
Introduction

Chronic infl ammation is a risk factor for bone loss. Many 

chronic infl ammatory disorders, such as rheumatoid 

arthritis (RA), ankylosing spondylitis, infl ammatory 

bowel disease and even low-grade infl ammation in other-

wise healthy individuals, have been linked to an increased 

fracture risk [1-5]. RA is of particular interest as both 

locally aff ected bones and sites distant of joint infl am-

mation are prone to bone loss.

Chronic infl ammation is the key mediator for local and 

systemic bone loss in RA patients. In RA patients, 

cytokines are abundantly present in the arthritic syno-

vium as well as secreted into the systemic circulation 

[6,7]. Th e discovery of RANKL (Receptor activator of 

NF-kB ligand) in 1998 as a crucial regulator of osteo-

clastogenesis opened avenues for the research of 

arthritis-driven bone loss [8]. Since then, several pro-

infl ammatory cytokines have been identifi ed as direct or 

indirect stimulators of osteoclast diff erentiation, survival 

and activity. Th is review comprises the knowledge on the 

most important cytokines, which are both involved in RA 

pathophysiology and documented drivers of osteoclast 

diff erentiation, survival or activation (Figure 1). In addi-

tion to their pro-resorbing role, other cytokines can also 

act anti-osteoclastogenically, which is reviewed in the 

accom panying article of Zhao and Ivashkiv. Th is is 

especially evident, as other arthritic disorders such as 

psoriatic arthritis are characterised by strong repair 

responses within aff ected joints [9]. Th e balance of 

osteoclastogenic and anti-osteoclastogenic mediators 

thus decides the fate of bone destruction.

RANKL

RANKL is a member of the TNF family of cytokines and 

plays a key role in bone resorption. Osteoclasts are the 

sole bone resorbing cell. Th ey are formed by fusion of 

mononuclear cells of the monocyte/macrophage lineage, 

but dendritic cells could also serve as osteoclast pre-

cursors [10-12]. RANKL is a necessary factor for the 

diff er entiation of osteoclasts. Mice defi cient for RANKL 

develop severe osteopetrosis due to a complete lack of 

osteoclastogenesis [13]. RANKL also serves as survival 

factor and activates osteoclasts. Th e physiological inhibi-

tor of RANKL is osteoprotegerin (OPG), a decoy receptor 

that binds RANKL. OPG-defi cient mice exhibit severe 

osteoporosis [14]. Th e main sources of RANKL are 

osteoblasts but RANKL can also be expressed in synovial 

cells, activated T cells, mature B cells and natural killer 

cells [15-18]. Expression of RANKL is upregulated by 
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 and several pro-

infl am ma tory cytokines, including IL-1, IL-6, IL-17 and 

TNF-α [8,19-21]. RANKL functions both as a membrane-

anchored molecule and as a soluble molecule. Both forms 

bind to RANK, the receptor of RANKL. RANK is 

expressed on osteoclast precursors and mature osteo-

clasts [22]. In vivo, RANKL-defi cient mice are protected 

from bone erosions in the serum transfer model of 

arthritis [23]. OPG treatment protects human TNF-α 

transgenic mice from bone destruction [24]. In a rat 

collagen-induced arthritis (CIA) model, OPG inhibited 

bone destruction as well [25]. In these models, inhibition 

of RANKL aff ects only bone destruction and not infl am-

mation. Denosumab, a humanized antibody against 

RANKL, is currently being evaluated in clinical trials. 

Appli cation of denosumab inhibits glucocorticoid-

induced bone loss in mice [26]. In a phase II study, the 

addition of denosumab to methotrexate treatment 

inhibited structural bone damage in patients with RA 

[27].

