongated, vimentin-profuse cells in apparently normal areas of lesser
vimentin expression. (j) Graphical representation of wound closure by these cultures. CAF, cancer-associated fibroblast; NMF, normal mammary

fibroblast.
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Figure 6

(e) Scratch wound closure by PMC42-LAin
concentrated NMIF-conditioned media
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The effect of concentrated NMF-conditioned media on two-dimensional scratch wound closure. PMC42-LA cells were cultured on glass in 1x, 2x,
4x, or 10x NMF-conditioned medium. Using scratch tests, PMC42-LA cells were analyzed for the extent of wound closure 24 hours after scratch.
Scratches were measured and averaged, and the extent of wound closure calculated and averaged. (a) Cells in 1x NMF-conditioned media (con-

trol) had average wound sizes of 307 £ 24.3 um 24 hours post-scratch. (b) Cells in 2x NMF-conditioned medium had average wound sizes of 319
+ 23.2 um 24 hours post-scratch. (c) Cells in 4x NMF-conditioned medium had average wound widths of 232 + 49.7 um 24 hours post-scratch,

and (d) cells in 10x NMF-conditioned medium had average wound widths of 160 * 62.4 um 24 hours post-scratch. Vimentin localization appeared
unchanged in all cultures; some change in cell morphology was noted in 10x NMF-conditioned media cultures. CAF, cancer-associated fibroblast;

NMF, normal mammary fibroblast.

CAF-conditioned medium causes budding and
detachment of single cells from PMC42-LA organoids in
three-dimensional culture

When cultured in control three dimensional-culture, PMC42-
LA cells formed round organoids, with few or no single cells
present in the culture (Figure 7a,b). When cultured in three-
dimensional culture with CAF-conditioned medium, PMC42-
LA organoids remained predominantly spherical, although the
appearance of some budding edges on organoids and the
presence of some single cells in the cultures were noted (Fig-
ure 7c,d). Furthermore, when PMC42-LA cells were grown in
three dimensional culture with CAF-conditioned medium
placed as a chemoattractant beneath the filter insert,
organoids once again exhibitied budding edges, in addition to
many single cells and clusters of single cells present among
the organoids (Figure 7e,f).

Discussion

In our study we used a human mammary carcinoma cell line
with stem cell-like properties [24] in vitro to illustrate the
differential effects of NMFs and CAFs on EMT. Darcy and
coworkers [29] used a similar transwell co-culture system to
show that mammary fibroblasts beneath the filter insert were

Page 10 of 15

(page number not for citation purposes)

able to stimulate mammary epithelial cell growth and induce
alveolar morphogenesis. A similar study conducted by Gache
and colleagues [3] also demonstrated that the effect of fibrob-
lasts on co-cultured epithelial cells is via paracrine exchange
mechanisms. We extended this approach to compare the
effects of fibroblasts derived from malignant mammary tissue
(CAFs) with those derived from normal mammary tissue
(NMFs). To our knowledge, this is a novel report of selective
and direct effects of CAFs on EMT parameters.

NMFs and CAFs can be distinguished on the basis of their dif-
ferential maker expression. FAP is a 93 kDa cell surface anti-
gen of reactive tumour stromal fibroblasts that is not detected
by immunocytochemistry in normal fibroblasts [30-33].
Expression of FAP was seen in both NMFs and CAFs but at a
higher level (approximately twofold) in CAFs. To date, there
have been no quantitative data published on FAP expression,
only studies indicating that resting fibroblasts in normal tissue
lack detectable FAP expression by immunocytochemistry
[32,33]. This suggests that a low FAP level, undetectable by
immunocytochemistry, may be expressed by NMFs and
detectable only by Western blot analysis. We detected higher
levels of 0-SMA in CAFs than in NMFs, confirming the myofi-
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The effect of fibroblast-conditioned media on PMC42-LA organoid
morphology in three-dimensional cultures. CAF-conditioned medium
was added to or below PMC42-LA filter cultures, and the cultures ana-
lysed for changes in organoid morphology possibly representative of
increased invasiveness. Controls had no fibroblast conditioned-
medium. (a,b) In control cultures, organoids appeared spherical with lit-
tle, if any, single cells present. (c,d) With CAF-conditioned media on
the filter/culture, organoids remained predominantly spherical, with
some budding edges and the presence of single cells and clusters of
single cells. (e,f) With CAF-conditioned medium below the filter/cul-
ture, organoids appeared less spherical, with uneven budding edges
and many single cells and clusters of single cells. CAF, cancer-associ-
ated fibroblast.

