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Plasma proteomic profiles from disease-
discordant monozygotic twins suggest that
molecular pathways are shared in multiple
systemic autoimmune diseases*
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Abstract

Introduction: Although systemic autoimmune diseases (SAID) share many clinical and laboratory features, whether
they also share some common features of pathogenesis remains unclear. We assessed plasma proteomic profiles
among different SAID for evidence of common molecular pathways that could provide insights into pathogenic
mechanisms shared by these diseases.

Methods: Differential quantitative proteomic analyses (one-dimensional reverse-phase liquid chromatography-mass
spectrometry) were performed to assess patterns of plasma protein expression. Monozygotic twins (four pairs
discordant for systemic lupus erythematosus, four pairs discordant for juvenile idiopathic arthritis and two pairs
discordant for juvenile dermatomyositis) were studied to minimize polymorphic gene effects. Comparisons were
also made to 10 unrelated, matched controls.

Results: Multiple plasma proteins, including acute phase reactants, structural proteins, immune response proteins,
coagulation and transcriptional factors, were differentially expressed similarly among the different SAID studied.
Multivariate Random Forest modeling identified seven proteins whose combined altered expression levels
effectively segregated affected vs. unaffected twins. Among these seven proteins, four were also identified in
univariate analyses of proteomic data (syntaxin 17, a-glucosidase, paraoxonase 1, and the sixth component of
complement). Molecular pathway modeling indicated that these factors may be integrated through interactions
with a candidate plasma biomarker, PON1 and the pro-inflammatory cytokine IL-6.

Conclusions: Together, these data suggest that different SAID may share common alterations of plasma protein
expression and molecular pathways. An understanding of the mechanisms leading to the altered plasma
proteomes common among these SAID may provide useful insights into their pathogeneses.
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Introduction
Systemic autoimmune diseases (SAID) (for example, sys-
temic lupus erythematosus (SLE), rheumatoid arthritis,
scleroderma, and dermatomyositis) result in significant
morbidity and mortality and a large socioeconomic bur-
den in the United States, where they are estimated to

afflict more than five percent of the population [1]. Evi-
dence for immune-mediated pathologies associated with
these heterogeneous syndromes comes from the fre-
quent finding of autoantibodies, chronic inflammation
of multiple organ systems, and clinical improvement
with immunosuppressive therapy. Familial disease asso-
ciations but limited disease concordance between mono-
zygotic (MZ) twins, ethnogeographic and seasonal
clustering of disease onset, and the identification of
shared genetic risk factors support the hypothesis that
chronic immune activation in SAID is triggered by
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specific environmental exposures in genetically suscepti-
ble individuals [2].
Proteomic analyses of human biological fluids (for

example, plasma, urine, saliva, cerebral spinal and syno-
vial fluids) have enabled the differential quantitation of
large numbers of protein molecules between healthy and
diseased subjects. Studies utilizing bio-fluid proteomics
have identified multiple, pathologic markers and mole-
cular pathways associated with different disease pheno-
types, severities, and therapeutic responses [3,4]. Yet,
despite these in-roads, considerable variability in the
published SAID literature exists and likely results from
multiple factors including different proteomic methodol-
ogies (for example, 2-D electrophoresis, mass spectro-
metry, antibody array), choice of bio-fluids or tissues
analyzed, and the inherent heterogeneity of SAID phe-
notypes, patient histories, and human genetic variations.
Nevertheless, some consensus has emerged in multiple,
independent lines of proteomic research in the rheu-
matic diseases [4]. These common findings in multiple
rheumatic diseases to date include Type I interferon
inducible proteins, autoantibodies, numerous inflamma-
tory cytokines/chemokines, and markers of molecular
pathways associated with chronic immune activation
(for example, NF-kB, TNFa, and complement fixation),
oxidative stress, coagulation, protein degradation and
lipid metabolism [3-8].
Proteomic analysis of blood plasma has several useful

research advantages despite its technical complexity.
Blood plasma has an exceedingly complex proteome
consisting of approximately 1,000 distinct polypeptides,
whose concentrations vary over several orders of magni-
tude [9]. The vast majority of total plasma protein, how-
ever, is comprised of a smaller number of more
abundant proteins (for example, albumin, immunoglo-
bulins and haptoglobin), which necessitate their pre-
depletion to enhance the detection of other minor pro-
tein constituents present at much lower concentrations.
Despite these methodologic challenges, the plasma pro-
teome is one of the most extensively characterized bio-
fluids in humans [10,11]. Moreover, plasma samples are
more easily obtained using a minimally invasive proce-
dure, and are an ideal source of circulating disease-asso-
ciated markers as well as those derived from dead or
leaking cells from pathologic tissues throughout the
body [3,4,9].
In human proteomic studies, statistically significant

differences in protein levels among experimental and
control subjects are often subtle (that is, 1.5- to 4-fold
variations) and influenced potenlially by the degree of
genetic variation that exists among human study sub-
jects [3,4,11]. To help mitigate the potentially confound-
ing effects of human genetic polymorphisms in our

study population, we utilized liquid chromatography
electrospray ionization mass spectrometry (LC-ESI-MS)
to measure quantitative differences in the plasma pro-
teome of SAID-discordant MZ twins and unrelated,
matched controls. In a hypothesis-generating study, we
sought to compare plasma proteomes with the expecta-
tion of identifying putative disease-associated markers
among study subjects with greater genetic similarity, but
possibly different environmental and/or epigenetic influ-
ences. To this end, we have identified multiple molecu-
lar pathways and possible biomarkers common among
different SAID.

