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Abstract

Introduction Desmocollin 3 (DSC3) is a member of the
cadherin superfamily of calcium-dependent cell adhesion
molecules and a principle component of desmosomes.
Desmosomal proteins such as DSC3 are integral to the
maintenance of tissue architecture and the loss of these
components leads to a lack of adhesion and a gain of cellular
mobility. DSC3 expression is down-regulated in breast cancer
cell lines and primary breast tumors; however, the loss of DSC3
is not due to gene deletion or gross rearrangement of the gene.
In this study, we examined the prevalence of epigenetic
silencing of DSC3 gene expression in primary breast tumor
specimens.

Methods We used bisulfite genomic sequencing to analyze the
methylation state of the DSC3 promoter region from 32 primary
breast tumor specimens. We also used a quantitative real-time
RT-PCR approach, and analyzed all breast tumor specimens for
DSC3 expression. Finally, in addition to bisulfite sequencing
and RT-PCR, we used an in vivo nuclease accessibility assay to
determine the chromatin architecture of the CpG island region
from DSC3-negative breast cancer cells lines.

Results DSC3 expression was downregulated in 23 of 32
(729%) breast cancer specimens comprising: 22 invasive ductal
carcinomas, 7 invasive lobular breast carcinomas, 2 invasive
ductal carcinomas that metastasized to the lymph node, and a
mucoid ductal carcinoma. Of the 23 specimens showing a loss
of DSC3 expression, 13 (56%) were associated with cytosine
hypermethylation of the promoter region. Furthermore, DSC3
expression is limited to cells of epithelial origin and its
expression of mRNA and protein is lost in a high proportion of
breast tumor cell lines (79%). Lastly, DNA hypermethylation of
the DSC3 promoter is highly correlated with a closed chromatin
structure.

Conclusion These results indicate that the loss of DSC3
expression is a common event in primary breast tumor
specimens, and that DSC3 gene silencing in breast tumors is
frequently linked to aberrant cytosine methylation and
concomitant changes in chromatin structure.

Introduction

Aberrant cytosine methylation of CpG dinucleotides in the pro-
moter region of genes is often associated with changes in their
chromatin structure and transcriptional silencing of the gene
during carcinogenesis and tumor progression [1-7]. Cytosine

methylation has been shown to play a fundamental role in
breast tumor progression, as silenced genes have been iden-
tified that fall into each of the six 'acquired capabilities of can-
cer' as described by Hanahan and Weinberg [8]. Targeted
genes include regulators of cell cycle, maintainers of genomic
integrity, tumor suppressors, as well as adhesion molecules
[9]. Examples of hypermethylated genes in breast cancer

bp = base pair; DSC = desmocollin; H&E = hematoxylin and eosin; HIPAA = health insurance portability and accountability act of 1996; HMEC =
human mammary epithelial cell; IDC = invasive ductal carcinoma; ILC = invasive lobular carcinoma; PBS = phosphate-buffered saline.
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include: maspin, E-cadherin, BRCA1, ras association domain
family 1A, tissue inhibitor of metalloproteinase-3, and A Disin-
tegrin And Metalloprotease domain 23 gene [1,10-17].

Desmosomes, together with adherens junctions, represent the
major adhesive cell-junctions of epithelial cells [18-20]. E-cad-
herin is one example of an integral component of adherens
junctions whose role in breast tumor progression has been
clearly established [10,13,21]. The participation of desmo-
somal components in cancer, however, is enigmatic. Desmo-
somes are multifaceted intracellular junctions that participate
in cell adhesion and maintenance of normal tissue structure in
the epidermis [20,22]. Desmocollins (DSCs) are members of
the cadherin superfamily, and fundamental members of the
desmosome. DSC family members are uniquely expressed in
epidermal tissue, with DSC2 being expressed in all desmo-
some-bearing tissues, while DSC1 and DSC3 expression is
restricted to certain specialized epithelia, mainly stratified
squamous epithelia [23,24]. Furthermore, DSC1 is expressed
in the higher terminally differentiated cell layers, while DSCS3 is
mainly expressed in the basal layers [23,24]. In addition, the
DSCs are present in both 'a' and 'b' isoforms, resulting from
the alternate splicing of exon 16 [25]. They differ with respect
to their carboxy-terminal end, with the 'b' form having a short-
ened carboxy-terminal domain that removes the major binding
site for plakoglobin [26].

