
B-cell activating factor and a proliferation-

inducing ligand: novel therapeutic targets in 

autoimmune disease

B-cell activating factor (BAFF) and a proliferation-

inducing ligand (APRIL) are homologous TNF-like 

cytokines that support the survival and diff erentiation of 

B cells. BAFF binds to three receptors – B-cell activating 

factor receptor (BAFF-R), transmembrane activator and 

calcium-modulator and cyclophilin ligand interactor 

(TACI), and B-cell maturation antigen (BCMA)  – that 

are expressed on B cells at diff erent developmental stages, 

whereas APRIL binds only to TACI and BCMA. BAFF-R 

is the predominant receptor on transitional, naïve, and 

memory B cells, TACI the predominant receptor on 

marginal zone and short-lived plasma cells, and BCMA 

the predominant receptor on long-lived plasma cells 

(reviewed [1-3]).

BAFF overexpression leads to B-cell expansion and a 

lupus-like syndrome in mice, whereas BAFF inhibition 

delays lupus onset in spontaneous mouse models of 

systemic lupus erythematosus (SLE) [4-6]. Th ese obser-

vations rapidly led to the development of therapeutics 

that inhibit BAFF and APRIL. Th e recent successful 

completion of two large, phase III clinical trials (BLISS-52 

and BLISS-76) [7,8] of belimumab, a human antibody 

targeting BAFF [9], and its approval for the treatment of 

SLE represent the fi rst successful development of a novel 

biologic therapy for this disease. Moreover, clinical data 

regarding the eff ect of BAFF inhibition on B-cell subsets 

and serologic markers of disease activity have helped to 

elucidate the physiologic eff ects of BAFF inhibition in 

humans [10-12].

Enthusiasm for the use of belimumab in practice has 

been tempered for several reasons. In both of these phase 

III studies, the diff erence in primary outcome between 

standard of care and standard of care plus belimumab 

was modest and, in the BLISS-76 study, failed to be 

sustained at 76  weeks. Also, the mechanism by which 

belimumab benefi ts lupus patients is still not entirely 

clear, making it diffi  cult to predict which patients will 

respond and how best to evaluate a therapeutic response. 

Finally, the expense of this new drug gives pause to 

prescribers and patients alike.

Role of BAFF and BAFF inhibition in B-cell 

development, activation, and autoantibody 

production: lessons from murine studies

Autoreactive B-cell receptors are generated either when 

random immunoglobulin variable gene rearrangement 

occurs in the bone marrow or as a consequence of 

somatic mutation that occurs mainly in the germinal 

centers after antigen stimulation [13]. Transitional 

B  cells, having exited from the bone marrow, depend 

both on a signal through the B-cell receptor and the 

inter action of BAFF with BAFF-R for their further matura-

tion into follicular or marginal zone B cells [14,15]. In 

murine lupus models, BAFF inhibition depletes these cell 

types while sparing early transitional B cells and B1 cells 

[16,17] (Figure 1). Because developing B cells that recog-

nize auto antigen downregulate their expression of the B-

cell receptor, they are relatively more dependent on BAFF 

than their nonautoreactive counterparts and are more 

likely to be deleted when serum levels of BAFF are limit-

ing [18,19]. Importantly, however, not all developing 

auto reactive B cells are equally susceptible to BAFF 
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inhibition and the consequence of altering BAFF availa-

bility can vary depending on the B-cell environment and 

the proportion of autoreactive B cells compared with 

non autoreactive B cells (reviewed [20]).

