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Abstract
Models of breast cancer incidence have evolved from the
observation by Armitage and Doll in the1950s that the pattern of
incidence by age differs for reproductive cancers from those of
other major malignancies. Both two-stage and multistage models
have been applied to breast cancer incidence. Consistent across
modeling approaches, risk accumulation or the rate of increase in
breast cancer incidence is most rapid from menarche to first birth.
Models that account for the change in risk after menopause and
the temporal sequence of reproductive events summarize risk
efficiently and give added insights to potentially important
mechanistic features. First pregnancy has an adverse impact on
progesterone receptor negative tumors, while increasing parity
reduces the risk of estrogen/progesterone receptor positive
tumors but not estrogen/progesterone receptor negative tumors.
Integrated prediction models that incorporate prediction of carrier
status for highly penetrant genes and also account for lifestyle
factors, mammographic density, and endogenous hormone levels
remain to be efficiently implemented. Models that both inform and
reflect the emerging understanding of the molecular and cell
biology of carcinogenesis are still a long way off.

History of development
Two distinct classes of mathematical models have been used
in cancer epidemiology. Statistical models draw on estab-
lished mathematical structures (including linear and logistic
regression) to evaluate relationships between risk factors and
cancer incidence. Biomathematical models are derived by
translating a series of hypotheses about the biological process
involved in carcinogenesis into mathematical terms [1]. The
best known models developed by Armitage and Doll lay the
foundation for a long history of applying mathematical models
to cancer incidence rates and with extension can relate
epidemiological risk factors to cancer incidence to provide a
structure to view the process of carcinogenesis [2]. Drawing
on cancer mortality, Fisher and Hollomon [3] used stomach
cancer statistics, and Nordling [4] combined all cancer sites
and noted that for ages 25 to 74 years, the logarithm of the
death rate increased in direct proportion to the logarithm of
age. Armitage and Doll then built on this work to evaluate

cancer mortality in the UK in men and women in 1950 and
1951. They noted that a gradient of 6 to 1 (i.e., 6 units
increase in the logarithm of the death rate per unit increase in
the logarithm of age) was more or less consistent across 17
cancer sites, and concluded that the theory that cancer is the
end-result of several successive cellular changes is supported
by cancers of the esophagus, stomach, colon, rectum, and
pancreas in men and of the stomach, colon, rectum, and
pancreas in women. Furthermore, a deficit in the mortality for
breast, ovary, and cervical cancer in older age groups was
noted by Armitage and Doll, who attributed this to a reduction
during midlife in the rate of production of one of the later
changes in the process of carcinogenesis [2]. Through this
work, they set forth a multistage model of carcinogenesis long
before laboratory or biological understanding.

These types of mathematical models can also summarize the
impact of multiple variables that may modify the incidence
rates, and so can provide a means to identify areas of
research that require more study [5]. They may also allow for
refinement and improve precision in risk estimation, and
ultimately produce better tools for clinical risk assessment
and decision-making regarding the use of chemopreventive
agents [6]. Doll and Peto [7] applied this multistage cancer
incidence model to lung cancer within the British Doctor’s
Study and observed that incidence is proportional to
(dose + 6)2 × (age – 22.5)4.5, where dose equals cigarettes
per day. This then was consistent with the multistage model
of carcinogenesis, and generates coefficients for the
components of the model that are not readily interpretable
beyond a comparison of their magnitude and the power
function that approximates the number of stages in the model.
However, in this and similar models, incidence is proportional
to the fourth to sixth power of time, suggesting four to six
independent steps are necessary for development of cancer.
Such extrapolations have been confirmed by the work of
Vogelstein and colleagues documenting that more than four
genetic alterations are necessary for development of colon
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cancer [8]. Mechanistic implications of this work for lung
cancer included that more than one of the stages of lung
carcinogenesis was strongly affected by smoking [9,10].
Extensive application of the Armitage and Doll model to
radiation exposure also attests to its utility [11,12].