One of the more intriguing functions of desmosomal proteins
as they relate to cancer is their ability to inhibit cell motility.
Notably, Tselepis et al. [27] showed that the expression of
multiple desmosomal components (DSC, desmoglein, and
plakoglobin) were sufficient to induce adherence of the nor-
mally non-adherent invasive L929 fibroblast. This induced
adhesion could be blocked by the addition of short peptides
corresponding to the putative cell adhesion recognition sites
of DSC and desmoglein. In addition, the introduction of these
desmosomal proteins was also sufficient to inhibit L929 inva-
sion into collagen gels. Recently, functional studies that tar-
geted the inhibiton of DSC3 with dominant negative
constructs showed that DSC3 expression is required for the
formation of desmosomes and adherens junctions [28]. In
total, these studies support the idea that intact desmosomes
can inhibit cellular motility.

Down-regulation of DSC3 in breast cancer was first reported
by Klus [29]. They showed that DSC3 was expressed in nor-
mal breast while its expression was down-regulated in both
primary breast tumors and breast tumor cell lines. We recently
performed two-color fluorescence cDNA microarray experi-
ments to identify p53 response genes in human breast tumor
cell lines [6]. Our results identified DSC3 as a p53 response
gene whose expression was downregulated in 80% of breast
tumor cell lines tested. In addition, analysis of breast cancer
cell lines showed that DSC3 is silenced in association with
cytosine hypermethylation and histone deacetylation [6].

Therefore, the loss of DSC3 expression in the cell lines
appears to be due to both epigenetic and genetic changes.

In this study, we extend our in vitro analysis of DSC3 to the
investigation of the frequency of epigenetic silencing of DSC3
expression in primary breast tumor specimens. DNA from
freshly isolated tumor specimens was analyzed for cytosine
methylation by sodium bisulfite sequence analysis while RNA
from the same tumors was analyzed by quantitative real-time
RT-PCR for DSC3 expression. Our results show that epige-
netic silencing of DSC3 is a common event in primary breast
tumor specimens, as 72% of breast carcinomas analyzed
showed a loss of DSC3 expression and that the loss of
expression strongly correlated with cytosine methylation of its
promoter region in 56% of DSC3-negative breast carcinomas
analyzed, and 41% of all specimens analyzed.

Concurrently, we analyzed a panel of breast tumor cell lines for
DSC3 expression and concomitant cytosine methylation of its
promoter region. As aberrant cytosine methylation of promoter
regions is associated with alterations to chromatin structure,
we also compared the in vivo nuclease accessibility of the
DSC3 promoter region in normal and tumor breast cell lines.
Our results indicate that the loss of DSC3 is a common event
in breast tumor cell lines at both the mRNA and protein levels
and that the loss of expression is frequently correlated with
cytosine methylation of its promoter region and an inaccessi-
ble chromatin structure. These results indicate that epigenetic
silencing of DSC3 is an underlying event in breast
tumorigenesis.

Materials and methods

Cell culture and manipulations

Normal human mammary epithelial cells (HMECs) and human
prostate epithelial cells were obtained from Clonetics (San
Diego, CA, USA), fetal skin keratinocytes from Cell Applica-
tions (San Diego, CA, USA); these were grown according to
manufacturers' instructions. Human foreskin fibroblasts were
maintained and cultured in the Arizona Cancer Center Cell
Culture Shared Service (Tucson, AZ, USA). Peripheral blood
lymphocytes were obtained from the whole blood of healthy
donors in accordance with the health insurance portability and
accountability act of 1996 (HIPAA) guidelines. Briefly, whole
blood was collected into BD Vacutainer CPT cell preparation
tubes containing sodium heparin (Becton Dickinson, Franklin
Lakes, NJ, USA) and processed according to the manufac-
turer's protocol. Primary cultures of normal human oral kerati-
nocytes were established and maintained in short-term culture
as described [30-32]. Primary cultures of human airway epi-
thelial cells were obtained by enzymatic digestion of bronchial
samples from lung transplants and maintained in short-term
culture as described [33,34].

The MCF10A, MDA-MB-453, MDA-MB-435, MDA-MB-231,
MDA-MB-157, MDA-MB-468, BT549, ZR-75-1, and HS578T



breast cancer cells were obtained from the American Type
Culture Collection (Rockville, MD, USA). The HaCaT cells, a
normal immortalized keratinocyte cell line [35], were obtained
from Norbert E Fusenig (German Cancer Research Center,
University of Heidelberg, Heidelberg, Germany). The early
passage sporadic breast cancer cell lines UACC1179,
UACC2087, UACCB893, UACC3133, UACC3199, and
UACC2648 were developed and maintained at the Arizona
Cancer Center Cell Culture Shared Service.