After antigen exposure, signaling through BAFF-R is 

necessary for the formation of a mature follicular dendritic 

cell network in germinal centers and for the survival of 

late germinal center B cells [21-23]. BAFF signals also 

interact with Toll-like receptor-mediated signals by a 

variety of mechanisms that serve to amplify immune 

responses [24-28]. Although both primary and secondary 

IgG responses are diminished by BAFF or BAFF-R 

defi ciency, class-switched and somatically mutated anti-

bodies still arise after immunization [23]. In mouse 

models of lupus, BAFF inhibition only modestly delays 

the onset of an anti-double-stranded DNA autoantibody 

response and these antibodies are still capable of depo si-

tion in the kidneys [16,17]. Nevertheless, a complete 

absence of BAFF in a lupus-prone mouse strain skews the 

isotype of the glomerular IgG deposits [29], suggesting 

that BAFF may directly or indirectly play a role in the 

selection and maturation of germinal center and post-

germinal center autoreactive B cells. Further work is 

needed to clarify this issue.

In mice, short-term selective BAFF blockade modestly 

decreases the number of short-lived IgM-producing 

plasma cells but has no eff ect on long-lived plasma cells 

because APRIL signaling through BCMA compensates 

for BAFF defi ciency [30,31]. TACI-Ig that blocks both 

BAFF and APRIL profoundly reduces short-lived IgM-

producing plasma cells and decreases the frequency of 

and total number of IgG-producing plasma cells in the 

spleen [16,17]. IFNα administration decreases the depen-

dence of IgG-producing but not IgM-producing plasma 

cells on BAFF and APRIL [32]. While blockade of both 

BAFF and APRIL also decreases long-lived plasma cell 

survival in normal mice [33], bone marrow plasma cells 

in some strains of SLE mice are resistant to this blockade 

[34]. T cells may be a source of plasma cell support in the 

bone marrow since combined BAFF/APRIL inhibition 

and CTLA4-Ig treatment decreases serum levels of IgG, 

whereas neither drug alone has an eff ect [16].

Multiple innate and adaptive factors may thus infl uence 

the survival of plasma cells in the setting of chronic 

infl ammation and alter their dependence on BAFF and 

APRIL [35]. In humans, IgM-producing and IgA-produc-

ing plasma cells are similarly more sensitive to BAFF/

APRIL blockade than are IgG-producing plasma cells 

[36,37]. Th e mechanism for this diff erence, whether it is 

intrinsic to the switched cells themselves or to their 

environment, is not known.

In experiments using immunization with conventional 

antigens, survival of murine memory B cells in vivo and 

of human memory B cells in vitro [38] was found to be 

independent of BAFF and APRIL signaling [16,30,31]. 

Whether there is any infl uence of BAFF or APRIL on 

selection or expansion of autoreactive memory B cells is 

not known. Since BAFF may collaborate with infl am-

matory cytokines in the reactivation of memory B cells, 

BAFF could conceivably play a role in memory B-cell 

function in infl ammatory states [39,40].

BAFF inhibition: evaluation of effi  cacy in patients 

with SLE

An initial phase II study of belimumab combined with 

standard of care therapy for treatment of SLE failed its 

primary endpoints – namely Safety of Estrogens in Lupus 

Erythematosus National Assessment (SELENA)-Systemic 

Lupus Erythematosus Disease Activity Index (SLEDAI) 

score reduction at week 24, or a reduction in the time to 

fi rst SLE fl are over 52 weeks [12]. Nevertheless, the study 

provided valuable insights into belimumab’s potential 

benefi ts and mechanism of action, and facilitated 

optimization of further trial design. By post-hoc analysis, 

time to fi rst fl are starting at week  24 through week  52 

was signifi  cantly longer in the belimumab group than in 

the control group, suggesting that belimumab can 

stabilize disease but requires some time to do so. Post-

hoc analysis also identifi ed a subset of autoantibody-

positive patients (anti nuclear antibody titer ≥1:80 and/or 

anti-double-stranded DNA antibody level ≥30 IU/ml) in 

whom belimumab treatment was associated with 

Figure 1. Mechanisms of action for human B-cell activating 

factor and a proliferation-inducing ligand inhibitors. B-cell 

activating factor (BAFF) and a proliferation-inducing ligand (APRIL) 