Materials and methods
MZ twin pairs discordant for SAID and unrelated,
matched, healthy controls (n = 10) were identified for
this study. These subjects were selected among those
enrolled and providing informed consent between 2001
and 2006 in the NIH investigational review board-
approved Twins-Sib study assessing the pathogenesis of
SAID. Ethical approval for this proteomics study was
obtained from the NIH investigational review board and
all human subjects provided informed consent. Study
subjects included nine Caucasian twin pairs and one
twin pair of Hispanic descent. Patients were defined as
those meeting American College of Rheumatology
(ACR) criteria for systemic lupus erythematosus (SLE),
juvenile idiopathic arthritis (JIA), or juvenile dermato-
myositis (JDM) and required the exclusion of inherited,
metabolic, infectious diseases or other mimics of SAID;
patients were within four years of diagnosis. Twin
monozygosity was confirmed by short tandem repeat
analysis of genomic DNAs (Proactive Genetics Inc.,
Martinez, GA, USA). Study subjects comprised three
groups: (1) 10 SAID probands (4 SLE, 4 JIA, and 2
JDM); (2) probands’ 10 autoimmune disease unaffected
MZ twins; and (3) 10 unrelated, matched controls who
were also free of SAID. The 10 sets of twin pairs
included 6 juveniles (mean age 12.2 years) and 4 adult
cases (mean age 25.8 years). The mean ages of juvenile
and adult unrelated, healthy controls were 9.8 and 27
years, respectively. Each study group had seven females
and three males. Physical global disease activity assess-
ments were determined on a visual analogue scale (0 to
100 mm): SLE (mean 13.2, range 4 to 30); JIA (mean
25.2, range 0 to 40); JDM (mean 4.5, range 2 to 7). To
minimize potential confounders, plasma samples were
collected in the morning with immunosuppressive ther-
apy held at least 24 hours prior to collection. Unrelated
controls were age- (within six years), gender- and ethni-
cally-matched to twins, were free of infections, trauma,
vaccines and surgeries for eight weeks and had no first
degree family members with SAID.
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Proteomic differential expression analysis
Plasma samples were collected and frozen within one
hour at -80°C. All samples were shipped on dry ice to
PPD Inc. Biomarker Discovery Sciences (Menlo Park,
CA, USA). Upon processing, thawed samples were stabi-
lized with a sodium azide and a protease inhibitor cock-
tail containing 100 ug/mL aprotinin and 5% (w/v)
sodium azide, which were added to the plasma at a
volume ratio of 1:100. Experimental run order was pre-
pared within a block randomization scheme consisting
of matched twin and control samples (10 blocks of 3
subjects each). The order of processing and analyzing
samples was separately randomized within each block.
Plasma proteins were analyzed by mass spectrometric
analysis using a one-dimensional (1-D) separation
approach as described below [12].
For the proteomic analysis, plasma was pre-depleted

for the six most abundant proteins (albumin, IgG, IgA,
haptoglobin, transferrin and a1 anti-trypsin) by an anti-
body-based affinity column. The remaining proteins
were denatured, reduced, and sulfhydryl groups carboxy-
methylated prior to trypsin digestion. Also, prior to the
trypsin digestion, low molecular weight molecules were
excluded during a buffer exchange step with a 5 kDa
cut-off filter. Tryptic peptides were then profiled by
liquid chromatography-electro-spray ionization-mass
spectrometry (LC-ESI-MS) on a high-resolution (R >
5,000) time-of-flight (TOF) instrument (Waters Corp.,
model LCT) Milford, MA, USA using a capillary chro-
matography column. The on-line chromatography pump
(Agilent, model capillary 1100) Santa Clara, CA, USA
was used for reverse-phase (RP) separation with a
water/acetonitrile gradient and 0.1% formic acid added
to aid in ionization efficiency and chromatographic
behavior. A total of 9,549 molecular components were
tracked and quantified in the 1-D analysis.
Quality control samples from a large human plasma

pool were chemically processed and analyzed along with
the clinical samples with an average frequency ratio of
one QC sample per eight clinical samples. Process qual-
ity control samples were required to maintain coeffi-
cients of variation (CV) for many endogenous
biomolecules of less than 20%.