Breast tumor specimens

Thirty flash frozen breast cancer tissue specimens were
obtained from patients who underwent surgery for breast can-
cer, either lumpectomy or mastectomy, at the University Med-
ical Center in Tucson, AZ, from 2003 to 2004. All patients
signed surgical and clinical research consents for tissue col-
lection in accordance with the University of Arizona Institu-
tional Review Board and HIPAA regulations. At the time of
surgery, a 1-3 cm section of the tumor was immediately snap
frozen in liquid nitrogen and stored in our prospective breast
tissue bank at -80°C. From each tissue block, a series of 5
micron sections were cut and stained with hematoxylin and
eosin (H&E) for pathological evaluation. All of the H&E slides
were reviewed by one breast pathologist to determine the
integrity of the tumor specimen and this was correlated with
the clinical pathologic review performed by an independent
pathologist.

Nucleic acid isolation

Total RNA was isolated from cells using an RNeasy® Mini or
Midi Kit (Qiagen, Valencia, CA, USA), and genomic DNA was
isolated using the QlAamp DNA Mini Kit (Qiagen, Valencia,
CA). Isolation of RNA from frozen breast tumor specimens was
done as follows: 30-50 g of tissue was disrupted ina 1.5 ml
RNAase free tube with an RNAase free Pellet Pestle (Kimble-
Kontes, Vineland, New Jersey, USA) then passed through a 21
gauge needle to homogenize the sample. Following homoge-
nization, RNA was isolated using the RNeasy® Mini kit. Isola-
tion of DNA from frozen breast tumor specimens was done
using a Medimachine (BD Biosciences, San Jose, CA, USA).
Briefly, a 50 um Medicon (BD Biosciences) was washed twice
with 1 ml of TKM1-NP buffer (10 mM Tris-HCI, pH 7.6, 10 mM
KCI, 10 mM MgCI2, 2 mM EDTA, and 2.5 pl/ml NP40) then a
30-50 ug piece of frozen breast tumor tissue was further cut
into 3—6 mm3 pieces then placed into the Medicon filled with
1 ml of TKM1-NP buffer. The tissue was disaggregated for 30
s then allowed to rest for 20 s and then disaggregated for
another 30 s. The cell suspension was then passed through
100 um Filcon (BD Biosciences) into a 15 ml conical tube.
Disaggregation in the Medicon was repeated four to six more
times to completely disaggregate the tissue. Once done, the
cell suspension was spun down for 10 minutes at 250 x g at
4°C. Completion of DNA isolation was done using the Qiagen
DNA mini kit, Tissue Protocol. RNA and DNA samples were
quantified by UV absorbance measurements at 260 nm. Fur-
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thermore, all breast tumor specimen RNAs were run out on an
Agilent RNA Labchip (Agilent Technologies, Waldbronn, Ger-
many) for quantitative and qualitative assessment of the RNA.

Sodium bisulfite genomic sequencing of the DSC3
promoter

Genomic DNA (5 pg) was modified with sodium bisulfite
under conditions previously described [1]. The DSC3 pro-
moter was amplified from the bisulfite-modified DNA by two
rounds of PCR using nested primers specific to the bisulfite-
modified sequence of the DSC3 CpG Island. First round prim-
ers were: UTDSC3_F1, GATTGGGGTTTTGTATTGAGA,;
UTDSC3_R1, TTAACCTCTCTCAAACTTACC. Second
round primers were: UTDSC3_F2, ATTTGGGTTGTTAG-
GGTTTTTTT,; UTDSC3_R2, AAAACAACTTCACT-
TCTAAAACC. Both rounds of PCR were performed under the
same parameters, with 1% of the first round PCR product
serving as the template in the second round of PCR. PCR
amplification was performed under the following conditions:
94°C for 4 minutes followed by 5 cycles of 94°C for 1 min,
56°C for 2 min, 72°C for 3 min, then 35 cycles of 94°C for 30
s, 56°C for 2 min, 72°C for 1.5 min, and ending with a final
extension of 72°C for 6 min.

The resultant PCR product was cloned into a TA vector
according to the manufacturer's instructions (pGEM-T-Easy
cloning kit; Promega, Madison, WI, USA)). Ten positive recom-
binants were isolated using a Qiaprep Spin Plasmid Miniprep
kit (Qiagen) according to the manufacturer's instructions and
sequenced on an ABI automated DNA sequencer (Applied
Biosystems, Foster City, CA, USA). The methylation status of
individual CpG sites was determined by comparison of the
sequence obtained with the known DSC3 sequence. The
number of methylated CpGs at a specific site was divided by
the number of clones analyzed (minimum of 10 in all cases) to
yield a percent methylation for each site.