bind diff erently to the three receptors B-cell activating factor receptor 

(BAFF-R), transmembrane activator and calcium-modulator and 

cyclophilin ligand interactor (TACI), and B-cell maturation antigen 

(BCMA). Selective BAFF inhibitors block the interaction between 

soluble BAFF or both soluble and membrane BAFF and its receptors, 

leaving APRIL functions intact, whereas the dual BAFF/APRIL inhibitor 

atacicept (TACI-Ig) blocks the interaction of both BAFF and APRIL 

with all three receptors. BAFF inhibition depletes B cells and alters 

the selection of autoreactive B cells, and may have either direct or 

indirect eff ects on T cells and dendritic cells (DC).
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signifi cantly greater reductions in SELENA-SLEDAI 

scores from base line to week 52 (–28.8% in the combined 

belimumab group vs. –14.2% in controls). Additional 

post-hoc analy sis of the phase II results led to the 

development of the Systemic Lupus Erythematosus 

Responder Index (SRI), designed to refl ect improvement 

in disease activity with out worsening of the overall 

condition or the develop ment of signifi cant disease 

activity in a new organ system [12,41]. Th e SRI is defi ned 

as: ≥4-point reduction in the SELENA-SLEDAI score; no 

new British Isles Lupus Activity Group A domain score 

or no more than one new British Isles Lupus Activity 

Group B domain score; and no deterioration from 

baseline in the physician’s global assessment ≥0.3 points. 

When the SRI was retrospectively applied to the phase II 

trial, belimu mab treatment resulted in a signifi cantly 

larger percent age of responders than standard of care 

alone (46% vs. 29%, P = 0.006) (Table 1).

Using the SRI response rate at 52  weeks as their 

primary endpoint, both the BLISS-52 [7] and BLISS-76 

[8] trials demonstrated a signifi cantly better response to 

belimumab plus standard therapy versus standard therapy 

alone in serologically active patients with moderately 

active SLE. In the BLISS-52 study, the SRI response rate 

was 58% for 10 mg/kg belimumab and 51% for 1 mg/kg 

belimumab, compared with 44% in the controls. In the 

BLISS-76 study, belimumab at 10 mg/kg met the primary 

effi  cacy endpoint at week 52, with an SRI response rate of 

43.3% compared with 33.5% in controls. Th e response to 

1  mg/kg belimumab in the BLISS-76 trial was not 

statistically signifi cant. In the BLISS-76 trial, the SRI 

response rate was numerically higher with belimumab 

than in controls at week 76, but the diff erences were no 

longer statistically signifi cant. Nevertheless a post-hoc 

analysis that applied a more stringent reduction in the 

SELENA-SLEDAI score revealed signifi cant diff erences 

between the belimumab and control groups at several 

times between week 40 and week 76. Th e trial’s ability to 

discriminate between doses was possibly compromised at 

week 76 due to a 7% dropout rate in each patient group 

between weeks 52 and 76 or due to more liberal predni-

sone use in the control group.

Steroid-sparing eff ects were also observed in the two 

phase III trials. In the BLISS-52 study, greater 

propor tions of patients receiving 10  mg/kg belimumab 

were able to reduce their prednisone dose by >50% (28% 

vs. 18% in controls, P  =  0.0122) and fewer needed to 

increase their prednisone dose; consequently, the total 

prednisone dose was signifi cantly higher in the controls 

from weeks  12 to 52. In the BLISS-76 study, similar 

trends were observed although the diff erences did not 

reach statistical signifi  cance. Reductions in fl ares were 

also observed in both phase III trials. In the BLISS-52 

trial, for patients treated with 10  mg/kg belimumab the 

time to fi rst fl are was signifi cantly increased and the risk 

of developing a severe fl are during 52 weeks was reduced 

by 40 to 50%, compared with the control group. Th ere 

were similar trends in the BLISS-76 trial, but signifi cance 

was only achieved in the 1 mg/kg belimumab group.