Peptide identification
Peptides of interest (significantly different in plasma
levels) were linked by accurate mass and chromato-
graphic retenion time to separate tandem mass spectro-
metry (MS/MS) experiments on an ion-trap mass
spectrometer (Thermo, model LTQ, West Palm Beach,
FL, USA). The resulting MS/MS spectra contained frag-
mentation patterns with characteristic peptide backbone
cleavages. Each MS/MS raw spectrum from an isolated
precursor ion was compared with in silico protein

digestion and fragmentation data using the NCBI RefSeq
sequence database to find a match-quality score and
subsequent identification. Mascot software from Matrix
Science (Boston, MA, USA) was used for peptide identi-
fication. To help separate correct from incorrect data-
base search results, probabilities of correct identification
were computed by unsupervised machine learning with
an expectation-maximization (EM) algorithm [13]. Here,
the probabilities are based both on Mascot scores and
on the differences between observed and predicted
retention time or retention index. The retention time is
predicted using amino acid composition throughout the
peptide and specifically at the amino-terminus, as well
as peptide length, following the approach previously
published [14], but trained on a data set similar to that
acquired here. In this study the probability minimum
threshold was set to 0.8.

Quantification strategy
A label-free differential quantification method was
employed that relies on changes in analyte signal inten-
sities directly reflecting their concentrations in one sam-
ple relative to another [12,15]. This quantification
technology employs overall spectral intensity normaliza-
tion by employing signals of molecules that do not sig-
nificantly change concentration from sample to sample.
A simple correction can be applied for any differences
in sample concentrations and/or drift over time in LC-
MS instrument response. The computation performs
normalization by determining the median of the ratios
for a large number of molecular ions (spectral compo-
nents). Analysis of the data included spectral smoothing,
baseline subtraction, noise evaluation, peak identifica-
tion, intensity evaluation, inter-scan evaluation to con-
struct chromatographic peaks and to establish molecular
components, and final signal quantification [12,15]. All
processed, primary data are provided as a supplementary
submission to this article (Additional files 1, 2, 3).

Statistics
If the data of the different study groups were approxi-
mately normally distributed as determined by the Sha-
piro-Wilk test, then a two-sided t-test was used; if not,
the nonparametric rank test (Wilcoxon or Kruskal-
Wallis test) was applied. These comparisons are paired
for the two draw times from each individual. Fold-
changes in quantitative expression and P-values were
determined. All tests of hypotheses in this exploratory
study were two-sided and a P-value of < 0.05 was con-
sidered significant.
As an alternative means of data interpretation, we

determined the relative importance that combined sets
of protein components confer upon the accurate classifi-
cation of the individual study groups (affected twins,
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unaffected twins, and unrelated, matched controls) using
the Random Forests (RF) algorithm developed by Brei-
man and Cutler [16,17]. The quantitative expression
levels of all factors identified in the 1-D differential
expression analysis of disease-discordant twin pairs were
classified using RF models (decision trees = 500, node
size = 3). Individual decision trees were constructed
from combined, unmatched cases and control training
data sets utilizing bootstrap sampling with replacement
and random variable selection. Classification was per-
formed by a majority vote across the separate trees
using test cases and controls omitted from the modeling
data set from each of the respective decision trees. In
this approach, training and test data are randomly re-
utilized in the construction of individual decision trees
with an “out-of-bag” (oob) estimate of error rates equal-
ling 20%. All factors in test populations were ranked by
their relative importance (RI) in accurately classifying
case and control study subjects.

Pathways analysis
Data were analyzed using the Ingenuity Pathways Analy-
sis (IPA) informatics platform (Ingenuity® Systems, Red-
wood City, CA, USA). For univariate component
analysis, the complete data set, including protein identi-
fiers, corresponding quantitative expression and P-values
was utilized. Each protein identifier was mapped to its
corresponding gene object and overlaid onto a global
molecular network developed from information con-
tained in the IPA Knowledge Base. Networks of genes
were then generated algorithmically based on their con-
nectivity as established in the published literature.
Fischer’s exact test was used to calculate a P-value
determining the probability that each biologic function
and/or pathway assigned to the data set is due to chance
alone.
In a separate analysis, plasma protein components

identified as having high relative importance values in
the RF multivariate analysis were used to explore puta-
tive biologic interactions using IPA Grow, Connect, and
Path Explorer applications.

Protein blot analysis
Plasma protein samples (30 μg each) from discordant
twins and unrelated, matched controls were resolved by
SDS-PAGE (10% precast Criterion gels, Bio-Rad, Her-
cules, CA, USA) and subsequently dry-blotted to PVDF
membranes (iBlot system, Invitrogen, Carlsbad, CA,
USA). Protein blots were blocked and incubated with
rabbit polyclonal, primary antibodies recognizing human
plasma PON1, RBP1, or LRG1 and transferrin (TF) as
an internal control for 1 to 24 hours in TBS/0.05%
Tween-20 (Abcam, Cambridge, MA, USA). Blots were
washed and incubated for 30 minutes with a secondary

antibody-HRP conjugate (goat anti-rabbit heavy and
light chain IgG (Abcam)). Washed blots were incubated
for one minute with chemiluminescent substrate and
visualized using a GBOX HR50 molecular imaging sys-
tem (Syngene, Frederick, MD, USA). Syngene GeneSnap
imaging and analysis software was used to quantify and
normalize replicate analyses of plasma protein levels.