Western blot

Cells were lysed by incubating on ice for 2 minutes in RIPA
buffer (1 x PBS containing 1% NP40, 0.5% deoxycholate,
and 0.1% SDS) with 1 mM phenylmethylsulfonyl fluoride (Boe-
hringer Mannheim Corp, Indianapolis, IN, USA) added directly
before use. Samples were sonicated using five pulses of 1 s
each. Protein concentration was determined by BCA (bicin-
choninic acid) assay (Pierce, Rockford, IL, USA). Whole cell
lysates of 20 ug of total protein were diluted in 2 x non-reduc-
ing sample buffer and then boiled for 3 minutes before loading
onto a 7.5% polyacrylamide gel for analysis. Proteins resolved
in the gel were electrotransferred to Millipore Immobilon-P
PVDF membrane (Millipore, Bedford, MA, USA). The mem-
branes were blocked in 5% non-fat milk in TBST (10 mM Tris-
HCI, pH 7.5, 150 mM NaCl, 0.1% Tween 20). Primary mouse
monoclonal antibody anti-Desmocollin Clone Dsc3-U114
(Research Diagnostics Inc., Flanders, NJ, USA) was diluted
1:10 in 5% non-fat milk/TBST and incubated with the
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membrane overnight at 4°C. Membranes were washed three
times with TBST, incubated with a donkey anti-mouse horse-
radish peroxidase-conjugated secondary antibody (Chemicon
International, Temecula, CA, USA), washed six more times
with TBST, visualized with an ECL Western Blotting Detection
Kit (Amersham Biosciences, Piscataway, NJ USA), and
detected with BioMax MR film (Kodak, Rochester, NY, USA).

Quantitative real time RT-PCR

For real time quantitative RT-PCR analysis of DSC3 and
GAPDH gene expression, a reverse transcription step was
performed using TagMan® Reverse Transcription Reagents
(Roche Molecular Systems, Branchburg, NJ, USA) and 250
ng of total RNA in a 50 pul reaction. The reverse transcription
reaction was primed with random hexamers and incubated at
25°C for 10 minutes followed by 48°C for 30 minutes, 95°C
for 5 minutes and a chill at 4°C. For the PCR reaction, 10 ng
of cDNA was used in accordance with the protocol outlined in
the ABI user manual (Applied Biosystems). DSC3 and
GAPDH primer probes were purchased from ABI Assays-on-
demand (Fwd Primer, CCAATCCGGTTTCAGAAGTGA; Rev
Primer, CTCGCCGCTGCTTGTTTT; FAM Probe, CTCTCT-
CAGGCTTGCC) were used and data collected using the ABI
Prism 7000 real-time sequence detection system (Applied
Biosystems). Differences in expression were determined using
the comparative Ct method described in the ABI user manual
(Applied Biosystems).

Chromatin accessibility assays

Chromatin accessibility assays were performed as previously
described (Oshiro et al. [6]) with minor modifications. Ten mil-
lion cells were washed twice with ice cold 1 x PBS, gently
scraped and collected by centrifugation. Nuclei were
extracted by resuspension of cells in ice cold 1 x RSB (10 mM
Tris HCI, pH 8, 3 mM MgCl,, 10 mM NaCl, 0.05% NP40). The
nuclei were collected by centrifugation, resuspended in appro-
priate 1 X restriction endonuclease buffer, and divided into
two aliquots of 200 pl/aliquot. Mspl (0 or 75 units; Gibco BRL,
Bethesda, MD, USA) was added to the nuclei and incubated
at 37°C for 15 minutes. Genomic DNA was isolated using the
QlAamp DNA Mini Kit (Qiagen) and ligated to linkers specific
for the Mspl ends. The linker 'marks' accessible sites of chro-
matin, and acts as the primer sequence for PCR along with the
DSC3 promoter specific primer. Primers were: linker specific
primer, GGATTTGCTGGTGCAGTACT; first round gene spe-
cific primer, CCTAAATCCCTTTTCAAGTCT; second round
gene specific primer, CTCAAAACAAAAAGCTCAGTC-
CAGA. To increase specific amplification of our band of inter-
est, a second round of PCR was performed using a 1:1000
dilution of the first round PCR product, adding a second,
nested primer that was specific for the genomic region being
analyzed and internal to the first region-specific primer.