Mechanistic studies of belimumab

Th e mechanistic data from clinical trials of belimumab 

have been mostly consistent with murine studies, 

although the physiologic response lags several weeks 

behind the rapid response in mice. In human subjects 

with SLE, belimumab treatment led to a signifi cant 

decrease in naïve and transitional CD27– B-cell subsets, 

in the CD27+/IgM+ subset that includes the marginal 

zone B-cell subpopulation, and in the IgD–/CD27– 

population, a heterogeneous population that accumulates 

in SLE patients and contains both naïve and memory 

B cells. Class-switched CD27+ memory B cells were not 

decreased even after several years of treatment. Only a 

very modest decrease in plasma cells was observed after 

1  year, predominantly accounted for by a decrease in 

IgM-producing plasma cells [10,12].

Pooled data from the BLISS-52 and BLISS-76 trials 

have been analyzed for changes in autoantibodies, immuno-

globulin, and complement, and BLISS-76 patients were 

analyzed for changes in B-cell and T-cell populations and 

eff ects on prior vaccine-induced antibody levels [11,42]. 

Results of these analyses are summarized below.

In the BLISS-76 trial, belimumab treatment did not 

decrease T cells – but total B cells declined by 55% over 

the course of the study, with the most signifi cant decline 

in the naïve B-cell subset (–76.3% vs. 3.4% in controls). 

Th ere was an initial doubling of the CD20+/CD27+ subset 

that includes memory B cells and human B1 cells [43-45] 

Table 1. Main outcomes of the BLISS-52 and BLISS-76 trials

 Belimumab 10 mg/kg (%) Belimumab 1 mg/kg (%) Placebo (%)

SRI response rate at 52 weeks (BLISS-52) 58 (P = 0.0006) 51 (P = 0.0129) 44

SRI response rate at 52 weeks (BLISS-76) 43.2 (P = 0.017) 40.6 (P = 0.089) 33.5

SRI response rate at 76 weeks (BLISS-76) 38.5 (P = 0.13) 39.1 (P = 0.11) 32.4

Prednisone dose reduced ≥25%, to ≤7.5% mg/day during weeks 40 to 52 (BLISS-52) 19 (P = 0.0526) 21 (P = 0.025) 12

Prednisone dose reduced ≥25%, to ≤7.5% mg/day during weeks 40 to 52 (BLISS-76) 17.5 (P >0.05) 19.2 (P >0.05) 12.7

SRI, Systemic Lupus Erythematosus Responder Index.
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at 8  weeks of treatment, which then slowly returned to 

normal; this may be secondary to the release of memory 

B cells from secondary lymphoid organs or to expansion 

of the memory pool, or even the B1 cell pool, as a 

homeostatic response to B-cell depletion – although it is 

important to note that the eff ect of belimumab on B1 

cells in humans has not been examined and is currently 

unknown. Th ere was a modest decrease in activated B 

cells (–49.1% vs. –25.2% in controls) that became 

signifi cant at week 52. Plasmablasts were evaluated using 

either CD138 or CD27, which identify overlapping 

plasmablast subsets [46]. Fully diff erentiated plasma cells 

are rare in the circulation and cannot be readily evaluated 

using fl ow cyto metric analysis of peripheral blood. 

Plasmablast frequency and number declined by week 8 

and then stabilized for the rest of the study. Th is early 

decline might refl ect a resetting of the plasmablast 

number due to the decrease in BAFF availability, leaving 

only APRIL to maintain homeostasis. Alternatively, a 

decrease in the number of B cells, a change in the kinetics 

of plasmablast production, maturation or traffi  c, or a 

decrease in disease activity could all contribute. Since 

correlation of declin ing plasmablast number with total 

immunoglobulin or autoantibody levels was not 

performed, the physiologic signifi cance of this fi nding is 

not yet known. Additionally, one should stress that 

changes in B-cell subsets have not been correlated with 

clinical response.