broblastic nature of CAFs. The NMFs used in this study exhibit
some o-SMA expression, despite being derived from normal
human mammary tissue and, expectedly, the CAFs displayed
higher expression (2.7-fold) of this protein. It has been shown
that 10% to 80% of cultured human mammary stromal cells
synthesize 0-SMA after 4 to 11 days in culture, suggesting
that elements of smooth muscle differentiation may arise dur-
ing cell culture of non-smooth-muscle stromal cells that have
been taken directly from human breast tissue [34]. Therefore
the expression of some a-SMA by NMFs may be an artefact of
culture conditions and is not entirely unexpected.

The most significant observation of this study was the differen-
tial effects of NMFs and CAFs on the migration of PMC42-LA
cells, directly implicating a role for CAFs in inducing cell motil-
ity. Following wound infliction in two-dimensional culture,
CAF-conditioned medium caused PMC42-LA cells to migrate
and upregulate vimentin at the site of the wound at a quicker
rate than was seen in control cells or in cells cultured in
medium conditioned by NMFs. Wounded control PMC42-LA
cells were accompanied by very little vimentin upregulation
and incomplete wound closure over 48 hours, similar to
PMC42-LA cells cultured in NMF-conditioned medium. The
monolayer of control and NMF-conditioned medium cultures
remained intact, with no detached cells or changes in cell mor-
phology. In contrast, within 24 hours, PMC42-LA cells cul-
tured in CAF-conditioned medium exhibited a dramatic
upregulation of vimentin, with small numbers of detached
'stray' cells. In CAF-conditioned medium, at 24 hours, stray
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PMC42-LA cells and cells surrounding the wound possessed
a spindle-shaped morphology, with some cells exhibiting
vimentin-rich protrusions. By 48 hours, almost all PMC42-LA
wounds in CAF-conditioned medium were completely closed
and could only be visualized by reference to areas of intense
vimentin staining and cells with an elongated morphology,
stretching in the direction of wound closure. The addition of
CAF-conditioned medium to three-dimensional PMC42-LA
organoid cultures or below the filters caused 'budding' on
some organoids, and the appearance of stray cells and
clusters of stray cells surrounding the organoids, which were
not seen in control cultures.

These findings, combined with the apparent loss in cell-cell
adhesion and upregulation of vimentin, suggest that PMC42-
LA are more susceptible to EMT in the presence of CAFs. A
slight increase in PMC42-LA migration was noted in NMF-
conditioned media cultures compared with control, although
to a lesser extent than in CAF-conditioned media, indicating
that a factor, or factors, secreted by NMFs may be more highly
secreted by CAFs. This was confirmed by experiments evalu-
ating the effect of increasing the concentration of NMF-condi-
tioned medium; specifically, we report a concentration-
dependant response by PMCA42-LA, with more extensive
scratch wound closure in more concentrated NMF-condi-
tioned media.

A key finding in our study was the disruptive effect of CAF-
conditioned media on cell-cell junctions. Exposure of PMC42-
LA organoids to either NMFs or CAFs caused a change in
localization of E-cadherin, a cell-cell adhesion molecule that is
normally located at cell junctions. E-cadherin has been shown
to be an invasion suppressor in cell culture systems [35-37],
and partial or complete loss of E-cadherin expression corre-
lates with poor prognosis in breast cancer patients [38]. E-
cadherin was detected mainly in the cytoplasm of PMC42-LA
cells after exposure to either type of fibroblast or fibroblast-
conditioned medium, and this cytoplasmic localization was
more pronounced in PMC42-LA cells cultured in the presence
of CAFs than in the presence of NMFs. An abnormal cytoplas-
mic distribution of E-cadherin has been reported in 17% of
invasive lobular breast tumours, with variable expression on
cell membranes [39]. The in vitro movement of E-cadherin
from cell junctions to the cytoplasm has been reported as a
consequence of EMT in vitro [40]. To our knowledge, these
data provide the first evidence that myofibroblasts can induce
an EMT in mammary carcinoma cells.