Tumour necrosis factor α

Activated macrophages but also synovial fi broblasts, 

T   cells, B cells, natural killer cells, osteoblasts and 

Figure 1. Cytokines activating osteoclastogenesis in rheumatoid arthritis. TNF, IL-1, IL-6 and IL-17 upregulate expression of RANKL (receptor 

activator of NF-kB ligand) in osteoblasts and synovial fi broblasts. RANKL mediates diff erentiation, survival and activation of osteoclasts. TNF, 

produced by fi broblasts and macrophages, promotes diff erentiation and survival of osteoclasts. IL-1 supports diff erentiation, survival and activation 

of osteoclasts. IL-6 and IL-17 promote osteoclastogenesis indirectly. IL-6 is largely produced by fi broblasts and macrophages; it enhances the 

expression of RANKL and contributes to the induction of Th17 cells. Th17 cells secrete IL-17, but a main source of synovial IL-17 is probably mast 

cells. IL-17 induces the expression of RANKL in osteoblasts and fi broblasts and enhances secretion of pro-infl ammatory cytokines by macrophages. 

Macrophage colony-stimulating factor (M-CSF) and IL-34 promote diff erentiation and activation of osteoclasts; IL-33 supports osteoclast 

diff erentiation. TGF, transforming growth factor.

IL-1, IL-6, TGFTNF
Th17

Mast Cell
Macrophage Osteoblast

IL-17
Macrophage
Synovial fibroblast

Osteoblast
Synovial fibroblast

IL-6
RANKLIL-1

IL 6

Differentiation
S i l

Differentiation
Survival

Activation

TNF
Survival

M-CSF
IL-34

Survival
Activation

Survival       
Differentiation       

IL-15
Differentiation Differentiation

Activation

Osteoclast

Differentiation 
Activation

Braun and Zwerina Arthritis Research & Therapy 2011, 13:235 
http://arthritis-research.com/content/13/4/235

Page 2 of 11



osteo clasts can produce the pro-infl ammatory cytokine 

TNF [28,29]. Both soluble and membrane-bound TNF 

bind to the TNF receptors TNFR1 (p55) and TNFR2 

(p75). TNFR1 mediates most of the biological eff ects of 

TNF. Osteoclasts and its precursors express both TNFR1 

and TNFR2 [30-32]. TNF upregulates RANK expression 

and can thus enhance osteoclastogenesis [33]. TNF may 

also directly act on osteoclast precursors, but whether 

this is truly independent of RANKL signalling is still the 

subject of debate (reviewed in [34]). TNF promotes the 

survival of mature osteoclasts, but does not effi  ciently 

activate osteoclasts [34,35]. Kitaura and colleagues 

demonstrated TNF-dependent secretion of macrophage 

colony-stimulating factor (M-CSF) by bone marrow 

stromal cells that induces osteoclastogenesis more 

effi  ciently than the direct stimulation of osteoclast pre-

cursors by TNF. Th e relevance of this fi nding is under-

lined by inhibition of osteoclastogenesis despite persis-

tence of infl ammation in a serum-transfer arthritis model 

using an anti-M-CSF receptor (c-fms) antibody [36].

TNF further supports osteoclastogenesis by interacting 

with the wingless (Wnt) signalling pathway. TNF is a 

strong inducer of Dkk-1 expression, a Wnt antagonist. 

Dkk-1 inhibits Wnt signalling by binding to LRP-5 (low 

density lipoprotein-coupled receptor related protein-5) 

and LRP-6 and the coreceptor Kremen-1/2 [37]. Active 

Wnt signalling induces OPG expression and therefore 

decreases the RANKL/OPG ratio, thus acting anti-

osteoclastogenically [38]. Consequently, Dkk-1 promotes 

osteoclastogenesis by increasing the RANKL/OPG ratio. 

In RA patients, elevated serum levels of Dkk-1 have been 

observed. After initiation of anti-TNF therapy, serum 

levels of Dkk-1 decrease. Expression of Dkk-1 is also 

enhanced in animal models of erosive arthritis, such as 

human TNF transgenic mice, CIA and glucose-6-

phosphate isomerase-induced arthritis [39].