Results
Plasma proteomic differential expression analysis
Many plasma proteins were differentially expressed simi-
larly among multiple SAID as evidenced by comparisons
of the discordant MZ twins and unrelated, matched
controls (Table 1). Examinations of subjects stratified by
diagnosis did not reveal any significant disease-specific
alterations among these differentially expressed proteins
(data not shown). Plasma proteomic profiles differentiat-
ing these three study groups comprised several func-
tional categories including structural proteins, protease
inhibitors, immune response-related (predominantly
components of complement pathways), transporters,
acute phase reactants, catalytic, coagulation and tran-
scriptional factors (Table 1). As expected, the majority
of plasma proteins identified were of extracellular origin
(60 to 70%) while the remainder was derived from var-
ious subcellular compartments (for example, plasma
membrane, cytoplasm and nucleus).
To illustrate these differential proteomic profiles, a

Venn diagram depicting the inter-relationships of
plasma protein profiles from each of the three two-
group comparisons is shown in Figure 1. In this illustra-
tion, it is clear that comparisons of affected twins vs.
either unaffected twins or unrelated, matched controls
produced more complex profiles of differential protein
expression relative to the comparison of unaffected
twins vs. unrelated, matched controls. Relative to
affected twins, it appears that the profile of unaffected
twins more closely resembles that of unrelated, matched
controls suggesting that disease status rather than
genetic similarity between MZ twins might account for
some differences in the number and magnitude of
plasma protein levels detected differentially among the
three study groups. A smaller number of proteins (a1
anti-chymotrypsin, type 2 keratin, and syntaxin 17) were
the only protein markers shared uniquely among the
discordant twin pairs.
In cases involving comparisons of affected twins to

either unaffected twins or unrelated controls, multiple
acute phase reactants and markers of immune activation
are apparent. The PON1 gene product, paraoxonase 1,
was the only marker exhibiting significant differences in
expression levels in each of the three two-group com-
parisons (Figure 1). PON1 levels were reduced in the
plasma of affected cases compared to either unaffected
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Table 1 Summary of significant differences detected (P < 0.05) among MZ twins discordant for SAID and unrelated,
matched controls*

Affected vs. unaffected twins

Up-Regulated: Accession No. P-value Exp. Ratio Location Function

a-1-antichymotrypsin precursor P01011 0.0008 1.37 Extracellular Protease inhibitor

Syntaxin 17 P56962 0.0022 1.30 Plasma membrane Vesicular transport

Keratin type II P35908 0.0040 1.26 Cytoplasm Structural

Complement C8 precursor P07358 0.0070 1.14 Extracellular Immune response

a-1-acid glycoprotein P02763 0.0073 1.42 Extracellular Acute phase reaction

Retinoblastoma-binding protein 1 P29374 0.0117 1.53 Nucleus Transcriptional regulation

Complement C4 precursor P01028 0.0122 1.36 Extracellular Immune response

Plasma protease C1 inhibitor precursor P05155 0.0144 1.19 Extracellular Protease inhibitor

Maltase-glucoamylase intestinal O43451 0.0167 1.51 Cytoplasm Carbohydrate catabolism

Hematopoietic-specific transmembrane-4 protein Q96HJ5 0.0197 1.21 Plasma membrane Immune response

Ubiquitin carboxyl-terminal hydrolase 29 Q9HBJ7 0.0271 1.44 Unknown Peptidase

Complement C6 precursor P13671 0.0282 1.19 Extracellular Immune response

Complement C9 precursor P02748 0.0390 1.18 Extracellular Immune response

Kallikrein precursor P03952 0.0407 1.22 Extracellular Peptidase

Myomesin 1 P52179 0.0418 1.27 Myofibers Structural

Leucine-rich a-2-glycoprotein precursor P02750 0.0473 1.26 Extracellular pleiotropic**

Down-Regulated:

Serum paraoxonase/arylesterase 1 P27169 0.0195 0.82 Extracellular Detoxification/anti-oxidation

Apolipoprotein A-II precursor P02652 0.0231 0.75 Extracellular Transporter

Fetuin-A P02765 0.0278 0.79 Extracellular Protease inhibitor

Minor histocompatibility antigen H13 Q8TCT9 0.0356 0.78 Endoplasmic reticulum Protease

Affected Twins vs. Unrelated, Matched Controls

Up-Regulated:

Leucine-rich a-2-glycoprotein precursor P02750 0.0086 1.46 Extracellular pleiotropic**

Fibrinogen b-precursor P02675 0.0109 1.33 Extracellular Coagulation

Apolipoprotein C-IV precursor P55056 0.0155 1.69 Extracellular Transporter

Apolipoprotein E precursor P02649 0.0193 1.24 Extracellular Transporter

a-1-microglobulin/Inter-a-trypsin inhibitor P02760 0.0199 1.41 Extracellular Protease inhibitor

Nuclear receptor co-activator 6 Q14686 0.0307 1.33 Nucleus Transcriptional regulation

Plasma retinol-binding protein precursor P02753 0.0356 1.30 Extracellular Transporter

Retinoblastoma-binding protein 1 P29374 0.0361 1.43 Nucleus Transcriptional regulation

Apolipoprotein C-III precursor P02656 0.0395 1.29 Extracellular Transporter

Kallistatin precursor P29622 0.0461 1.19 Extracellular Peptidase inhibitor

Down-Regulated:

Coagulation factor XII precursor P00748 0.0017 0.76 Extracellular Coagulation

Peroxisomal carnitine octanoyl transferase Q9UKG9 0.0196 0.67 Peroxisome Metabolism fatty acid

Ficolin 3 precursor NP_003656 0.0218 0.83 Extracellular Immune response

Fibrinogen C NP_116232 0.0248 0.83 Extracellular Coagulation

Probable ATP-dependent helicase DHX37 Q8IY37 0.0253 0.89 Nucleus RNA helicase

Polycystin 1 precursor P98161 0.0341 0.78 Plasma membrane Transporter/Signaling

Complement C1q A chain precursor P02745 0.0350 0.69 Extracellular Immune response

NK cell receptor 3DL1 precursor P43629 0.0368 0.85 Plasma membrane Immune response

Serum paraoxonase/arylesterase 1 P27169 0.0381 0.75 Extracellular Detoxification/anti-oxidation

Unaffected Twins vs. Unrelated, Matched Controls

Up-Regulated:

Apolipoprotein C-IV precursor P55056 0.0436 1.38 Extracellular Transporter

Apolipoprotein C-III precursor P02656 0.0493 1.24 Extracellular Transporter

Histone deacetylase 3 O15379 0.0494 1.12 Nucleus Chromatin modulation

Down-Regulated:
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twins or unrelated, matched controls. Two additional
markers, RBP1 and LRG1, were detected at modestly
increased levels (approximately 1.2- to 1.5-fold) in
affected twins compared to either unaffected twins or
unrelated controls.

Random Forest (RF) multivariate analyses
All identifiable protein markers for which differential
quantitative data existed among subjects comprising the

discordant twin study groups were analyzed by RF mod-
eling to assess potential multivariate interactions.
Among these, the top 50 protein markers exhibiting the
strongest RI values for classifying accurately affected vs.
unaffected twins were subsequently re-analyzed by RF
using identical parameters. The resultant RF model clas-
sified correctly 90% of the 10 twin probands and 70% of
the corresponding unaffected twins. The top 10 protein
markers displaying the highest RI values for predictive

Table 1 Summary of significant differences detected (P < 0.05) among MZ twins discordant for SAID and unrelated,
matched controls* (Continued)

Alpha-1-antichymotrypsin precursor P01011 0.0036 0.84 Extracellular Protease inhibitor

Fibrinogen C NP_116232 0.0046 0.78 Extracellular Coagulation

Ficolin 3 precursor NP_003656 0.0049 0.80 Extracellular Immune response

Keratin type II P35908 0.0232 0.87 Cytoplasm Structural

Syntaxin 17 P56962 0.0311 0.85 Plasma membrane Vesicular transport

Serum paraoxonase/arylesterase 1 P27169 0.0466 0.69 Extracellular Detoxification/anti-oxidation

*Abbreviations: No., number; Exp., expression

**protein-protein interaction; cell adhesion; signal transduction; granulocyte differentiation

Affected 
vs.

Unaffected Twins

Affected Twins
vs.

Unrelated Controls

Unaffected Twins
vs.

Unrelated Controls

PON1

Complement C4, C6, C8, C9
α1-acid glycoprotein
Protease C1 inhibitor
Maltase-glucoamylase
Kallikrein
Myomesin 1
Ubiquitin hydrolase 29
Hematopoietic transmembrane 
protein 4

Apolipoprotein A2
Minor MHC antigen H13
Fetuin A

Histone deacetylase 3

Apolipoprotein E
Retinol binding protein
Kallistatin
Nuclear receptor coactivator 6
α1-microglobulin/α trypsin 
inhibitor
Fibrinogen-β

Coagulation Factor XII
Carnitine octanoyltransferase
Helicase DHX37
Polycystin 1
Complement C1q
NK cell receptor 3DL1

Apolipoprotein C III, C IV
Fibrinogen C
Ficolin 3

α1-antichymotrypsin
Keratin type 2
Syntaxin 17

Retinoblastoma binding protein 1
Leucine-rich α2-glycoprotein 1

Figure 1 Summary of protein inter-relationships. Venn diagram depicting proteins detected at significantly different concentrations (P < 0.05)
in plasma of monozygotic twins discordant for SAID and unrelated, matched controls. Pon1, paraoxonase 1
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classification are displayed in Figure 2A. Seven protein
variables accounted for the majority of the predictive
value of the model. Moreover, the four plasma protein
markers with the highest RI scores (syntaxin 17
(STX17), maltase-glucoamylase (MGAM), paraoxonase 1
(PON1) and the sixth component of complement (C6))
were also significant in univariate analyses (see Table 1).
An independent measure of the RF model examining
the spatial proximity of test subjects produced a clear
stratification of the affected and unaffected twin study
groups (Figure 2B). These RF modeling data also suggest
that assessing multiple, potentially interacting plasma
protein factors might better define the proteomic pro-
files shared among multiple SAID.