The loss of cellular junctional integrity was confirmed by obser-
vations that CAF-conditioned medium induced mis-localiza-
tion of B-catenin to cytoplasm and nuclear regions in PMC42-
LA cells. B-Catenin is an essential component of junctional
complexes, linking E-cadherin to the actin filaments [41].
Mouse studies of colorectal cancer have described increased
cytoplasmic expression and nuclear localization of B-catenin in
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chemically induced tumours [42]. E-cadherin has also been
shown to recruit B-catenin to the cell membrane and prevent
its nuclear localization in SW480 colon carcinoma cells [43].
Plasma membrane-associated staining of E-cadherin and f3-
catenin has reportedly been absent in invasive lobular
carcinomas of the breast [41]. Accumulation of B-catenin in
the cytoplasm and nucleus has been hypothesized to promote
malignant transformation and progression in breast cancer
[44]. Thus the CAF-conditioned medium induced mis-localiza-
tion of B-catenin seen in our study indicates a substantial role
for CAFs in EMT and potentially a role in cancer progression.

Further evidence of an EMT is the upregulation of vimentin by
PMC42-LA cells cultured in CAF-conditioned medium. Induc-
tion of vimentin is a hallmark of EMT, with almost universal
upregulation of this protein [45]. Vimentin is selectively
expressed in invasive human breast cancer cell lines [46],
reflecting the end-stage of tumour de-differentiation [47,48].
Vimentin is a marker for the mesenchymal phenotype, and
upregulation of vimentin may be indicative of EMT [49-51].
Increased expression of vimentin has previously been reported
in PMC42-LA cells in response to EGF-induced EMT [26].
Significantly, although the presence of NMFs resulted in the
appearance of vimentin-positive cells layered on the outside of
organoids, in control organoids and cells cultured in CAF-con-
ditioned medium vimentin-positive cells were localized
throughout the organoids.

We postulate that NMFs secrete factors that lead to cellular
organization or, conversely, that soluble secreted factors from
CAFs disturb cell disorganization. It is possible that that this
disorganization was not seen in PMC42-LA cells cultured with
CAFs beneath the filter because of insufficient concentrations
of these factor(s) being produced by the small number of
fibroblasts placed below the filter. A similar loss of polarity and
disruption of acinar structures has been reported in three-
dimensional HC11 mouse mammary epithelial cell culture,
associated with FGF receptor 1 activation. This cellular disor-
ganization was also accompanied by a gain of invasive proper-
ties and increased vimentin expression [52]. A hallmark of
breast cancer is a loss of polarity and apico-basal organization
of epithelial cells, and our results indicate that fibroblasts may
have the capacity to alter the organization of epithelial cells
within a three-dimensional structure.

Vimentin is not only a marker of EMT but also a marker specific
to myoepithelial cells, and therefore upregulation in this protein
alone does not suggest EMT. The possibility that CAF-condi-
tioned medium induces a myoepithelial phenotype rather than
an EMT can be excluded by the knowledge that both NMFs
and CAFs induce these myoepithelial markers, but only CAFs
are able to induce migration of PMC42-LA. In addition to an
upregulation of vimentin, it is also the separation of cells from
the epithelial 'sheets' and a morphologic change to spindle
cells that characterises an EMT [53], all of which we report
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here. In vitro studies have shown that soluble factors such as
EGF, motility factors and scatter factors promote migratory
and locomotive abilities in epithelial cells, accompanied by
changes in cell morphology [54-59], thereby promoting an
EMT. However, although these factors induce an EMT in vitro,
no specific in vivo counterparts for these growth factors in
cancer progression have been found. Our study demonstrates
a novel model that mimics the in vivo mammary gland, whereby
myofibroblasts, through soluble factors, induce breast epithe-
lial cells to undergo an EMT.

