
Introduction

Autoimmune epithelitis [1], designated Sjögren’s syn-

drome (SS), primarily aff ects the lacrimal and salivary 

glands (SGs), the destruction of which results in xero-

phthalmia and xerostomia. Regardless of whether this 

condition presents alone as primary SS or associated with 

other connective tissue diseases as secondary SS [2], the 

epithelial structures of the secretory organs are wrapped 

in a sheath of lymphocytes. Th ese aggregates are 

predominated by T lymphocytes, most of which are 

CD4+ rather than the CD8+ T lineage [3]. We [4] and 

others [5-7] have also described germinal center (GC)-

like structures of B cells (Figure  1) infi ltrating exocrine 

tissues.

Several contradictory hypotheses have been forwarded 

to resolve the complexity of the syndrome [8]. Th e con-

tinuing progress in discovering lymphocyte subsets and 

the lengthening list of cytokines involved, together with 

how they are aff ected in SS, has further fuelled the debate 

on SS pathogenesis. Th is has been extended to include 

whether excessive production of cytokines might contri-

bute to clinical symptoms of SS, such as fever, arthralgia 

and long-term asthenia.

CD4+ T helper (Th ) lymphocytes have long been 

known to be distributed into Th 1 and Th 2 cells, based on 

distinct cytokine patterns [9]. Imbalances between type-1 

cytokine-producing Th 1 cells and type-2 cytokine-

producing Th 2 cells have been considered as predisposing 

to autoimmunity. At the time of their seminal discovery, 

however, Mosmann and Coff man [10] predicted that 

more Th -cell subsets exist, and indeed numerous Th  cell 

lineages have since been identifi ed. In particular, Th 17 

cells were described and IL-17 acknowledged as a prime 

representative of the new generation of proinfl ammatory 

cytokines [11]. Concomitantly, regulatory T (Treg) cells 

were identifi ed as a unique population of Th  cells that 

restrain excessive activation of eff ector lymphocytes [12] 

and maintain T- and B-cell tolerance to self antigens.

Despite much progress, controversy over which set(s) 

of lymphocytes and group(s) of cytokines initiate SS 

pathogenesis persists. In the past, T cells have been 

claimed to be capable of initiating autoimmunity on their 

own, with B cells confi ned to antibody production. 

Nevertheless, the failure of T-cell-directed therapies in 

treating such patients has raised doubts about a dominant 

role for T lymphocytes in SS. Th is observation, made 

against increased recognition of the role of B lympho-

cytes in diseases and the effi  cacy of B-cell-depleting 

agents [13], sparked interest in whether B cells play some 

role in the pathogenesis of SS [14]. Despite the dogma 

that they are instructed by T cells, compelling evidence 

has emerged for autonomous roles for B cells, including 
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the production of cytokines [15]. Accordingly, our 

current interpretation of cytokine-secreting B-cell sub-

sets stems from the Th  cell paradigm. Regulatory B (Breg) 

cells, recently described in humans [16], do exert 

regulatory eff ects through the production of cytokines. 

Furthermore, B-cell activation of the TNF family (for 

example, by B-cell-activating factor (BAFF), also known 

as B-lymphocyte stimulator (BLyS), and a proliferation-

inducing ligand (APRIL)) has further substantiated the 

concept of a notable role for B-cell cytokines in the 

pathogenesis of SS [17].

Th e impact of abnormal cytokine production in this 

disease has attracted considerable attention [18]. Whilst 

the eff ect of a cytokine on one lymphocyte subset in SS 

can be discerned, it has become a challenge to understand 

how the interaction between several interconnected 

networks of cytokines impact on so many diff erent cell 

populations. Th e concept that the interplay of cytokine-

producing T and B cells shifts the balance towards 

autoreactive T and B lymphocytes has been questioned. 

Recent fi ndings on the pathogenesis of SS are benefi cial 

at a time when cytokine-directed therapies are being 

tested for the treatment of infl ammatory diseases. 

However, it remains highly complex to ascribe diff erent 

symptoms to just a single cytokine.