Th e relevance of TNF for arthritic bone destruction has 

been demonstrated in several experimental models and 

was fi nally confi rmed by clinical trials. In vivo, human 

TNF transgenic mice develop severe arthritis with 

chronic synovial infl ammation, cartilage destruction, and 

systemic and local bone loss [40]. Th e latter pathology is 

quite unique, as many other rodent arthritis models are 

characterized by strong repair responses, which is rarely 

seen in RA. In CIA, the application of TNF-specifi c 

neutralizing antibodies reduced disease activity and bone 

damage [41]. Th e results in TNF-defi cient mice are not as 

clear. Using the serum transfer model of arthritis, most 

TNF-defi cient mice develop no clinical or histological 

signs of arthritis, but one-third of mice showed clinical 

signs of arthritis [42]. Th e effi  cacy and safety of the TNF 

antagonists infl iximab, etanercept, adalimumab, golimu-

mab and certolizumab in RA patients were demonstrated 

in several clinical studies and these drugs are now 

frequently used in clinical practice [43]. Interestingly, RA 

patients clinically not responding to anti-TNF treatment 

are still protected from development of new bone 

erosions. Th is underlines the important role of TNF for 

arthritic bone destruction.

Interleukin-1

In RA joints, activated macrophages and synovial 

fi broblasts are sources of IL-1 production [44,45]. IL-1α 

and IL-1β share only 24% amino acid sequence identity 

but have largely identical biological functions mediated 

through the receptor IL-1R1 [46,47]. IL-1 receptor 

antagonist (IL1-Ra) is a soluble protein that competes 

with IL-1 for binding to IL-1R1 [48]. Th us, the IL-1/

IL-1Ra ratio has to increase to induce IL-1R1 activation. 

IL-1R1 and the decoy receptor IL-1R2 are expressed in 

osteoclasts. Th ere is higher expression of IL-1R1 in large 

osteoclasts than in small osteoclasts [49]. Th e mechanism 

has not yet been completely established, but several in 

vitro studies provide evidence that IL-1 plays a signifi cant 

role in osteoclast physiology. IL-1 promotes the fusion of 

osteoclast precursors [50] and prolongs the survival of 

mature osteoclasts [51]. It is also important for osteoclast 

activation in vitro [31,52].

In vivo, IL-1 is a key regulatory cytokine in mouse 

models of infl ammatory arthritis. Overexpression of IL1-

α or IL-1β as well as deletion of IL-1Ra leads to 

development of arthritis with destruction of cartilage and 

bone [45,53-55]. Mice defi cient of IL-1R1 develop no 

arthritis in a model of serum transfer arthritis [42]. In 

human TNF transgenic mice defi cient for IL-1 signalling, 

cartilage destruction was completely blocked and bone 

destruction partly reduced despite the presence of 

synovial infl ammation [56]. Recent data show no 

systemic infl ammatory bone loss in these IL-1-defi cient 

human TNF transgenic mice in spite of ongoing infl am-

matory arthritis [57]. Th ese data indicate that TNF-

induced local bone destruction and systemic infl amma-

tory bone loss are largely dependent on IL-1. Th us, IL-1 

is an important downstream mediator of TNF. Th ese in 

vivo data are supported by in vitro evidence showing that 

TNF-induced synthesis of RANKL is inhibited by IL-1Ra 

[58]. In contrast to these in vivo and in vitro data, 

targeting IL-1 has not yet provided powerful therapeutics 

for the treatment of RA [59]. However, few data exist 

regarding the bone-protective properties of IL-1 neutrali-

zation in RA patients.

Interleukin-6

IL-6 expression in RA synovial tissue has been localized 

to synovial fi broblasts, macrophages and T cells [60,61]. 