Belimumab induced a modest ≤15% decrease in total 

IgG levels by week 8 of treatment that persisted through 

week 52. More signifi cant decreases were noted in serum 

levels of IgA (~17%) and IgM (~30%) with no change in 

the controls. In both trials, improvement of complement 

levels was observed as early as 4  weeks after starting 

therapy and continued throughout the trial. In the 

BLISS-76 study, 51% of treated patients with low serum 

complement levels at baseline had normalized their 

complement levels by week 76. Although more patients 

in the belimumab group converted from positive to 

negative titers of anti-DNA antibodies, most converters 

had initially low titers of antibodies (30 to 99 IU/ml) with 

virtually no conversions in patients with higher auto-

antibody titers. When data from the two phase III trials 

were pooled there was a median percentage change in 

anti-DNA titers of 40.8% compared with 10.2% in the 

controls, with changes observed as early as week 8. Th e 

physiologic meaning of this change is unclear since the 

number of patients with only low titers at baseline was 

not reported. Conversions from positive to negative were 

also noted for other autoantibody specifi cities including 

Sm, ribosomal P, and cardiolipin, although initial titers of 

antibodies were not reported.

A post-hoc analysis of pooled data from the BLISS-52 

and BLISS-76 trials was performed to investigate whether 

clinical response correlated with biomarkers of disease. 

Th ere was no correlation of baseline BAFF levels with 

SRI response at week 52 irrespective of therapy, showing 

that BAFF levels cannot be used to select patients for 

treatment. Th ose patients who had low C3 or C4 and 

positive titers of anti-DNA antibodies at baseline had 

signifi cantly higher SRI response rates with belimumab 

1  mg/kg (41.5%, P  =  0.002) and 10  mg/kg (51.5%, 

P <0.002) than with standard of care alone (31.7%) and a 

decreased risk of severe fl are. However, hypocomple-

ment emia and anti-DNA antibodies are common features 

of active lupus, and thus the clinical applicability of this 

fi nding will probably be limited. Furthermore, among 

only belimumab-treated patients, modifi ed SRI response 

rates were signifi cantly greater in those with normali-

zation of C4 at week 4 than in those without normaliza-

tion (56% vs. 44%, P  =  0.02). Normalization of C3 at 

weeks  4 and 8 was also associated with a signifi cantly 

lower risk of severe fl are irrespective of therapy, but these 

diff erences were not signifi cant when the belimumab-

treated group was examined on its own. Similarly, a 

decrease in anti-DNA titers at week  8 was not signifi -

cantly associated with a decrease in the risk of severe 

fl are. Patients with normalization of IgG after week  24 

had signifi cantly greater SRI response rates than patients 

without normalization, irrespective of treatment. Th ese 

data, in sum, suggest that serologic responses are asso-

ciated with a better outcome, as expected, but that only 

the C4 level appears to be a potential early biomarker for 

those patients more likely to respond to belimumab. 

Nevertheless, the clinical utility of C4 as a biomarker for 

response to belimumab may be limited, given the 

relatively small diff erence in rates of SRI response 

between C4 normalizers and non-normalizers and the 

relatively narrow range of C4 levels encountered in 

clinical practice.

In the BLISS-76 trial, changes in B-cell and plasma 

cell subsets over 52  weeks were evaluated for 

correlations with SRI response or reduction in fl ares. 

Only the naïve B-cell subset showed a consistent asso-

ciation of greater percentage reduction from baseline 

with greater likeli hood of SRI response at week  52 

(60.2% vs. 46.0% SRI response rate with >70% vs. <70% 

reduction, P = 0.002) and lower risk of severe fl are over 

52 weeks. Th is analysis held true irrespective of therapy, 

so the role of belimumab is unclear. Never theless, since 

B-cell depletion >70% occurred more often in the 

belimumab group than in controls, the data suggest 

possible diff erences in pharmaco kinetics of the drug 

between patients.