T-cell cytokines

The polarized Th cell paradigm

Upon T-cell activation, the cytokine milieu dictates Th  

cell polarization. Th us, IFN-γ and IL-12 engage the T box 

transcription factor, referred to as Tbet, and the signal 

transducer and activator of transcription (Stat)-4, to 

transform naïve CD4+ T cells into Th 1 lymphocytes. Th e 

latter cells are involved in the response to intracellular 

pathogens, thus inducing the production of IFN-γ and 

TNF-α, but not IL-4 and IL-13. In contrast, IL-2 and IL-7 

cause the binding of a specifi c transcription factor to the 

WGATAR nucleotide consensus sequence (GATA-3). 

Th is promotion polarizes naïve T cells towards Th 2 

lymphocytes. Th e latter cells are committed to the 

elimination of extracellular pathogens, thus favoring the 

production of IL-4 and IL-13. Undoubtedly, GATA-3 

represents the master transcription factor for Th 2 

diff erentiation. Although the two groups of cytokines are 

mutually inhibitory, IFN-γ opposes infl ammation in 

certain disease settings, and IL-4 enhances IL-12 produc-

tion by macrophages, which in turn favors Th 1 polari-

zation of naïve Th  lymphocytes. Whereas uncon trolled 

Th 1 cells determine autoimmune states, imbalances in 

Th 2 cells lead to allergic disorders. However, were this 

binary paradigm to be as presumed, no autoimmune 

traits should emerge in a proportion of patients with 

excessive Th 2 cells [19].

Patients with SS have long been thought to suff er from 

a Th 1-mediated condition. Such interpretation was 

supported by high levels of IFN-γ in serum [20] and a 

predominance of Th 1 over Th 2 cells in blood [21]. In 

addition, T cells containing mRNA for IFN-γ [22] and 

Stat-1 have been found in the SGs of patients with SS 

[23]. In fact, the contribution of each Th  subset to SS and 

their interconnections are more subtle than suggested by 

the earliest data. In this context, for Th 1 cells to underpin 

SS pathogenesis, one must verify that the activity of Th 1 

cells is decreased in the blood of patients, while increased 

in their SGs [24]. Furthermore, the cytokine pattern may 

shift from Th 1 to Th 2 as the immunopathological lesions 

progress, as postulated by Moutsopoulos’ group [25]. 

Supporting their hypothesis, they made the valuable 

observation that IFN-γ expression is associated with a 

high-grade infi ltrate of the SGs, whereas a low-grade 

infi ltrate is instead accompanied by a type-2 response.

The expanding universe of Th cell subsets

Th17 cells
Inevitably, the role of Th 1 and Th 2 cells in SS, gleaned 

from studies of cultured cells and from observations of 

SS patients, have become contradictory. Th ese discrepan-

cies were resolved by the discovery of IL-23, after which 

it was determined that abnormalities fi rst ascribed to Th 1 

cells were instead engendered by Th 17 cells, named after 

their IL-17 cytokine signature [11,26-29]. Th 17 cells 

produce a family of cytokines from IL-17A through IL-

17F, and, to a lesser extent, TNF-α and IL-22 [11]. 

Although IL-17 and IL-22 are structurally similar, they 

bind to distinct receptors and take part in separate 

intracellular pathways. Furthermore, in contrast to IL-17, 

IL-22 exerts minor proinfl ammatory eff ects, and, under 

certain circum stances, even protects from autoimmune 

Figure 1. Pathological changes in the salivary glands of 

patients with primary Sjögren’s syndrome. Left: toluidine blue 

staining unveils infi ltrates of mononuclear cells corresponding to 

T lymphocytes (×16). Right: B cells forming an ectopic germinal 

center (×10).
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outcomes. Th 17 cells are primed by the association of IL-

6 with either IL-1 or IL-21 via the orphan retinoid 

nuclear receptor γt, but neither Tbet nor GATA-3. IL-21, 

a member of the IL-2 family, collaborates with dendritic 

cell (DC)-derived transforming growth factor (TGF)-β to 

amplify the tendency to Th 17 cell diff erentiation and 

induce these lymphocytes to express receptors for IL-23. 