Th ere are two forms of the IL-6 receptor, a trans mem-

brane variant and a soluble variant. Th e transmem brane 

form consists of an 80-kDa chain specifi c for IL-6 and the 
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intracellular signal transducer glycoprotein 130 (gp130). 

Th is transmembrane form of the IL-6 receptor is only 

expressed in hepatocytes, monocytes/macrophages, 

osteoblasts and other leukocytes, while gp130 is ex-

pressed on almost all cells [62,63]. Th e soluble receptor 

binds IL-6 and activates gp130 on cells that do not 

express the transmembrane receptor [62]. Th is soluble 

receptor is found in many body fl uids, including serum 

and synovial fl uid [64]. IL-6 is elevated in serum and 

synovial fl uid of RA patients [65]. IL-6-defi cient mice are 

protected from ovariectomy-induced bone loss and show 

delayed bone fracture healing related to a decreased 

number of osteoclasts [66,67]. IL-6 overexpression is 

associated with enhanced bone resorption and increased 

osteoclast numbers and activity [68]. Th ese data suggest 

an activating eff ect of IL-6 signalling on bone resorption.

In vitro, IL-6 stimulates the release of RANKL by osteo-

blasts and together with transforming growth factor-β 

and IL-1 promotes the development of Th 17 cells [69-71]. 

A recent study showed reduced in vitro osteoclast 

diff erentiation due to the blockade of the IL-6 receptor 

[72]. Th ere is also recent in vitro evidence of an inhibitory 

eff ect of IL-6 on osteoclastogenesis [73,74]. However, 

these models do not consider potential eff ects of other 

cells and cytokines and the in vivo relevance of these in 

vitro fi ndings is unclear [75].

IL-6-defi cient mice are protected from CIA and 

adjuvant-induced arthritis [76-78]. In contrast, the IL-6-

defi cient mice develop arthritis in the K/BxN serum 

transfer model [42]. While overexpression of human IL-6 

does not induce polyarthritis, an activating mutation in 

the mouse gp130 gene causes autoimmune polyarthritis 

[79,80]. Th e application of an IL-6 receptor (IL-6R) 

neutralizing antibody in CIA reduced disease activity 

[81]. In human TNF transgenic mice, an anti-IL-6R anti-

body did not inhibit joint infl ammation but reduced 

osteo clast formation in the infl amed joints and bone 

erosion [72]. In contrast to the diff erent experimental fi nd-

ings, the IL-6R-specifi c antibody tocilizumab effi  ci ently 

reduces disease activity and radiographic progres sion in 

RA patients and is now used in clinical practice [59].

Interleukin-17

IL-17 is present in synovial fl uid of RA patients and its 

expression has been detected within the infl amed 

synovium in Th 17 and other cells [20,82,83]. Recent 

evidence suggests that cells other than Th 17 cells, such as 

mast cells, are probably a major source of IL-17 produc-

tion within human arthritic joints [84]. Th ere is good 

evidence for an important role of IL-17 in osteoclasto-

genesis, but the detailed mechanism is not yet completely 

understood [22].

In mice, the severity of CIA is reduced in IL-17-

defi cient animals and the local overexpression of IL-17 in 

a joint enhances severity of arthritis [85,86]. Th e treat-

ment of arthritic mice with an anti-IL-17 antibody 

reduces joint infl ammation, cartilage destruction and 

bone erosion in CIA and antigen-induced arthritis 

[87,88]. In vitro, IL-17 stimulates osteoclastogenesis 

prefer entially indirectly [20]. In vitro studies show that, 

on the one hand, IL-17 elevates RANKL expression in 

osteoblasts and fi broblasts, and on the other, it induces 

the secretion of pro-infl ammatory cytokines such as IL-6 

and IL-8 by fi broblasts and endothelial and epithelial cells 

and the secretion of TNF and IL-1 from monocytes 

[22,89-91]. Recent data provide evidence for an additional 

direct eff ect of IL-17 on osteoclast diff erentiation. In 

vitro, IL-17 upregulates RANK on human osteoclast 

precursors to sensitize them to RANKL [92]. Another 

recent study demonstrated that IL-17 induces osteo-

clasto genesis in cultures of human CD11b-positive cells 

in the absence of osteoblasts or exogenous RANKL. Th is 

is blocked by the application of OPG or infl iximab, 

suggest ing a RANKL- and TNF-dependent mechanism 

[93]. Further investigation is necessary to identify the 

exact mechanism of IL-17-induced osteoclastogenesis. 