While the range of applications beyond breast cancer has
been considerable, we now summarize the history of develop-
ment of breast cancer models and review their findings and
implications. We then consider future applications, including
risk prediction and identification of women at elevated risk of
breast cancer for whom chemoprevention strategies such as
Tamoxifen or other agents may be suitable [13].

Breast cancer applications
Focusing on breast cancer, Moolgavkar and colleagues
[14,15] took an alternative approach to the Armitage and Doll
model, again using the age-incidence data from high and low
risk countries. These authors fitted a two-stage model that
had normal cells progress through transformed cells to
cancer. The first stage may change the rate at which the first
transition or initiation occurs. A second stage changes the
net proliferation rate of initiated cells, promoting progress to
cancer. They noted that across high and low risk countries
the shape of the incidence curve was constant and the
impact of later age at first birth was also constant. The rise in
risk through the premenopausal years identified here points
to the importance of accumulating risk up to menopause as a
determinant of the postmenopausal incidence. Pathak and
Whittemore [16] applied a breast cancer incidence rate
function to data from countries with high, medium, and low
breast cancer incidence rates and confirmed the observation
of Moolgavkar and colleagues that age at first birth and age
at menopause exert similar effects on all women regardless of
breast cancer rates in their country. Subsequent work by Pike
and colleagues [17] using traditional survival analysis
methods in a prospective cohort showed that reproductive
risk factors apply equally across ethnic groups in the US.

Pike and colleagues [18] took the Armitage and Doll
approach and fitted a model that included menarche, first
birth, and menopause as modifiers of the effect of time. This
model assumed that breast tissue ‘aged’ at a constant rate,
starting at menarche and continuing to first birth. The Pike
model allowed for an adverse effect of first birth and a
decrease in the rate of ‘tissue aging’ after the first birth,
basing this proposed model on epidemiological data that
supported these assumptions. The rate of tissue aging further
decreased after menopause (Figure 1). This then was
consistent with the early Armitage and Doll observation that
the rate of increase in breast carcinogenesis was lower later
in life [2]. This model did not account for more than one
pregnancy or the timing of pregnancies after the first. The
output from this model, like the Doll and Peto lung cancer
model, is a set of parameters for the rate of breast tissue
aging before first pregnancy, the rate of tissue aging after

menopause, and the magnitude of the adverse effect of first
pregnancy (Table 1). Compared to the constant rate of tissue
aging from menarche to first birth, the rate of aging was 0.8 per
year after first birth and 0.105 after menopause. The adverse
effect of first birth was equivalent to 2.2 years of aging.

Rosner and Colditz have expanded on this Pike model of
breast cancer incidence to include additional reproductive
events: subsequent births after the first, type of menopause in
addition to age at menopause, and the premenarche period
[19,20]. We first applied the Pike model [19] (see Table 1 for
parameter estimates in terms of the rate of tissue aging).
Specifically, we observed that the one-birth model gave a rate
of tissue aging after first birth that was 0.67, close to the Pike
estimate. After menopause the rate was 0.43, substantially
higher than the Pike estimate, but perhaps influenced by
differences in the populations used to generate the model
estimates. We observed the adverse effect of first pregnancy
as equivalent to 7.45 years of tissue aging. Because this
model generates parameters that are not readily interpretable
in the context of relative risks and the broader epidemiological
literature, we modified the time scale to a log-incidence model
[20]. The log-incidence model, which explicitly attempts to
develop cumulative measures of exposure over long periods of
time, utilizes these cumulative measures in a relative risk
context to predict breast cancer incidence. Thus output is
more easily interpreted than coefficients for tissue aging from
the Pike model. The basis for the model is similar to the
Moolgavkar and Knudson two-stage model for cancer
incidence [15]. Moolgavkar proposes one stage from normal
cells to intermediate cells, and a second stage from
intermediate cells to malignant cells. Since the number of
intermediate cells is not observable, it isn’t clear that it is
possible to distinguish these two phases with actual data and
we have chosen to use the number of intermediate cells as a
latent variable (c(t)), which is impacted by different risk factors,
possibly differentially at different ages.