Th e latter cytokine is required for the maintenance of 

Th 17 [30,31]. It is interesting that, at least in mice, Th 17 

lymphocytes can also function as B-cell helpers [32]. 

Th ey induce a pronounced antibody response, with 

preferential immunoglobulin (Ig) class switch to IgG2a 

and IgG3 for IL-17, and to IgG1 and IgG2b for IL-21. 

Th ese results establish that Th 17 cells are crucial in GC 

formation.

In line with the mouse data, high serum [33] and saliva 

[34] levels of IL-17 have been reported in SS patients. In 

addition, their SGs exhibit a predominance of IL-17-

containing cells within the infl ammatory lesions [27], 

consistent with the production of IL-17 by ductal 

epithelial cells. Further work on SGs detected TGF-β, 

IL-6 and IL-23, all requisite promoters of Th 17 diff er en-

tiation [31]. Th ese fi ndings add credence to the view that 

Th 17 cells are possible drivers of the persistent infl am ma-

tory response in the SGs of patients with primary SS.

Regulatory T cells
An exciting aspect of homeostasis of the Th 17 cells is 

their reciprocal relationship with Treg cells. However, 

there is as yet no universal consensus on their defi nition. 

Th ey were originally identifi ed by high membrane levels 

of CD25. Subsequent studies indicated that this pre-

requisite for identifying Treg cells did not fi t the obser-

vation that CD25-CD4+ T cells exert as many regulatory 

functions as CD25+CD4+ T cells. Th e Treg cells were 

subsequently identifi ed by the abundance of the forkhead 

box protein P3 (Foxp3) transcriptional regulator. Foxp3+ 

cells develop in the thymus as natural Treg cells, or 

diff erentiate from naïve T lymphocytes in the presence of 

TGF-β as immune Treg cells. Natural Treg cells expres-

sing the inducible co-stimulate use IL-10 to suppress DC 

functions, and TGF-β to restrain T cells. Treg cells that 

do not express this inducible co-stimulate require TGF-β 

only [34].

Th e reports are contradictory in that the blood of SS 

patients contains too many [35] or too few Treg cells [36]. 

Th e real setting could be that Foxp3+ lymphocytes circu-

lating in the blood correlate inversely with those infi ltrat-

ing the SGs [37]. Th e fact that there are fewer Treg cells 

in advanced than in mild SG infi ltrates supports the view 

that DC-derived TGF-β induces Foxp3 in naïve T cells 

and switches T-cell diff erentiation from the defective 

Treg cell pathway to a Th 17 diff erentiation pathway in the 

presence of IL-6 [30,31].

Similarly, IL-18, which can be secreted by epithelial 

cells, has been detected in periductal mononuclear cells 

(MNCs), and correlated with infi ltrating macrophages 

and increases in serum IL-18 [26]. Th is supplemental 

mediator would regulate the Th 1 response and amplify 

IL-17 synthesis [27]. At the time of its identifi cation, the 

pathological role of IL-18 in the SGs of SS patients was 

unclear. Since then, we have learned that IL-18 acts as a 

chemoattractant for CD4+ T cells and a stimulator for 

antigen-presenting cells, required for the generation of 

Th 17 cells (Figure 2). Furthermore, IL-18 promotes the 

synthesis of proinfl ammatory cytokines, enhances the 

secretion of chemokines and worsens tissue damage 

through cell-mediated cytotoxicity and release of matrix 

metalloproteinases [28]. Ultimately, a handful of macro-

phages and DCs can play an IL-18-mediated active role 

in the SGs and in MNC infi ltration.