First round PCR was performed using RTG PCR beads (Phar-
macia, Piscataway, NJ, USA) to amplify 100 ng of linkered

DNA. The initial step in the first round PCR reaction was a 15
minute incubation at 72°C followed by a denaturation at 95°C
for 2 minutes then 25 cycles of 95°C for 30 s, 55°C for 1 min,
72°C for 2 s and a final extension at 72°C for 5 minutes. The
second round of PCR was performed using the ABI Prism
7000 real-time sequence detection system (Applied Biosys-
tems). For the nested PCR step, 25 pmol (1 ul) of internal
DSC3 specific primer was added to 5 pl of diluted first-round
product (1:1000), 19 ul of PCR water and 25 pl of 2 x SYBR®
Green PCR Master Mix (Applied Biosystems). The PCR con-
ditions for this second round of PCR were as follows: a 10
minute denaturation at 95°C and 40 cycles of 94°C for 1 min,
56°C for 40 s and 72°C for 30 s. Relative levels of chromatin
accessibility were determined using the comparative Ct
method. Real-time PCR products were also separated on a
3% TBE agarose gel to verify the presence of a single PCR
product of the appropriate size (241 bp).

Results

Relative levels of DSC3 mRNA expression from a panel of nor-
mal tissue RNA were determined by quantitative real time RT-
PCR analysis. DSC3 mRNA levels were normalized to the
ubiquitously expressed GAPDH gene, then expression values
reported relative to the primary HMEC line expression (Fig. 1).
DSCS3 expression was limited to certain epithelial cell types,
including those of the airway, breast, skin, prostate, and
mouth. DSC3 was undetectable in the following non-epithelial
cell types: skin fibroblasts, lymphocytes, bone marrow, heart,
and kidney. Therefore, expression analysis of DSC3 shows a
significant cell type specific pattern of expression, which is lim-
ited to cells of epithelial origin, including breast epithelium.

To confirm and extend previous studies [6,29], we analyzed
32 frozen breast cancer specimens from patients who under-
went lumpectomy or mastectomy randomly obtained from
patients who underwent surgery at the University Medical
Center in Tucson, AZ. Our data set comprised 32 specimens:
24 invasive ductal carcinomas (IDC), two of which are meta-
static IDCs isolated from patients' lymph nodes, seven inva-
sive lobular carcinomas (ILCs), and one mucoid ductal
carcinoma. Incidentally, we received two independent tumors
from one diseased breast both of which were IDC specimens.
From these specimens, total RNA was collected and DSC3
expression was analyzed by quantitative real time RT-PCR
with expression levels of the tumor samples being normalized
to HMECs. DSCs are expressed in both 'a' and 'b' isoforms as
a result of alternate splicing of exon 16. The ABI probe used in
these studies spans exon1 and exon2, which are both con-
served in the DSC3a and DSC3b isoforms, allowing us to
analyze both isoforms in the specimens tested. DSC3 expres-
sion is reduced to less than 10% of the expression seen in
HMEC in 18 of 24 (75%) of the IDCs, 5 of 7 (71%) ILCs, and
in the mucinous carcinoma (Table 1). The 10% cutoff was cho-
sen to address the potential of reduced expression of DSC3
due to contaminating stromal, non-epithelial elements. The
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DSC3 expression is restricted to a subset of normal human epithelial cell types. DSC3 expression relative to human mammary epithelium cells
(HMECs) was assessed by real-time quantitative RT-PCR; GAPDH expression was used to normalize the data.

majority of specimens analyzed consisted of 50% tumor
based on pathology examination. Thus, the greatly reduced
expression of DSC3 is a common event in primary breast
tumor specimens.

We next examined the cytosine methylation profiles of the
breast tumor specimens to see if loss of expression correlates
with cytosine methylation of the promoter region (Table 1, Fig.
2b). The DSC3 promoter region meets the criteria of a CpG
island based on size, GC content, CpG dinucleotide fre-
quency, as well as its location with respect to the transcrip-
tional unit (Fig. 2a). We used sodium bisulfite genomic
sequencing to assess the cytosine methylation status of 24
CpG dinucleotides within the DSC3 promoter region
upstream of the DSC3 transcriptional start site. The region
analyzed consists of the p53 binding site, the minimal pro-
moter region, and 75 to 100 bases immediately 5' of the min-
imal promoter region [6,36]. Ten to twelve cloned PCR
products were sequenced to determine the percent methyla-
tion of the 24 CpG sites in the 5' promoter region. Of the 18
IDC samples that showed a loss of DSC3 expression, 10
(569%) of these specimens contained methylated cytosines
within the CpG island. In the eight remaining IDC specimens
that lack DSCS3 expression we predict that other mechanisms
of silencing such as mutation to p53 or loss of other transcrip-
tion factors are participating in DSC3 gene silencing. Of the
five ILC specimens that lacked DSC3, two (40%) were shown
to contain methylated CpG islands. The one mucinous carci-
noma specimen analyzed showed a loss of DSC3 expression
with a concomitant increase in cytosine methylation. In addi-
tion, we analyzed two benign fibrocystic disease specimens
and in both cases we saw no methylation of the CpG island
and DSC3 gene expression in one of two specimens ana-

lyzed. At the very 5' region we saw CpG sites that show meth-
ylation variable positions in many of the DSC-positive
specimens; we interpret these CpGs to likely be demarcating
the edge of the CpG island. Indeed, the first four 5' sites are
outside of the minimal promoter region and are likely to be at
the edge of the functional CpG island where methylation is
more variable [37-39]. Nonetheless, methylation of the DSC3
promoter correlates with a lack of expression of DSC3 in a sig-
nificant proportion of the primary tumor specimens examined.