Pathway analysis
We performed molecular pathway analyses to assess if
differential plasma protein levels detected in SAID com-
pared to unaffected twins could be linked by common
biologic pathways. Canonical pathways exhibiting the
highest significance included mediators of the acute
phase response to systemic inflammation (P = 6.7 × 10-
49), complement fixation pathways (P = 5.2 × 10-32),
coagulation system (P = 1.4 × 10-19) and retinoid

receptor activation pathways (P = 3.2 × 10-04) (Figure 3).
Similar differences were observed between comparisons
of affected twins and unrelated, matched controls (data
not shown).
In a separate analysis, we examined those plasma pro-

teins identified previously as having the highest RI
scores for effectively classifying discordant twin pairs in
a RF multivariate model. In this case, we utilized Inge-
nuity’s Grow, Connect, and Path Explorer functions to
examine putative molecular interactions and pathway
integration among these candidate proteins (Figure 4).
The shortest pathways by which the seven protein fac-
tors of interest (STX17, MGAM, PON1, C6, SYNE1,
PLEKHG5 and AZGP1) were integrated required a
minimum of two interconnecting nodes. For the major-
ity of possible interactions, the PON1 gene product
mapped as a central node connecting multiple protein
factors identified by univariate and RF analyses. Many of
the predicted PON1 interactions also involved the inclu-
sion of the pro-inflammatory cytokine IL-6 as a second-
ary node integrating several other protein markers. The
molecular pathways model illustrated in Figure 4 is
representative of one of several possible means by which
these candidate SAID markers might potentially interact.

Affected
Unaffected

A. B.

Figure 2 Multivariate Random Forest analysis of protein components identified in plasma from MZ twins discordant for SAID. (A)
Relative importance values of individual protein components whose collective interactions in the RF model account for the effective
stratification of affected vs. unaffected twins as described in Patients and Methods. (B) Cluster analysis of affected (red circles) and unaffected (blue
circles) twins using the RF model described in (A). STX17, syntaxin; MGAM, a-glucosidase; PON1, paraoxonase 1; C6, complement component 6;
SYNE1, spectrin repeat containing nuclear envelope 1; PLEKHG5, pleckstrin homology domain containing, family G, member 5; ZNA2GP, zinc-
binding a-2-glycoprotein; LRG1, leucine-rich a-2-glycoprotein; PKD1, polycystic kidney disease-associated 1; APOA2, apolipoprotein A2
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Protein blot analysis
To assess further the potential significance of altered
plasma PON1, RBP1, and LRG1 levels in SAID-affected
twins, we evaluated each twin pair and corresponding
unrelated, matched controls by protein blot analysis (Fig-
ure 5). As shown in Figure 5B, summary data for plasma
protein levels of PON1 (approximately 43 kDa) and a
transferrin (TF, approximately 77 kDa) normalization
standard are illustrated for SAID-discordant twins and
controls. A plot of PON1/TF values shows reduced plasma
PON1 levels were observed for 5 out of the 10 indepen-
dent twin pair/control sample sets irrespective of disease
diagnosis (3 JDM, 1 JIA, and 1 SLE). A calculation of the
mean reduction in PON1 levels among the 10 pairs of dis-
ease-discordant twins was similar in both protein blot and
proteomics analyses (an approximate 1.2-fold reduction).
A similar protein blot analysis of the RBP1 marker whose
plasma levels were elevated in SAID-affected twins in
comparisons with either unaffected twins or unrelated
controls is shown in Figure 5C. Normalized plasma RBP1
levels (RBP1/TF) were increased approximately 1.2-fold in
affected twins compared to unaffected twins or unrelated
controls. A comparable increase of plasma RBP1 (approxi-
mately 1.45-fold) was detected in the proteomics analysis.
We did not, however, detect elevated levels of LRG1 in
SAID-affected twins by protein blot analysis in contrast to
the approximately 1.4-fold increase observed by plasma
proteomics (data not shown).

Discussion
While certain autoimmune diseases share selected
genetic, clinical and laboratory features, it is not clear if

shared pathogenic mechanisms might link a number of
SAID. One approach to the study of disease pathogen-
esis is the use of MZ twins as a means of controlling for
the inherent genetic variability of study subjects in order
to better assess the contribution of genetic, epigenetic
and environmental factors [18]. MZ twins, however, are
not genetically identical owing to various post-meiotic
and age-related epigenetic modifications. Despite these
differences, microarray analyses suggest that RNA
expression levels of polymorphic genes are more tightly
controlled in MZ twins than other first degree family
members or unrelated controls [19,20].
In the present study, we have evaluated biologic path-

ways altered among multiple SAID by studying levels of
plasma proteins using LC-ESI-MS from MZ twins dis-
cordant for SAID and unrelated, matched controls.
Blood plasma is well-suited to the study of systemic or
multi-organ diseases given its capacity to sample pro-
teins from damaged tissues and detect changes in other
physiologic pathways associated with complex host
responses to disease processes and infectious and/or
other environmental agents [11]. The human plasma
proteome is one of the most complex and better charac-
terized human bio-fluids wherein the identity and
expression levels of its approximately 1,000 distinct pro-
tein constituents are currently cataloged [3].
Previous studies have examined human tissue and bio-