The role of IL-6 in Sjögren’s syndrome

Up-regulation of IL-6
Not only does IL-6 participate in the generation of Th 17 

cells but it also fosters their proliferation and is associated 

with multiple eff ects in patients with SS, whose SGs have 

been shown to contain IL-6. Given that it is also derived 

from Th 17 cells [38], IL-6 can activate local B cells in an 

autocrine manner. Th e 80-kDa glycoprotein (gp) receptor 

for IL-6 associates with a signal-transducing 130-kDa gp 

chain to shape a membrane-bound aggregate. Th e 

receptor for IL-6 also exists in a soluble form capable of 

binding to transmembrane gp130 and facilitating signal 

transduction through homodimerization of gp130 to the 

ligand-receptor complex [39]. Th us, IL-6 exerts seem-

ingly opposite eff ects by lending strength to Th 17 cells 

and exerting polyclonal activation of B cells.

IL-6-related T- and B-cell biology
In the presence of IL-6, Th 17 cells orchestrate the 

development of GCs dominated by autoreactive lympho-

cytes [40], such as those that we have described in the 

SGs of SS patients [41]. Moreover, IL-6 contributes to the 

expression of recombination-activating genes (Rags). 

Even though some of the activities of IL-6 proceed via its 

soluble form, the predominance of complexes of IL-6 and 

the IL-6 receptor is the therapeutic rationale for targeting 

the receptor rather than the cytokine. Th e soluble form 

may retain IL-6 and the complex bound to gp130 on the 

cell membrane and, thus, engage the receptor to the 

membrane again.

Th is pivotal cytokine seems to be responsible for 

abnormal B-cell antigen receptor (BCR)-mediated regu-

la tion of Rag genes in B cells in SS patients. Our own data 

[42] indicate that, along with BCR engagement, IL-6 

signaling results in secondary Ig gene rearrangements, 

and thereby favors the generation of auto-antibodies. Of 
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further interest is the limiting eff ect of IL-6 on the 

generation of Treg lymphocytes, and the ultimate 

suppressive eff ect of the latter cells on B lymphocyte 

responses.

Dysregulated production of IL-6 by B cells
As described in patients with rheumatoid arthritis and 

systemic lupus erythematosus, their spontaneous activa-

tion can induce B lymphocytes to release copious 

amounts of IL-6 in primary SS [43]. Furthermore, the 

IL-6 receptor is preferentially expressed on B cells in 

patients with active disease, and thereby preferentially 

stimulates the diff erentiation of autoreactive B 

lymphocytes.

B-cell cytokines

Polarized B lymphocytes

B cells possess the capacity to produce a range of cyto-

kines. Th ese may be grouped as proinfl ammatory 

cytokines, such as IL-1, IL-6, TNF-α and lymphotoxin 

(LT)-α; as immunosuppressive cytokines, such as TGF-β 

and IL-10; or as hematopoietic growth factors, such as 

IL-7 and granulocyte/macrophage-colony stimulating 

factor. Th e third family facilitates Th 1 cell polarization 

and the production of TNF-α by DCs, and derives from 

macrophages and endothelial cells in the SGs of patients 

with SS [44].

In reality, the major breakthrough in determining the 

potential role of B cells in diseases occurred when two 

distinct cytokine-secreting subsets were identifi ed 

through the culture of B cells with eff ector T cells 

associated with their cognate antigens [15]. B lympho-

cytes polarized in the presence of Th 1 cells were desig-

nated B eff ector (Be)1 cells, based on their signature 

cytokines, IFN-γ and IL-2, in the expected presence of 

Tbet. Conversely, Th 2 cells induced naïve B lymphocyte 

polarization into Be2 cells, which produced IL-4 and 

IL-6, in the unexpected absence of GATA-3. However, 

IL-10, LT-β, TGF-β, and TNF-α were similarly expressed 

in Be1 and Be2 cells, yielding an ever-growing complexity 

of these B-cell subsets.

Th e kinetics of Be cell generation and the cytokine 

profi le of B cells raise the possibility that the Th 1 

phenotype is imprinted on Be1 cells through IL-2 and 

that expression of IFN-γ by B cells is sustained through 

an autocrine loop between IFN-γ and the IFN-γ receptor. 

However, the diff erentiation of naïve B lymphocytes into 

IL-4-producing Be2 cells is controlled by T-cell-

dependent signals. Of important note, IL-4 is generated 

by GC B cells and is necessary for Th 2 polarization [45].