Ongoing clinical trials are analysing the effi  cacy of anti-

IL-17 antibodies in RA patients.

Macrophage colony-stimulating factor

M-CSF is a key cytokine providing osteoclast diff eren-

tiation signals [94,95]. It is secreted by synovial 

fi broblasts, osteoblasts, macrophages and T cells in RA 

patients [96-98]. Th e importance of M-CSF-induced 

osteo clastogenesis is confi rmed in mouse models: op/op 

mice, which fail to express functional M-CSF, and c-fms 

(the M-CSF receptor) defi cient mice show an osteoclast-

poor osteopetrotic phenotype [99,100]. In vitro, M-CSF 

modulates multiple steps in human osteoclastogenesis, 

including proliferation, diff erentiation and fusion of pre-

cursors and at later diff erentiation stages bone resorbing 

activity but not survival [101]. Th e binding of M-CSF to 

c-fms leads to the activation of the ERK-Akt signalling 

pathway [102-104].

Intracellular signalling

Th e stimulation of osteoclasts with RANKL leads to 

potent activation of NFATc1 (Nuclear factor of activated 

T cells, cytoplasmic 1), as demonstrated by gene expres-

sion profi ling (Figure 2) [105]. NFATc1 is a key regulator 

of osteo clast diff erentiation in vitro and in vivo; it induces 

osteoclast-specifi c genes, including TNF-receptor asso-

ciated protein (TRAP), calcitonin receptor and cathepsin 

K, and it positively regulates its own promoter. Th e 

activation of NFATc1 is regulated by RANKL in two 

ways: the NF-κB/AP-1/c-fos pathway and calcium signal-

ling [105]. RANKL binds to its receptor RANK, which 

leads to the binding of RANK to its main adaptor 
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mole cule TNF receptor-associated factor (TRAF)6. 

TRAF5 is also involved in RANKL-mediated osteo-

clastogenesis [106]. Th is complex activates JNK, p38 and 

NF-κB [107]. In vitro, osteoclastogenesis is impaired in 

monocytes lacking p38α [108].

NF-κB is a family of dimeric transcription factors. In 

mammals there are fi ve proteins: Rel (cRel), RelA (p65), 

RelB, NFκB1 (p50) and NFκB2 (p52) [109]. p50/p52-/- 

mice develop osteopetrosis while p50-/- mice show no 

bone phenotype [109-111]. Th ere is a classical and an 

alternative NF-κB signalling pathway. Th e classical path-

way includes activation of IκB kinase (IKK)β. Roucco and 

colleagues [112] showed impaired osteoclastogenesis in 

the absence of IKKβ in vitro and in vivo. Th e alternative 

pathway includes IKKα and NF-κB-inducing kinase 

(NIK). Osteoclastogenesis depends on IKKα and NIK 

only in vitro but not in vivo [112,113]. Th us, the classical 

pathway seems to be of greater importance for osteo-

clastogenesis. In addition, IKKβ prevents TNF-induced 

apoptosis of osteoclast precursors [112]. NF-κB induces 

c-fos, cyclic AMP-responsive element-binding protein 

(CREB) and calcium/calmodulin-dependent protein 

kinase type IV (CaMKIV) [114,115].