fluid proteomes in autoimmune conditions with the goal
of identifying disease-specific biomarkers to aid in
improved disease diagnosis and understanding of under-
lying pathogeneses [4,21-29]. These findings point con-
sistently to coordinated changes in the levels of multiple
proteins involved in such canonical pathways as immune
activation, signal transduction, cell adhesion, apoptosis,
and acute phase responses, in addition to various tran-
scription factors, structural and transport proteins. In
fact, composite phenotypic profiles of coordinated
changes in multiple protein factors and physiologic
pathways rather than solitary biomarkers may prove
more reliable in differentiating complex and sometimes
overlapping autoimmune syndromes.
We examined multiple SAID in an attempt to uncover

shared biomarkers or proteomic profiles, with the under-
standing that these otherwise heterogeneous disorders
often share many clinical features, immunologic abnorm-
alities, genetic risk factors and serum autoantibodies
[30,31]. We hypothesized that certain proteomic profiles
may be similar among patients with different SAID and
that those profiles will differ from those of unaffected MZ
twins. Moreover, we asked whether the proteomic profiles
of unaffected twins more closely resembled that of unre-
lated, matched controls or possibly shared some features
with their affected twins as a consequence of their genetic
similarity and/or shared environmental exposures.
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Figure 3 Molecular pathway analysis. Ingenuity Pathways
Analysis was used to examine the differential expression values of
the entire plasma protein datasets between SAID discordant MZ
twins. Fischer’s exact test was used to calculate a P-value
determining the probability that the association between the
markers in the dataset and the canonical pathway is attributable to
chance alone (blue bars). The ratio of the number of genes from
the dataset that map to a given pathway divided by the total
number of markers that comprise the pathway is shown by the
yellow line.
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Collectively, our proteomics data from affected MZ
twins was consisten with that from other published stu-
dies of human autoimmune diseases. Namely, the appar-
ent coordinated regulation of multiple proteins from
several canonical pathways (for example, immune regu-
lation, acute phase response, protein and lipid homeos-
tasis, apoptosis and signal transduction) appears to be
associated with these chronic inflammatory conditions.
In univariate analyses, we observed multiple proteins
whose plasma levels were statistically different in
affected twins compared to either unaffected twins or
unrelated controls. Some of these proteins (for example,
a1-microglobulin, fibrinogen, apolipoproteins A and E,

complement C3 and C4B, and retinol binding protein)
may exhibit altered plasma levels as a consequence of
chronic inflammation as they were also reported as up-
regulated in synovial fluid from osteoarthritis (OA)
patients [23]. Increased levels of apolipoprotein A were
also observed in isolated peripheral blood mononuclear
cells from SLE patients and muscle biopsies of patients
with inclusion body myositis [21,24,28]. Similarly, the
leucine-rich a2 glycoprotein marker (LRG1) - a mole-
cule involved in signal transduction, cell adhesion, and
granulocyte differentiation - was elevated in plasma
from our affected twins and was also found elevated in
both the cerebrospinal fluid and serum proteomes from

 

Figure 4 Graphical representation of Ingenuity Pathways Analysis. An IPA of research literature-based molecular relationships among
protein components identified by multivariate Random Forest (RF) modeling (red) which describes possible interactions accounting for the
accurate classification of affected vs. unaffected MZ twins discordant for SAID. The IPA Grow, Connect, and Path Explorer software functions were
used to establish a spatial model utilizing the Shortest Pathway option. A minimum of two nodes (that is, interconnecting molecules), shown in
yellow, were required to integrate the seven protein markers identified by RF analysis.
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Figure 5 Protein blot analysis of plasma PON1 and RBP1 levels from SAID discordant MZ twins and unrelated, matched controls. A.
Representative protein blot analyses of the RBP1 (140 kDa), TF (77 kDa) and PON1 (43 kDa) proteins for each of the 10 SAID-discordant twin
pairs (A, affected twin; U, unaffected twin) and unrelated, matched controls (C). B and C. Summary of replicate blot assays illustrating plasma
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expressed transferrin protein (PON1/TF and RBP1/TF, respectively) and plotted to compare relative differences in PON1 or RBP1 protein levels
among the three study groups (affected twin, unaffected twin, and unrelated, matched control).
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multiple sclerosis patients [26]. More recently, LRG1
was identified as a novel, serum pro-inflammatory bio-
marker for RA and Crohn’s disease [32]. Molecular
Pathways analysis of our total proteomics data set com-
paring SAID discordant MZ twins, helped us identify
numerous acute phase reactants, immune complement
components, coagulation factors, and retinol binding
proteins as potentially important mediators of disease.
Together, these data suggest that many of the physiolo-
gical pathways altered in these patients are not necessa-
rily disease-specific but rather may contribute to
inflammatory processes shared by multiple SAID.
Proteomic data sets with large and complex arrays of