Figure 1

Pike model of breast cancer incidence.
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The approach to model fitting by Rosner is to follow Nunney
[21], who assumes that number of cell divisions and hence
incidence at time t is proportional to the number of breast cell
divisions accumulated up to age t, or Pikes ‘breast tissue
age’. The log of the rate of tissue aging is assumed to be a
linear function of risk factors that are relevant at a given age.
This differs slightly from the Pike model of breast tissue age,
which assumes that log(incidence) is a linear function of
log(time) or log(breast-tissue age). In the original Pike model
of breast cancer incidence (Figure 1), tissue age increased at
a constant rate c from menarche to first birth. At the time of
first birth there was an immediate increase in breast tissue
age (of magnitude k1), and a corresponding decrease in the
rate of breast tissue aging after first birth to a rate (c – d1).
Breast tissue age increased at the same rate from first birth
to age 40 years, after which the rate of increase diminished
linearly until at menopause the rate of increase was d3 units
lower than at age 40 years.

The underlying assumption of this model is that cell division is
proportional to t, the age of the individual, and that
reproductive factors modify the rate of cell division after first
birth and again after menopause, as observed in animal
models where the cell cycle is longer after first birth [22].
Armitage [23] has referred to this adaptation by Pike as a
‘time transformation theory’, and concludes that the changes
in response function are more specific than required by the
two-stage model and, furthermore, that it is unclear whether
this model provides an explanation for initiator, promoter, or
other data relating early and late effects. It does, however,
approximate known changes in risk associated with biological

events and associated changing hormonal exposures of
women.

Early versions of the Pike model did not include terms for the
spacing of pregnancies, did not accommodate premeno-
pausal women (who have no age at menopause), and did not
easily accommodate pregnancies after age 40 years.
Furthermore, the parameters of the breast tissue-aging model
are difficult to interpret from a relative risk perspective. To
implement this log-incidence model, we constructed a life
calendar for each risk factor and applied this model to the
Nurses’ Health Study to evaluate risk factors and also predict
risk up to a defined age, such as 70.

We noted that the first pregnancy has an adverse effect that
is dependent on the interval from menarche to the age at first
pregnancy, that is, the later the first pregnancy the larger its
adverse effect [24]. Evaluating second and subsequent
pregnancies, we noted no adverse effect for the pregnancies
after the first [19]. Importantly, we also confirmed the work of
Trichopoulos and colleagues [24], who suggested that the
timing of births was important; the closer births are together
the lower the risk of breast cancer. We developed a single
term to summarize the timing of births across the
premenopausal years, which we call the birth index. The
rationale for the birth index is the assumption that at any age
t, the latent variable c(t) is a linear function of parity at time t.
The resulting expression for the birth index at age t for a
parous woman is:

b = birth index = Σ
St

i=1
(t* – ti)bit
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Table 1

Parameters for estimated rate of tissue aging from the Pike incidence model and Rosner extended model

Rosner, Colditz and Willett [19]

Rate of tissue aging Pike et al. [18] One-birth model Two births Multiple births

Menarche to first birth 1.0 1.0 1.0 1.0

After first birth, before menopause 0.70 0.67 0.84 0.79 
(p < 0.001) (p = 0.19) (p = 0.002)

After second birth 0.68 0.03a

(p = 0.20) (p = 0.02)
(per year from birth to 

menopause, for each birth)

After menopause 0.105 0.43 0.43 0.46b

(p = 0.002) (p = 0.002) (p = 0.002)

Increase at first birth (years) 2.2 7.45 6.4 7.61 
(p < 0.001) (p = 0.02) (p < 0.001)

Increase at second birth –0.02 –1.69
(p = 0.99)

k Fixed at 4.5 2.9 (2.5-3.3) 2.8 (2.4-3.2) 2.8 (2.4-3.2)

aFor the multiple birth model this represents the decrease in the rate of tissue aging per year with each subsequent birth after the first, so for births
at 27, 30 and 33 with menopause at age 50 the cumulative rate of tissue aging is decreased by 1.11 units. bAssumes three births. The log
likelihood for multiple births model is significantly better than the one-birth model (χ2, 2 df 17.82, p < 0.001).



where t* = min (age, age at menopause); s = parity; ti = age
at ith birth; i = 1,..,s; bit = 1 if parity ≥ i at age t, or = 0
otherwise. For nulliparous woman, the birth index = 0.