To further characterize in vitro models for studying the epige-
netic state of the DSC3 promoter we extended prior studies
[6,29] and analyzed 14 human breast tumor cell lines for
DSC3 expression by quantitative real time RT-PCR. Tumor
expression levels were normalized to GAPDH, and expression
was then compared to HMECs. Normalized expression levels
are shown in Fig. 3. In the breast tumor cell lines tested, 11 of
14 (79%) showed a loss of DSC3 expression, whereas
HS578T, MDA-MB-468, and UACC3199 showed moderate
expression levels. Of note, three of the breast tumor cell lines
tested, BT549, MDA-MB-231, and MDA-MB-157, are in
agreement with earlier findings [29].

To determine if loss of MRNA expression correlated with a
decrease in protein levels, we conducted western blot analysis
of DSC3 in a select group of cell lines. Chosen for analysis
were the MDA-MB-157, MDA-MB-231, UACC1179,
HS578T, and BT549 breast tumor cell lines, as well as the
immortalized but non-tumorigenic breast epithelial cell line
MCF10A. HaCaT cells, which are a spontaneously immortal-
ized human keratinocyte cell line, served as a positive control
for DSC3 expression [40]. The lack of mRNA expression
resulted in a marked reduction of DSC3 protein expression in
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Table 1

Summary of DSC3 expression and methylation state in primary breast tumors

Cell/tumor Expression?2 Methylationb %Mec Age (years) Histology
HMEC 100.0% - 15 N/A N/A
MCF10A 150.0% - 7 N/A N/A
120T 81.4% - 3 59 IDC
7732T 6.9% - 10 44 IDC
6385T 0.0% ++ 69 70 IDC
173T 0.1% + 30 55 IDC
8900T 77.2% - 2 56 IDC
4658T 52.4% - 8 83 IDC
7768T 2.3% - 7 40 IDC
2504T 67.8% - 16 53 IDC
9613T 8.0% - 9 42 IDC
6010T 0.3% + 21 55 IDC
2909T 26.3% - 1 38 IDC
2845T 0.0% ++ 49 77 IDC
d5974-1T 10.0% + 23 43 IDC
d5974-2T 10.0% ++ 48 43 IDC
7093T 10.0% + 30 63 IDC
9068T 0.0% - 8 73 IDC
4392T 0.0% + 33 47 IDC
5799T 0.0% + 22 53 IDC
6245T 0.0% - 1 30 IDC
2405T 30.0% + 20 58 IDC
2420T 0.0% - 8 54 IDC
5256T 3.9% - 1 60 IDC
1139T 6.4% - 11 40 IDC lymph node Met.
9663T 0.1% + 60 41 IDC lymph node Met.
9985T 5.8% - 0 61 ILC
7788T 1.3% + 23 76 ILC
6861T 20.2% + 29 71 ILC
5358T 73.9% ++ 58 42 ILC
6608T 5.6% - 8 74 ILC
7491T 30.0% - 2 64 ILC
6809T 0.0% ++ 49 57 ILC
4099T 0.6% + 37 43 Mucoid ductal CA

aRNA expression levels determined by quantitative real-time PCR and relative to human mammary epithelial cells (HMECs). bPCpG island
methylation levels determined by bisulfite sequencing: ++, >40% methylation of total CpG sites analyzed; +, >20% methylation of total CpG
sites; -, <20% methylation of total CpG sites analyzed. °Percent methylation was calculated based on the number of methylated CpG sites
compared to the total number of sites analyzed. 9Two independent tumors isolated from the same breast. IDC, invasive ductal carcinoma; ILC,
invasive lobular carcinoma; N/A, not applicable, IDC lymph node Met, invasive ductal carcinoma that metastasized to the lymph node, Mucoiod

Ductal CA, mucinous ductal carcinoma.
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lyzed. Cytosine methylation frequency histograms are shown for normal HMECs and eight primary tumor specimens. The y-axis is percent cytosine
methylation and the x-axis is the nucleotide position relative to the transcription start site.