We conclude from these fi ndings that currently there 

appear to be no eff ective biomarkers for the identifi cation 

of individual patients who are likely to respond to 

belimumab therapy.
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Safety of belimumab in the BLISS-52 and BLISS-76 

trials

Eff ects on pre-existing vaccine antigen-specifi c antibody 

levels were assessed in BLISS-76 patients who had 

received pneumococcal or tetanus vaccine within 5 years 

of the start of treatment. At week  52 there were no 

signifi cant diff erences across treatment groups in the 

percentages of patients maintaining anti-pneumococcal 

IgG titers to fi ve serotypes that cause frequent drug-

resistant pneumococcal infections in the United States. 

Similarly, anti-tetanus toxin IgG titers and anti-infl uenza 

titers were not signifi cantly decreased [42]. In the 

BLISS-76 trial, one patient in each treatment group had a 

grade 3 reduction in total serum IgG (IgG <4 g/l), which 

was not associated with infection. Th ese data are consis-

tent with those from the mouse studies that showed no 

eff ect of BAFF inhibition on long-lived class switched 

plasma cells.

In both the BLISS-52 and BLISS-76 trials, the incidence 

of adverse events  – including laboratory abnormalities, 

serious infections, and malignancies – was similar in the 

treated and control groups. In the BLISS-76 study, 

infusion reactions were more common with belimumab 

than in controls (14 to 16% vs. 10%) but all resolved with 

antihistamine and/or prednisone treatment on the day of 

the infusion. Five pregnancies occurred in patients 

receiving belimumab. Th ree of these pregnancies resulted 

in normal live births, one in elective termination, and one 

patient was lost to follow up. Several suicides were noted 

in the belimumab group but it is not clear whether these 

were drug related.

Beyond the BLISS trials: clinical outlook and 

delineation of mechanism

Much remains unknown regarding the clinical utility of 

BAFF inhibition in SLE. Th e BLISS-52 and BLISS-76 

trials were not powered to compare belimumab treat-

ment against the background of diff erent immuno sup-

pressive therapies. Additionally, some patient subpopu-

lations were not evaluated – notably pediatric patients 

and patients with active lupus nephritis or cerebritis. 

Some of these issues are being addressed in ongoing 

studies. Given the time it takes to observe a therapeutic 

eff ect with belimumab, it is not a suitable intervention 

for acute severe fl ares. Whether belimumab should be 

used to prevent fl ares or as a steroid-sparing agent for 

patients with moderate disease activity remains to be 

determined in longer term studies. Determining the 

duration of the therapeutic eff ect is critical, because the 

observed reduc tion in number and severity of fl ares and 

a decreased overall steroid dose even at 76 weeks could 

all contribute to signifi cant long-term benefi ts. Notably, 

the manu fac turers do not recommend the as yet 

unevaluated use of belimumab following treatment with 

either cyclophos phamide or rituximab. Nevertheless, 

inhibiting BAFF after cyclo phos phamide or rituximab 

treatment could potentially reverse the adverse eff ects of 

B-cell depletion on selection of naïve autoreactive B cells. 

Th e safety of this strategy remains to be evaluated. Further 

mechanistic studies may identify biomarkers for a thera-

peutic res ponse and may help determine which patients 

are most likely to benefi t from belimumab treatment.

Other strategies for inhibiting BAFF are available. 

Atacicept (a nonselective antagonist of both BAFF and 

APRIL) is in trial for the treatment of moderately active 

SLE. Tabalumab (LY2127399), an alternate anti-BAFF 

antibody, and blisibimod, a small BAFF-R-derived 

peptide, both of which block both soluble and membrane 

BAFF (in contrast to belimumab, which blocks only 

soluble BAFF), are similarly being tested in SLE [47]  – 

and whether there is a benefi t of blocking both BAFF and 

APRIL or of blocking all BAFF forms over blocking 

soluble BAFF alone remains to be determined. Selective 

APRIL blockade has demonstrated very modest preven-

tive eff ects in NZB/W mice, delaying proteinuria, kidney 

damage, and mortality by approximately 4  weeks, and 

with limited eff ects on B-cell kinetics or autoantibody 

titers [48]. APRIL–/– NZM2328 mice have clinically 

identical disease to wild-type NZM2328 mice, confi rming 

that APRIL is minimally involved in disease development 

[49]. Selective APRIL inhibition is unlikely to be tested in 

human SLE.