The net effect of pregnancy is a short-term increase in
incidence then a subsequent long-term decrease. The
magnitude of such changes in incidence for parous women is
primarily a function of age at first birth and, to a lesser extent,
ages at subsequent births, and accounts for the cross-over in
incidence between parous and nulliparous women that has
been reported [25].

Menopause has been recognized as a breast cancer risk
modifier for many years. Detailed evaluations have shown that
age at menopause is a major modifier of breast cancer risk in
the postmenopausal years [26,27]. In both the Collaborative
Group on Hormonal Factors in Breast Cancer reanalysis and
National Health Service (NHS) data, risk of breast cancer
increases by approximately 2.8% for each additional year of
delay in natural menopause [28]. Bilateral oophorectomy
reduces risk compared to natural menopause. Reflecting
modern surgical practice, a substantial proportion of women
report hysterectomy without bilateral oophorectomy.
Accordingly, this leads to uncertainty as to age at menopause
and raises concern for estimation of risk after menopause.
Pike has argued that misspecification of age at menopause
will lead to error in estimation of the effect of postmenopausal
hormone therapy on breast cancer risk [29]. Adding women
with uncertain age at menopause will bias results and reduce
standard errors. This was exemplified in the Collaborative
reanalysis of hormones and breast cancer, where the
relationship between age at menopause and risk of breast
cancer was attenuated when women with hysterectomy were
included in the analysis. At the same time, the relationship
between duration of use of postmenopausal hormones and
risk was also attenuated when age at menopause was less
rigorously controlled [28]. Rockhill and colleagues [30]
evaluated this hypothesis using data from the NHS and
showed that bias consistently underestimated the magnitude
of postmenopausal hormones on breast cancer risk.
Accordingly, we continue to fit the log-incidence model only
to women with known age at menopause. While one could
impute an age at menopause based on age, smoking, parity,
and age at hysterectomy, we have shown that this too leads
to biased estimates for postmenopausal hormone therapy.
Current use of postmenopausal hormones carries increased
risk of breast cancer; estrogen alone increases risk by 3%
per year of use while estrogen plus progestin increases risk
by approximately 7% per year of use.

We have also added established epidemiological risk factors,
including family history, history of benign breast disease,
alcohol intake, and adiposity [31]. Benign breast disease
(BBD) varied the impact of age at menarche. For nulliparous
BBD negative women, there was a strong effect of age at
menarche; there was virtually no effect among BBD positive

women. In addition, there was an increase in risk at birth for
BBD positive versus BBD negative women when all other
factors were held constant, possibly implying a differential
genetic profile at birth. Other aspects of the reproductive
profile were similar for BBD positive and negative women.

Pike and colleagues compared the initial log/log model with
the two-stage model of Moolgavkar and colleagues and
concluded that the multistage model, assuming all transitions
are equally determined by the rate of cell turnover, “provides
an excellent quantitative description of much of the known
epidemiology of breast cancer” [18]. Armitage notes that the
time transformed model of Pike and colleagues is less flexible
than the two-stage approach, which offers greater flexibility in
evaluating the time at which each factor influences risk [23].
He concludes that, “until we have clear evidence for more
than two stages, it seems best to regard the multistage
theory, like the dogmas of certain religions, as permitting
either a literal or figurative interpretation.” While modeling
approaches may vary, the underlying biology and age-
incidence consistently indicate that the rate of aging is most
rapid from menarche to first full term pregnancy, an interval
that has increased from just a few years to an average of 12
to 18 years in countries with established market economies
[32]. This social evolution drives up breast cancer incidence
yet the underlying biology and epidemiological data remain
sparse to identify risk factors such as diet and physical
activity that may attenuate the rate of risk accumulation or the
magnitude of the adverse effect of delayed first pregnancy.