R675



R676

Breast Cancer Research Vol 7 No 5 Oshiro et al.

Figure 3
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DSC3 gene expression is silenced or greatly reduced in a high percentage of breast tumor cell lines. DSC3 expression relative to human mammary
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DSC3 protein is not expressed in breast tumor cells with undetectable
DSC3 mRNA levels. Protein expression was analyzed by western blot
analysis. MCF10A and HaCaT cells were used as positive controls for
DSC3 expression.

the cell lines tested (Fig. 4). The HS578T cell line, which
showed a 7% expression of DSC3 mRNA, did not produce
any detectable protein expression, which is likely below the
limit of detection for the western blot conducted. MCF10A
cells, which express DSC3 mRNA, showed protein expression

comparable to the HaCaT cells; however, no protein bands
were present in any of the tumor cell lines examined. There-
fore, the lack of DSC3 mRNA expression results in a signifi-
cant loss of DSC3 protein expression in breast tumor cell
lines.

To determine if DSC3 expression is lost in association with
aberrant methylation of the DSC3 promoter we used sodium
bisulfite genomic sequencing to assess the cytosine methyla-
tion status of the DSC3 promoter region. Again, 10 to 12
cloned PCR products were sequenced to determine the
percent methylation of the 24 CpG sites in the 5' promoter
region. The DSC3 promoter region was relatively unmethyl-
ated in the DSC3-positive, HMECs, and MCF10A cells (Fig.
5). In the DSC3-negative cell lines MB231, UACC1179, and
BT549, there is a strong correlation between cytosine methyl-
ation of the promoter region and lack of expression. Interest-
ingly, in the two remaining DSCS3-negative cell lines,
UACC2087 and MB-453, loss of expression does not corre-
late with cytosine methylation of its promoter region, which
suggests that other mechanisms of gene silencing are present
in these cell lines. These results are similar to the conditions
found in the clinical specimens where DSC3 is silenced due
to cytosine methylation of its promoter region in 41% of
specimens analyzed. Notably, as each of these cell lines con-
tain mutant p53, the loss of this transcription factor is likely
participating in the silencing of DSC3 [6,41]. Finally, in the two
remaining tumor cell lines that express DSC3 we saw little or
no methylation of the promoter region. Therefore, the lack of
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The DSC3 promoter is aberrantly methylated in breast tumor cell lines. Ten to twelve cloned PCR products were sequenced to determine the per-
cent methylation of the 24 CpG sites in the region analyzed. Cytosine methylation frequency histograms are shown for human mammary epithelium
cells (HMECs) and the immortalized non-tumorigenic MCF10A cells, and seven human breast cancer cell lines examined. The y-axis is percent cyto-
sine methylation and the x-axis is the nucleotide position relative to the transcription start site.

DSC3 expression in these breast tumor specimens is due in
part to both epigenetic and genetic mechanisms of gene
silencing.

Another facet of epigenetic regulation causally linked to aber-
rant cytosine methylation is localized changes to chromatin
architecture. Generally, methylated and silenced regions are
associated with a 'closed' chromatin structure whereas
unmethylated and transcriptionally competent regions are
associated with an 'open' chromatin structure. We therefore
analyzed the chromatin structure of the DSC3 CpG island
region by measuring the accessibility of Mspl to its cognate
binding site (CCGG) (Fig. 2a) using a quantitative real-time,
linker-mediated PCR approach [6]. The PCR for this assay
involved a hemi-nested amplification approach, with one
primer being specific to the ligated linker and two gene spe-
cific primers. The first round of PCR used the linker specific
primer and a downstream gene specific primer, while the sec-

ond round used a portion of the first round product and a gene
specific primer 3' to that of the first round gene specific primer
to increase specificity of the reaction. Using this technique, we
showed a 6.5 to 8.5 cycle difference, which translates to a 90
to 362-fold decrease in chromatin accessibility between the
two tumor cell lines tested in comparison to MCF10A cells
(Fig. 8). Therefore, DSC3 gene silencing is linked to aberrant
cytosine methylation and a closed chromatin structure.

Discussion

The purpose of this study was to determine the frequency of
DSC3 gene silencing in primary breast tumor specimens and
to determine if the loss of expression was due to the aberrant
methylation of the DSC3 CpG island promoter. Analysis of a
panel of normal tissue revealed DSC3 mRNA expression to be
limited to cell types of epithelial origin. The loss of DSC3
expression in primary breast carcinomas and tumor cell lines
has been previously reported [29]. We extended these studies

R677



R678

Breast Cancer Research Vol 7 No 5 Oshiro et al.