Th e AP-1 transcription-factor is a dimeric complex 

composed of c-fos and Jun proteins. c-Fos-defi cient mice 

develop severe osteopetrosis due to a complete block of 

osteoclastogenesis [116,117]. Mice with conditional 

knock out of Jun proteins (c-Jun, JunB) show impaired 

osteo clastogenesis [118,119], and mice expressing domi-

nant negative c-Jun under the control of the TRAP 

promoter develop osteopetrosis [120]. AP-1 DNA bind-

ing activity is upregulated in the synovial tissue of RA 

patients and correlates with disease activity [121]. AP-1 

cooperates with NFATc1, inducing osteoclast-specifi c 

genes [105].

On the other hand NFATc1 is dependent on calcium 

signalling. Th e phosphatase calcineurin specifi cally acti-

vates NFATc1 by dephosphorylating its amino-terminal 

regulatory domain. While the phosphorylated NFATc1 is 

localised in the cytoplasm, the dephosphorylated 

NFATc1 can enter the nucleus. Th e importance of this 

path way is shown by the immunosuppressive drug cyclo-

sporine, which inhibits calcineurin [122]. Th e activation 

of calcineurin is dependent on calcium and phospho-

lipase C (PLC)γ, which mediates calcium release in the 

cytoplasm [105]. PLCγ2 is the isoform that regulates 

Figure 2. Intracellular signalling during infl ammation-induced osteoclastogenesis. RANKL (receptor activator of NF-kB ligand) binds to its 

receptor RANK and induces the key regulator of osteoclast diff erentiation NFATc1 (Nuclear factor of activated T cells, cytoplasmic 1) through two 

diff erent signalling pathways. On the one hand, RANK recruits TRAF6 (TNF receptor-associated factor 6) and activates NF-κB, JNK, p38, c-fos and 

AP-1. On the other hand, NFATc1 is activated by calcineurin that is in turn activated by elevated calcium in the cytoplasm. Phospholipase C (PLC)γ 

mediates the release of calcium in the cytoplasm; PLCγ is activated by RANK through Btk/Tec and by OSCAR (osteoclast-associated receptor) and 

TREM-2 (triggering receptor expressed by myeloid cells 2) through the Fc receptor gamma chain (FcRγ), DAP12 (DNAX-activating protein of 12 kDa) 

and Syk signalling. TNF binds to its receptor TNFR1, which recruits TRADD (TNFR-associated DD protein) and RIP-1 (Receptor interacting protein-1). 

TNF receptor-associated factor (TRAF)2, TRAF5 and TRAF6 mediate further signalling through NF-κB, JNK and p38. The IL-1 receptor IL-1R1 binds 

MYD88 (myeloid diff erentiation primary response gene 88) and RAK4, which activates TRAF6 through phosphorylation of IL-1 receptor-activating 

protein kinase (IRAK)2 and IRAK1. After binding IL-6, the IL-6 receptor recruits two gp130 molecules and activates the signal transducer and 

activator of transcription (STAT) pathway and the mitogen-activated protein kinase (MAPK) pathway (JNK, p38, ERK) through gp130. MMP, matrix 

metalloproteinase.
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osteoclastogenesis, and PLCγ2-defi cient mice develop 

osteopetrosis independent of PLCγ1 [123]. Th ere are two 

links between calcium signalling and RANKL. Th e co-

stimulatory receptors of RANK, OSCAR (osteoclast-

associated receptor) and TREM-2 (triggering receptor 

expressed by myeloid cells 2), activate PLCγ through its 

adaptor proteins DAP12 (DNAX-activating protein of 

12  kDa) and Fc receptor gamma chain (FcRγ) and the 

tyrosin kinase Syk [124,125]. Th e second link is the Tec 

family tyrosine kinases Tec and Btk, which are activated 

by RANKL and are involved in the phosphorylation of 

PLCγ [126].