In contrast to other studies demonstrating a substantial effect
of fibroblasts [60-66] and fibroblast-conditioned medium [67]
in stimulating proliferation of cells through paracrine mecha-
nisms [3], in our studies we report only a slight increase in pro-
liferation of PMC42-LA in CAF-conditioned medium
compared with NMF-conditioned medium. Over a b5-day
period, we report no significant difference in the effect of
CAFs compared with NMFs on cell viability or programmed
cell death. Other studies have also reported that conditioned
medium obtained from fibroblasts derived from both malignant
and benign breast tumours had growth stimulatory effects on
breast cancer cells, whereas conditioned medium from normal
fibroblasts inhibited growth [68]. The extent of proliferation
induced may depend upon the source of the fibroblasts, with
tumour fibroblasts producing a greater mitogenic response
than fibroblasts derived from normal breast tissue [69]. /n vitro
studies using mammary fibroblasts [29] and in vivo mouse
studies using CAFs and NMFs [70] indicate that the effect of
fibroblasts on tumour cells depends upon the type and propor-
tion of inoculated cells. Our study indicates that the key effects
of CAFs are on motility, cell organization and EMT marker
expression, rather than proliferation.

To ascertain how NMFs and CAFs differentially affect breast
epithelial cells, we analyzed PMC42-LA cultured in their con-
ditioned medium for a range of markers. Expression of the
myoepithelial marker proteins o-SMA and cytokeratin 14 were
significantly upregulated by PMC42-LA organoids upon expo-
sure to both fibroblast types and their respective conditioned
medium. Although unrelated to a cancer or EMT phenotype,
we previously demonstrated upregulation in myoepithelial-
specific proteins by PMC42-LA cells cultured in three dimen-
sions with primary mammary fibroblasts [27]. In the present
study, no significant difference in expression levels of myoepi-
thelial proteins was caused by exposure to the different fibrob-
lasts, indicating that both CAFs and NMFs can enrich the
myoepithelial population in PMC42-LA culture. A significantly
greater increase in 0-SMA was seen in cells cultured in either
type of fibroblast-conditioned medium, as compared with
those with fibroblasts beneath the filter. This may be attributed
to the possibility that a greater concentration of fibroblast-
secreted soluble factors may be present in fibroblast-condi-
tioned medium, as compared with the less concentrated fac-



tors that would be secreted from the small number of
fibroblasts beneath the filter.

Arising from the study is the question of the nature of the sol-
uble factors that mediate the differential effects of CAFs and
NMFs on mammary epithelial cells. van Roozendaal and
coworkers [69] reported that breast fibroblast-conditioned
medium contains IGF, which was responsible for MCF-7 pro-
liferation. However, when NMFs and CAFs were compared in
terms of IGF-Il expression by enzyme-linked immunosorbent
assay and real-time polymerase chain reaction, no significant
difference was seen [69,71]. Neutralizing antibodies specific
to growth factors demonstrated that the growth-stimulatory
activity of fibroblasts was not inhibited by anti-IGF-Il, anti-EGF,
anti-IGF, or anti-TGF-o. [72]. Because fibroblasts produce
many other growth factors, such as various factors from the
hepatocyte growth factor, and basic FGF and IGF families,
there are many possibilities and combinations of growth fac-
tors that may be responsible for the effect of fibroblasts.
Treatments of PMC42-LA cells with IGF-I (10 ng/ml) and IGF-
Il (10 ng/ml), tumour necrosis factor-o. (40 ng/ml), vascular
endothelial growth factor (10 ng/ml) and TGF-B (10 ng/ml)
failed to replicate the upregulation of vimentin and mis-locali-
zation of E-cadherin (data not shown) we found with CAF-con-
ditioned media exposure. Further analysis of the fibroblast-
conditioned media is necessary to identify the factors involved;
furthermore, the reciprocal effect of cancer cells on the pro-
duction of growth factors by fibroblasts may need to be taken
into account.

Conclusion

Our study demonstrates a direct role for CAFs in breast can-
cer progression through the induction of an EMT. Relative to
NMFs, CAFs had increased propensity to increase the migra-
tory ability of PMC42-LA cells, commensurate with the charac-
teristics of EMT, including the mis-localization of E-cadherin
and translocation of B-catenin, and the upregulation of vimen-
tin. Our study indicates that the factor or factors responsible
are secreted by CAFs at a higher level than by NMFs. Elucida-
tion of the mechanism of the cellular interaction between
CAFs and mammary epithelial cells will contribute to prevent-
ative treatments of breast carcinoma metastasis that act by tar-
geting these factors directly.
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