candidate markers mapping across multiple biologic
pathways present limits to the interpretation of univari-
ate data by disregarding potential protein-protein inter-
actions as a basis for accurate disease profiling.
Investigators have employed machine learning algo-
rithms for the multivariate analysis of large proteomic
data sets derived from cancer prevention trials and
human autoimmune disease studies [33,34]. Liu et al.
described the use of a support vector machine algorithm
to effectively classify RA patients and controls using
serum proteomic component peaks [22]. Among the
several decision tree ensemble methods available, we
utilized the Random Forests algorithm to create a model
which accurately classified affected vs. unaffected twin
pairs. Putative interactions among seven proteins
(STX17, MGAM, PON1, C6, SYNE1, PLEKHG5 and
AZGP1) accounted for the majority of this effect. Sev-
eral of these proteins were likewise identified in our uni-
variate analyses (STX17, MGAM, PON1 and C6). The
STX17 marker was one of three proteins whose altered
plasma levels was unique to the comparison of discor-
dant MZ twins, while PON1 was the only marker identi-
fied with statistically different levels in each of the three
two-group comparisons.
The PON1 gene product, paraoxonase 1, is an aryles-

terase that serves an important role in several physiolo-
gical pathways including the detoxification of
xenobiotics - most notably organophosphorus metabo-
lites associated with pesticide exposures - as well as
reducing oxidative damage when associated with circu-
lating high and low density lipoproteins [35-37]. Inter-
estingly, functional polymorphisms in the PON1 gene
influence expression levels and activity of the enzyme
and have been associated with several immune-mediated
conditions, atherosclerotic risk, and possibly influence
responses to anti-TNF-a therapy in RA [38-41].
Several independent lines of evidence implicate

reduced plasma PON1 levels as a potential biomarker
for a subset of SAID [39,42,43]. In our present study, we
observed an apparent gradient of decreasing PON1
levels among our three study groups in univariate

analyses whereby PON1 levels were lowest in SAID-
affected twins and highest in unrelated controls. Also,
PON1 was identified as an informative marker in a mul-
tivariate RF model, which effectively segregated SAID
affected vs. unaffected twins. In molecular pathway
modeling, PON1 mapped as a central node in interac-
tions predicted among all the relevant factors in the RF
analysis. More recently, certain PON1 polymorphic var-
iants were implicated as risk factors for other chronic
inflammatory diseases, including RA and types 1 and 2
diabetes [44,45]. Plasma protein blot analysis of our
twin pairs and matched, unrelated controls demon-
strated reduced plasma PON1 levels in 50% of the twin
cases independent of disease phenotype. We speculate
that shared or similar environmental factors, such as
pesticide exposures, might influence the development of
different SAID by a common mechanism [46].
There are several limitations to our plasma proteomics

study design. Most importantly, small sample sizes and
the resulting decrease in statistical power owing to the
difficulties associated with the identification and recruit-
ment of SAID-discordant MZ twins with recent disease
onset. Also, the heterogeneity of human study subjects,
including variations in environmental exposures, clinical
phenotypes, disease activity and duration and immuno-
suppressive therapies may influence plasma protein
composition and present potential confounders. Addi-
tionally, given the capacity of mass spectrometric techni-
ques to detect several thousand component peaks from
individual plasma samples, higher false discovery rates
(FDR) are anticipated in the absence of corrections for
multiple statistical comparisons. Despite these limita-
tions, most of the candidate markers and molecular
pathways identified in our study are consistent with
those identified in other studies of individual human
autoimmune disease [21-28,44,47].

Conclusions
We have described proteomic profiles common to mul-
tiple, different SAID. We analyzed SAID-discordant MZ
twins to minimize polymorphic gene effects and found
that, in comparison to affected twins, plasma proteomes
of unaffected twins more closely resemble those of unre-
lated, matched controls. These data suggest that in addi-
tion to genetic predispositions, disease pathogenesis in
MZ twins who develop SAID are likely influenced by
post-meiotic genetic events (for example, copy number
variations between MZ twins), different epigenetic modi-
fications, epistatic protein interactions, and/or environ-
mental exposures that promote pro-inflammatory
biologic pathways. Moreover, the use of complex pro-
teomic profiles - rather than individual biomarkers -
may provide a more highly integrated description of
immune dysfunction and disease pathogeneses. Our
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hope is that such studies might lead to earlier and more
accurate diagnostics, and more effective, targeted
therapeutics.

Additional material

Additional file 1: Summary of differential plasma protein levels in
comparisons of SAID-affected twins vs. unrelated, matched controls.
Excel file documenting all processed, primary data for individual plasma
proteins levels in the respective comparison groups as determined by
LC-ESI-MS with corresponding statistical analyses (see Materials and
methods).

Additional file 2: Summary of differential plasma protein levels in
comparisons of SAID-affected twins vs. said-unaffected twins. Excel
file documenting all processed, primary data for individual plasma
proteins levels in the respective comparison groups as determined by
LC-ESI-MS with corresponding statistical analyses (see Materials and
methods).

Additional file 3: Summary of differential plasma protein levels in
comparisons of SAID-Unaffected twins vs. unrelated, matched
controls. Excel file documenting all processed, primary data for
individual plasma proteins levels in the respective comparison groups as
determined by LC-ESI-MS with corresponding statistical analyses (see
Materials and methods).
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