TNF signalling in osteoclasts and their precursors is 

primarily mediated by TNFR1. TNFR1 contains a cyto-

plasmic death domain and when unstimulated, this 

domain binds to the death domain of the protein SODD 

(silencer of death domain). TNF binding to TNFR1 leads 

to the release of SODD. Th is allows the binding of 

TRADD (TNFR-associated DD protein), which recruits 

RIP-1 (receptor interacting protein-1) and TRAF2. Th is 

TRADD-RIP-1-TRAF2 complex is released from TNFR1 

and activates NFκB, JNK and p38 signalling [30]. TRAF2 

is essential for osteoclastogenesis in vitro [127]. TRAF6 

and TRAF5 also contribute to TNF-dependent osteo-

clasto genesis in vitro and activate NFκB, JNK and p38 

signalling [106,128,129]. In line with this, TRAF6-

defi cient mice show severe osteopetrosis [130].

Th e binding of IL-1 to its receptor IL-1R1 induces a 

conformational change of the receptor. After recruitment 

of IL-1RacP, it binds to MYD88 (myeloid diff erentiation 

primary response gene 88) and IL-1 receptor-activating 

protein kinase (IRAK)4. Th is complex recruits TRAF6 

through phosphorylation IRAK2 and IRAK1 [131].

Th e transmembrane or the soluble IL-6 receptor 

forms a complex with two gp130 molecules after 

binding IL-6. Th is leads to phosphorylation of Janus 

protein-tyrosine kinase, which causes the activation of 

intracellular signal transduction. gp130 can act though 

two intracellular signalling pathways: the signal trans-

ducer and activator of transcription (STAT) pathway 

and the mitogen-activated protein kinase (MAPK) 

pathway [75]. Th e mechanism of IL-6 signalling in bone 

turnover is not yet understood. Mice lacking the gp130 

binding site for STAT show no alteration in osteoclast 

activity and one publication indicated that STAT3 

downregulates NFATc1 [132,133]. Mice lacking the 

gp130 binding site for MAPK signalling exhibit 

osteopenia. gp130-defi cient mice develop osteopenia as 

well, although this mutation results in neonatal lethality 

[133]. A recent study shows that IL-6 suppresses NF-κB 

signalling [73]. Despite these fi ndings, IL-6 seems to 

have potent osteoclast-activating functions in RA 

patients, as demonstrated by clinical trials using an 

anti body against the soluble IL-6 receptor.

Other cytokines

Th e recently discovered cytokine IL-34 binds to the M-

CSF receptor c-fms. In functional studies it promotes 

monocyte viability and the formation of macrophage 

progenitor cells independent of M-CSF. Similar to M-

CSF, IL-34 activates ERK signalling [134]. Baud’Huin and 

colleagues [135] demonstrated that IL-34 was able to 

support RANKL-induced osteoclastogenesis in the 

absence of M-CSF. However, higher concentrations of IL-

34 than of M-CSF are required to exert an equivalent 

activity, probably due to a relatively lower binding affi  nity 

of IL-34 to c-fms. IL-34 activates the ERK-Akt signalling 

pathway in osteoclast progenitors and promotes osteo-

clastogenesis but has no eff ect on osteoclast survival.

Th ere is recent evidence that the pro-infl ammatory 

cytokine IL-33 participates in the pathogenesis of RA. It 

is expressed in the synovium of patients with RA and its 

expression appeared to correlate with the severity of 

infl ammation [136]. IL-33 acts through the receptor ST2 

[137], which is a member of the Toll-like/IL-1 receptor 

family and activates TRAF6 [138]. Th e ST2 trans-

membrane form is expressed predominantly on mast 

cells and Th 2 cells. In murine antigen-induced arthritis, 

IL-33 exacerbates disease by activating mast cells [139]. 

Inhibition of IL-33 signalling reduced severity of bone 

erosion in an animal arthritis model [140]. Recent data 

show that IL-33 induces the formation of osteoclasts 

from human monocytes independent of RANKL [141]. 