Interconnections between the B- and T-cell cytokine 

networks

LTs are implicated in establishing and maintaining the 

organization of normal lymphoid tissues. Mice in which 

LT-α [46] and/or LT-β [47] signaling is disrupted suff er 

from disturbances in splenic architecture. Intriguing also 

is the fi nding that DC networks, conspicuous compo-

nents of B-cell follicles, are lacking in diff erent LT knock-

out mice [48]. Gonzalez and colleagues [49] showed that 

Figure 2. The network of T helper (Th) cells gathers together Th0, Th1, Th2 and Th17 lymphocytes. The production of IFN-γ, transforming 

growth factor (TGF)-β and various interleukins is indicated. MØ, macrophage.
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B lymphocytes induce membrane LT-α, and that the 

transfer of B cells (but not T cells) from membrane LT-α-

positive mice (but not membrane LT-α-negative mice) 

governed the emergence of soluble LT-α in the SGs of 

IL-14α transgenic mice, a model of primary SS [50]. Th us, 

signaling through LT-α was necessary to reduce aspects 

of SS in the SGs of non-obese diabetic mice [51].

Activated Th  cells crosstalk with activated B cells to 

regulate their respective responses. Conversely, Be cells 

modulate T-cell polarization. Th e factors that aff ect 

T-cell diff erentiation toward Th 1 cells induce naïve B 

cells to produce IFN-γ via activation of Stat-3, the phos-

phorylation of which is initiated by IL-12 [52]. A high 

level of expression of IL-12 has been found in the SGs of 

SS patients [53], and IL-12-induced SG dysfunction in 

IL-12 transgenic mice off ers a new model for primary SS 

[54]. MNCs infi ltrate their exocrine tissues, suggesting 

that IL-12 contributed to the circuit involving auto-

reactive T and B cells in SS. Interestingly, IL-10 produced 

by B cells suppresses IL-12 production by DCs, thus 

blocking Th 1 cell responses.

Once B cells have been induced to produce IFN-γ, the 

presence of Th 1 is no longer required to maintain polar-

ized Be cells. Th is is because antigen-specifi c B lympho-

cytes take up antigen for presentation to T cells and, by 

doing so, create a self-sustaining circuit of B and T cells 

through which other naïve T cells may be recruited.

Aside from promoting Th 1 cell polarization, Be1 cells 

amplify IFN-γ production by T cells via a TNF-α-

mediated mechanism. Polarization of B cells may take 

place at sites of infl ammation, such as aff ected SGs [55]. 

Although patients with ectopic GCs have lower levels of 

Be2 cytokines than other SS patients, accumulating 

evidence supports the view that most of these B-cell 

clusters do not fulfi ll the requisites for ectopic GCs, but 

constitute aggregates of immature B cells [36]. However, 

the high affi  nity and class switch of auto-antibodies 

produced imply a local break of B-cell tolerance.

As suggested above, the proinfl ammatory IL-17, 

normally considered a T-cell-associated factor, has also 

been reported to be a central driver of GC-derived auto-

antibodies. Th is was demonstrated by blocking IL-17 

signaling that disrupted the CD4+ T-cell and B-cell 

interactions required for the formation of GCs [40].

Additionally, memory B cells are markedly reduced in 

the circulation, possibly due to retention in infl amed SGs 

[56]. Th eir ensuing accumulation, along with shedding of 

surface CD27 [57], and altered recirculation of B-cell 

subsets from these sites may all participate in the 

disturbed B-cell homeostasis in primary SS [58]. Given 

that CD27+ memory B cells present with a higher 

transmigratory capacity to CXCL12, also termed stromal 

cell-derived factor-1 (SDF-1), and to CXCL13, also 

termed B-cell-attracting chemokine-1 (BCA-1), than 

CD27- naïve B cells [59], glandular coexpression of these 

two chemokines [6,7,60] directs memory B cells prefer-

en tially into infl amed SGs, where they reside [61].