Figure 6
10.000 A
—— 231
-a- 1179
=& MCF10A

Proclict

1.000 /f }?/zjj:f ;
g
0.100 2 :

Fold Decrease

231: 97(+/)19
1179 362(+-)72

0.010

Tl T it T s i

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Cycle Number

Hypermethylated DSC3 promoter regions are inaccessible to in vivo
Mspl endonuclease digestion. Intact nuclei were isolated from MDA-
MB-231 and UACC1179 cells and digested in vivo with Mspl. Isolated
DNA was ligated with a linker specific to the Mspl ends, and hemi-
nested, linker mediated PCR was conducted with two rounds of PCR
with two gene specific primers. Increased amounts of PCR product
reveal the presence of accessible chromatin. Inset within the graph is
the average calculated fold decrease and standard deviation when
MDA-MB-231 and UACC1179 cells are compared to MCF10A. The
graph shown is representative of three independent replicates.

and show that downregulation of DSC3 is a common event in
both primary breast tumors as well as breast tumor cell lines,
in which we saw a 72% and 79% loss of expression, respec-
tively. DSC3 gene silencing is linked to aberrant cytosine
methylation in 41% of the primary breast carcinomas tested.
Furthermore, using in vitro models we show that the epige-
netic silencing of DSC3 is due in part to cytosine methylation
of its promoter region and to concomitant changes in chroma-
tin structure that lead to it forming a closed, inaccessible con-
formation in the breast cancer cell lines.

We analyzed the cytosine methylation status of 24 CpG sites
just 5' of transcriptional start. Within the first seven CpG sites
analyzed, we saw methylation variable positions in nearly all
primary tumors and cell lines analyzed. This finding signifies to
us that the first seven sites are at the very edge of the func-
tional CpG island, where methylation tends to be more varia-
ble and coincidentally resides outside of the defined minimal
promoter [36-39]. The last 17 CpGs analyzed are within the
minimal human promoter region previously identified and are
almost completely unmethylated in DSC3-positive cells.
Therefore, cytosine methylation within the DSC3 minimal pro-
moter region results in the silencing of DSC3 gene
expression.

Of the primary tumor specimens exhibiting a loss of DSC3
expression, several were not associated with cytosine methyl-
ation of its promoter region. In these particular cases we pre-

dict that the loss of critical transcription factors may be
contributing to the silencing of gene expression. Notably, we
have shown [6] that DSC3 is a p53 response gene and that
the addition of wild-type p53 is sufficient to induce acetylation
of the DSC3 promoter region and induce re-expression of
DSC3 in breast tumors. Thus, we hypothesize that loss of tran-
scription factors is an early event in tumor progression. We fur-
ther hypothesize that subsequent to the loss of critical
transcription factors, the promoter regions become 'unpro-
tected' and aberrant cytosine methylation that occurs in the
region induces long term gene silencing, similar to epigeneti-
cally regulated cell type-specific genes [32].

While functional studies have identified DSC3 as a potential
tumor suppressor gene [27], future studies are necessary to
determine the role of DSC3 in breast tumor initiation and pro-
gression. Compelling evidence in the literature indicates an
important role for the loss of cellular adhesion in breast tumor
progression. In an elegant study, Sternlicht et al. [42] showed
that transgenic mice that express an auto-activating form of
MMP-3/stromelysin-1, under the control of the whey acidic
protein gene promoter, undergo spontaneous development of
premalignant and malignant lesions in the mammary glands
when compared to their non-transgenic littermates. This study,
conducted over a two year period, shows that the single addi-
tion of MMP-3, a gene that encodes an enzyme that degrades
extracellular components such as fibronectin, laminin, colla-
gens I, IV, IX, and X, and cartilage proteoglycans, is sufficient
to induce moderate to severe mammary hyperplasia,
lymphocytic infiltrates, ductal carcinoma in situ, and mammary
carcinomas. The loss of cell adhesion molecules is thus suffi-
cient to induce neoplastic mammary diseases and warrants
the further investigation of the role of desmosomal protein loss
in breast tumor progression. Furthermore, desmosomal pro-
teins such as DSC3 have been shown to be critical for desmo-
some formation, cell position, and inhibition of cell motility
[27,43]. As such, the identification of DSC3 as a gene that is
commonly downregulated in breast cancer necessitates the
need for further examination of its role in breast tumor
progression.

Conclusion
The finding that the DSC3 gene is frequently silenced by epi-
genetic mechanisms in breast cancer opens new avenues to
understanding the underlying causes of malignant progression
in breast cancer and helps to identify new targets for therapeu-
tic intervention.
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