IL-33 seems to activate MAPKs, NF-κB and the Syk/

PLCγ signalling pathway in human monocytes. In con-

trast, IL-33 was found to inhibit murine osteoclasto-

genesis in vitro and in vivo [142].

Th ere were previous reports that the culture medium 

of activated T cells directly stimulates osteoclastogenesis 

independent of RANKL [143,144]. Rifas and colleagues 

[145] recently identifi ed a new cytokine in the medium of 

activated T cells by chromatographic analysis. Th ey 

called this new cytokine Secreted osteoclastogenic factor 

of activated T-cells (SOFAT). SOFAT induces the forma-

tion of human and mouse functional osteoclasts indepen-

dent of RANKL and is secreted by T cells in a calcineurin-

independent manner. It is derived from a mRNA splice 

variant encoded by the threonin synthase-like 2 gene 

homolog. RANKL-defi cient mice have no osteoclasts and 

develop no bone erosions despite severe infl ammation in 

the case of arthritis [13,23]. Th ese in vivo data show no 

relevant osteoclastogenesis independent of RANKL. 

Further investigation is needed to characterize the role of 

SOFAT in osteoclastogenesis.

In vitro data demonstrated that IL-15 directly promotes 

diff erentiation of rodent osteoclast progenitors into pre-

osteoclasts [146] and neutralization of IL-15 prevented 

bone destruction in CIA [147]. IL-15 is elevated in 

synovial membrane and synovial fl uid in RA patients 

Braun and Zwerina Arthritis Research & Therapy 2011, 13:235 
http://arthritis-research.com/content/13/4/235

Page 6 of 11



[148]. In vitro, osteoclastogenesis and osteoclast function 

are reduced in IL-15R-defi cient compared to wild-type 

spleen or bone marrow cells [149]. Bone mineral density 

was increased in IL-15R-defi cient mice and was not 

reduced after ovariectomy. Serum levels of TRAP5b and 

osteocalcin were lower in IL-15R-defi cient mice, consis-

tent with a low bone turnover in the absence of IL-15 

signalling.

Conclusion

Bone loss in RA patients is a frequent and clinically 

serious event. Considering bone remodelling in general, 

the balance between bone formation and bone resorption 

determines the net eff ect. In the past decade, signifi cant 

gains in knowledge about the role of bone resorption 

during chronic erosive arthritis have been made. Th ere is 

good evidence that infl ammation itself triggers bone 

resorption by osteoclasts [5].

Pro-infl ammatory cytokines are potent mediators of 

bone loss. Th ese cytokines act both directly and indirectly 

to enhance osteoclastogenesis in the infl amed joint and 

systemic bone: fi rst, many pro-infl ammatory cytokines 

can alter the RANKL/OPG ratio in mesenchymal cells, 

such as osteoblasts and fi broblasts; second, some cyto-

kines, such as M-CSF and RANKL, also directly aff ect 

osteoclast diff erentiation, survival and activity.

Bone erosions and osteoporosis signifi cantly aff ect 

function and quality of life. Th us, anti-erosive therapies - 

besides anti-infl ammatory therapy - for RA patients are 

of great interest. In the past, bisphosphonates had been 

used to inhibit structural damage in RA joints, but the 

eff ects were limited. Recently, the anti-RANKL antibody 

denosumab has been used in RA patients in a small study 

and promising results have been observed [150]. 

Denosumab-treated RA patients showed no radiographic 

progression compared to placebo-treated patients 

Further more, there is good evidence that TNF blockade 

also inhibits structural bone damage independent of its 

anti-infl ammatory activity in RA patients [151]. Th us, 

our increased knowledge on the pathophysiology may 

lead to new therapeutic concepts in RA incorporating 

anti-erosive therapies. However, even nowadays up to 

80% of RA patients experience structural bone damage 

during the course of disease [152]. Th us, further research 

is necessary to fully elucidate the pathophysiology of 

osteoclast-driven bone loss in RA patients.
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