While screening mammography increases the detection of
breast cancer, and modifies mortality after diagnosis [33], it
does not change the underlying biological relationships or
associations between reproductive events and risk of breast
cancer. The models described above relate to the underlying
incidence of cancer and appear to be consistent in their fit to
incidence rates across countries that have instituted routine
screening. We next consider the performance for specific
subtypes of breast cancer defined by receptor status as we
have previously shown that risk factors differ according to
receptor status [34].

Receptor status
Incidence rates and risk factors for breast cancer differ
according to both estrogen receptor (ER) and progesterone
receptor (PR) status. Furthermore, therapeutic approaches to
treatment and chemoprevention differ for tumors based on
receptor status. Thus, it would be prudent to divide breast
cancer according to the status of both of these tumor
receptors to better understand the etiology of each subtype
and then to more accurately estimate risk.

Initial studies of risk factors for ER status among breast
cancer cases have typically considered age [35,36] or age
and risk factors one at a time [37-48]. Many of these studies
had not classified cases jointly by both ER and PR status, in
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large part due to small sample size. Few risk factors show any
consistent difference between ER positive (ER+) and ER
negative (ER–) breast cancer, although parity is somewhat
more inversely related to ER+ tumors in some studies [42-
44,46], but not in others [41]. To apply an integrated
approach, we fitted the Rosner and Colditz model of breast
cancer incidence to cases classified jointly according to ER
and PR status [34]. We observed significant heterogeneity
among the four breast tumor categories for age, menopausal
status, body mass index (BMI) after menopause, the one-time
adverse effect of first pregnancy, and past use of
postmenopausal hormones but not benign breast disease,
family history of breast cancer, alcohol use, and height. The
one-time adverse effect of first pregnancy is present for PR–
but not PR+ tumors after controlling for ER status
(p = 0.007). An opposite result is observed for BMI after
menopause, it being strongly related to PR+ but not PR–
tumors after controlling for ER status (p = 0.005). Significant
differences were observed for ER status for age (p = 0.003)
and past use of postmenopausal hormones (p = 0.01).

Models predicting genetic susceptibility
Genetic susceptibility and prediction of carrier status
For subgroups of the population that may carry genetic
susceptibility to certain cancers [49], preventive interventions
may differ from the broader population. For example, several
early studies indicated that breast cancer tended to
aggregate in families [50,51]. Compelling evidence for a
genetic component to breast cancer came from the Cancer
and Steroid Hormone (CASH) study. Initial analyses
confirmed that cases were significantly more likely than
controls to have a family history of the disease, especially the
earlier the age at onset of the case [52]. A segregation
analysis of the pattern of breast cancer in the case families
provided evidence that the susceptibility was transmitted in a
Mendelian manner [53]. Linkage analysis using DNA markers
generated in the laboratory localized the first putative gene to
a region of chromosome 17q21 [54], and BRCA1 was
subsequently identified through positional cloning [55].

Parmigiani and colleagues [56] developed a Bayesian model
to evaluate the probabilities that a woman is a carrier of a
mutation of BRCA1 and BRCA2 using breast and ovarian
cancer history of first and second degree relatives as
predictors. Efforts to combine both lifestyle factors and
genetic carrier prediction have been limited, in part by the
divergent mathematical underpinnings of the approaches in
the two areas. One approach from the UK has been
published [57]. In that model, Tyrer and colleagues
incorporated BRCA1, BRCA2, and a hypothetical low
penetrance gene, as well as some personal risk factors
(including age at menarche, age at first birth, height, BMI, and
age at menopause). The model omitted established risk
factors, including type of menopause and use of post-
menopausal hormones, and maintained a fixed adverse effect
of age at first birth of 30 years or older. The model combined

estimates from various epidemiological studies and calibrated
predicted incidence against UK national statistics.

Risk prediction
Breast cancer incidence models have also been applied to
predict individual probabilities of carrier status for specific
mutations that drive risk of breast cancer and, alternatively,
based on a varying number of risk factors, to predict the risk of
breast cancer over a defined time period, say 5 or 10 years.
The larger the number of risk factors considered, the higher
the likelihood the prediction model will separate those at risk
of disease from those who are not as likely to develop disease.
However, as Wald and colleagues [58] note, to be useful as a
screening test or an individual marker of risk or to identify
those who will develop disease and those who will not, the
magnitude of association for a predictor must be in the order
of 10 or higher comparing extreme quintiles for a detection
rate of 20%. No prediction models for breast cancer have
achieved this level of discrimination to date.