BAFF overexpression has been detected in the brains of 

mice and patients with multiple sclerosis, and atacicept 

had a benefi cial eff ect in a mouse model of multiple 

sclerosis. However, a phase II study of atacicept for 

multiple sclerosis had to be terminated because of disease 

worsening [47]. IFNβ is standard treatment for multiple 

sclerosis and increases serum BAFF levels in multiple 

sclerosis patients [50]. Whether the negative eff ect of 

atacicept was due to a decrease in type I interferon or an 

alteration in other cytokines has not been determined.

Data from animal and human studies suggests that 

BAFF inhibition could have therapeutic eff ects beyond its 

primary eff ect on B cells. BAFF supports the survival of 

monocytes and enhances their diff erentiation into macro-

phages [51]. Human myeloid dendritic cells stimulated 

with BAFF in vitro upregulate co-stimulatory molecules, 

lose their phagocytic ability, and produce infl ammatory 

cytokines [52]. Th is eff ect may be due to interaction with 

dendritic cell-expressed TACI. T-cell production of IFNγ 

is supported by the interaction of BAFF with BAFF-R on 

the surface of activated T cells; T cells from SLE patients 

produce more IFNγ in response to BAFF than do T cells 

from normal individuals [53]. In a mouse model of 

arthritis, synovial dendritic cells transduced with a siRNA 

that silences BAFF remained in an immature state and 

failed to produce the IL-6 required for the diff er en tiation 
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of T-helper type 17 cells [54]. Peripheral mono cytes from 

patients with Sjögren’s syn drome produce signifi cantly 

higher amounts of BAFF and IL-6 in comparison with 

normal monocytes, and this diff erence is partially 

suppressed by an anti-BAFF anti body [55,56]. 

Furthermore, salivary epithelial cells from Sjögren’s 

syndrome patients can be induced by type I interferon to 

express BAFF [57]. BAFF can also bind to basophils, 

although the role of this interaction is still unknown [58].

More work must be done to elucidate the role of BAFF 

inhibition in regulating the contributions of these non-

immune B-cell types to autoantibody-initiated tissue 

infl am mation, and to autoimmunity in general. Likewise, 

a better under standing of BAFF and APRIL and their 

varied contributions to both innate and adaptive immune 

system function holds promise for more eff ective and 

specifi c targeting of BAFF for the treatment of auto-

immune diseases.

Key messages

• BAFF is a member of a family of TNF-like cytokines 

that have a number of immunoregulatory eff ects, 

includ ing supporting the survival and diff erentiation of 

B cells.

• Th e successful development of belimumab, a human 

antibody targeting soluble BAFF, has marked an 

important milestone in the development of biologic 

therapy for treatment of SLE.

• In two large, phase III trials of belimumab combined 

with standard therapy, treated patients had a better 

outcome at 1 year than patients treated with standard 

therapy alone, including a diff erence in the number of 

patients achieving the SRI, a reduction in the risk of 

fl ares and severe fl ares, and an overall reduction in 

prednisone use.

• In groups of belimumab-treated patients, clinical im-

prove ments were accompanied by signifi cant and sus-

tained improvements in measures of serologic activity 

compared with placebo-treated patients. However, 

monitoring for response to belimumab therapy in 

individual patients remains problematic.

• It is not clear whether any therapeutic eff ect of 

belimumab is maintained beyond week 76.

• Data from clinical trials of belimumab demonstrate 

similarity between the mechanistic eff ects of BAFF 

inhibition on murine and human B-cell populations.

• Other drugs targeting both soluble and membrane 

BAFF and both BAFF and the homologous molecule 

APRIL are currently undergoing clinical trials.

• Much remains unknown regarding the clinical utility 

of BAFF inhibition in SLE and other autoimmune 

diseases (Table 2).
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