Ottman and colleagues [59] published a simple model in
1983 that calculates a probability of breast cancer diagnosis
for mothers and sisters of breast cancer patients. They used
life-table analysis to estimate the cumulative risks to various
ages based upon two groups of patients from the Los
Angeles County Cancer Surveillance Program, then derived a
probability within each decade between ages 20 and 70 for
mothers and sisters of the patients, according to the age of
diagnosis of the patient and whether the disease was bilateral
or unilateral.

Because risk factors may change over the life course (weight
gain, change in alcohol intake, menopausal status, use of
postmenopausal hormones for some years, and so on) it
becomes more helpful to consider the impact of all these risk
factors on breast cancer cumulative risk up to a given age,
say 70 or 75. This approach has been developed for breast
cancer risk according to family history [60], and the
prediction of BRCA1 carrier status [56,61], but more general
applications joining carrier status and lifestyle factors remain
limited [57].

The complex nature of breast cancer incidence, with many
possibly time-dependent risk factors, requires prediction
models that account for this variation over time. These are
now shown to outperform traditional approaches that fit
indicator variables with fixed effects across time [62]. In
addition, the log-incidence model of Rosner and Colditz
performs significantly better than the commonly used Gail
model for total breast cancer incidence, which includes only
five variables (age, age at menarche, age at first birth, number
of benign breast biopsies, and family history).

The efficacy of chemoprevention for breast cancer is clearly
shown for ER+ disease, reducing risk by 50% [13]. Given the
need to balance risks and benefits when implementing a
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Tamoxifen-based chemoprevention strategy [63], a model
that successfully identifies women at increased risk of ER+
breast cancer will, therefore, improve the risk benefit ratio.
Colditz and Rosner have applied their log-incidence model to
breast cancers classified according to receptor status and
reported that the area under the receiver operator
characteristic curve adjusted for age was 0.630 (95%
confidence interval = 0.616 to 0.644) for ER+/PR+ tumors
and was 0.601 (95% confidence interval = 0.575 to 0.626)
for ER–/PR– tumors, indicating adequate discriminatory
accuracy (unpublished data). On the other hand, when we
fitted the Gail model to the same data set it had performance
characteristics that were somewhat lower than the Rosner
and Colditz model, with values of 0.578 for total cancer and
0.57 for ER+PR+ tumors. The difference between the area
under the ROC curve for the Rosner and Colditz model
versus the Gail model for total breast cancer was statistically
significant (p < 0.0001), indicating that the more complete
modeling of risk factors across the life course could be more
useful for discriminating among those women at high and low
risk of breast cancer.

Growing efforts are in place to add endogenous hormone
levels and mammographic density to models that rely on
established epidemiological risk factors. To date, addition of
mammographic density has added little to the performance of
models as simple as the Gail model, increasing the area
under the ROC curve by just 1% [64]. Endogenous hormone
levels have not yet been added to prediction models.

Conclusions and future directions
We have summarized the evolution of models applied to
breast cancer incidence data. These models show that
biologically meaningful applications can help reduce bias in
estimates of risk factors for breast cancer, and may be used
to improve risk prediction. Easy to interpret applications that
combine risk prediction for high penetrance genes along with
lifestyle factors remain to be implemented. Meanwhile, those
that accommodate lifestyle factors alone are available as web
tools for use in clinical practice and more generally to guide
women in their understanding of risk factors and lifestyle
choices that may reduce their risk.

Insights from models may foster additional research.
Examples include the finding for benign breast disease,
suggesting that early life events may be important [65]. Yet to
date limited epidemiological data are available to explore this
hypothesis, although one study suggests that diet may
dramatically influence the risk of proliferative benign lesions
[66]. We can look forward eventually to models that both
inform and reflect the emerging understanding of the
molecular and cell biology of carcinogenesis, but that is still a
long way off.
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