Regulatory circuits

The transcription factor Tbet in T and B lymphocytes
Th e fi nding of Tbet in B cells had, in fact, been preceded 

by its description in T cells. Not only does the binding of 

IFN-γ to its receptor on the surface of naïve T cells 

activate and hence translocate Stat-1 into the nucleus, 

but this interaction also promotes the expression of 

transcription factors involved in Th 1 development. Th us, 

Tbet induces the transcription of the IFN-γ gene, as well 

as the expression of receptors for IL-12. Th e net result is 

that T cells become responsive to IL-12, and translocate 

Stat-1 into the nucleus, where IFN-γ expression is induced. 

In turn, IFN-γ drives T cells along the Th 1 pathway 

through a positive feedback loop.

Similarly, naïve B cells are equipped with receptors for 

IFN-γ, and can be induced to release Tbet-triggered 

IFN-γ in the presence of IL-12. Th en, B-cell-derived IFN-

γ activates B cells in an autocrine manner, and amplifi es 

Th 1 responses through a paracrine pathway [55]. 

Consistent with this view is that Tbet-defi cient murine B 

cells skew antibody isotypes toward IgG1 and IgE, which 

are isotypes favored by Be2 cells.

GATA-3 and T-cell diff erentiation
Th e absence of GATA-3 in Be cells raises the question of 

whether it can be replaced by other transcription factors. 

By counteracting Tbet in T cells, GATA-3 regulates Th  

polarization directly and Be cell generation indirectly 

[62]. Th is transcription factor diverts T-cell diff eren-

tiation towards Th 2 cells by silencing Th 1-cell-specifi c 

transcription factor, and thereby enabling Th 2 cells to 

proliferate. Co-culture of naïve B cells with Th 2 cells 

inhibits Tbet, reduces IFN-γ production and reverses the 

up-regulation of receptors for IL-12. Conversely, up-

regulation of IL-4 in Be2 cells depends on both T cells 

and IL-4. Th is is why B lymphocytes defi cient in the 

receptor for IL-4 do not transcribe IL-4, and why B cells 

primed by IL-4-defi cient Th 2 cells substitute IFN-γ for 

IL-4. Put simply, Tbet (in T cells, but also in B cells) and 

GATA-3 (in T cells, but also in B cells) suppress cytokines 

synthesized by the opposing Th  cell subpopulation.

B-cell-modulating factors in Sjögren’s syndrome

A new generation of ligands and receptors

Two cytokines and their receptors have been demon-

strated to be key in B-cell homeostasis: BAFF, which 

rescues B cells from apoptosis, and APRIL, which partici-

pates in B-cell activation [63]. Like most members of the 

TNF family, BAFF is a transmembrane type I protein that 

can be cleaved by a furin convertase to produce a 17-kDa 
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soluble form. Th e biologically active form of BAFF is 

trimeric, but 20 trimers can also associate to form a 

virus-like 60-mer structure. APRIL and BAFF, referred to 

as growth factors rather than cytokines by some investi-

gators, have two receptors in common: the B-cell matura-

tion antigen (BCMA) and the transmembrane activator 

calcium modulator and cyclophilin ligand interactor 

(TACI). In addition, BAFF binds specifi cally to BAFF 

receptor 3 (BR3), whereas heparin sulfate proteoglycans 

are specifi c receptors for APRIL. BAFF receptors are 

mainly expressed on B cells, but, for each receptor, cell 

membrane density varies from transitional type-1 (T1) 

B lymphocytes to plasma cells. In humans, BR3 is present 

in BT1 cells to memory B cells, but not in plasma cells.

BAFF is critical for B cells to survive in the periphery. It 

is also involved in B-cell selection by dictating set points 

for mature primary B-cell numbers and adjusting 

thresholds for specifi city-based selection during down-

stream diff erentiation. Th is cytokine has, therefore, 

aroused much interest because of its association with 

maintaining and breaching tolerance (Figure 3). Normally, 

few immature B cells successfully pass to the T2 stage. 

Irrespective of the level of receptor expression, BAFF is 

the dominant agent in the resistance of BT2 cells to 

apoptosis. In its absence, B-cell maturation is arrested at 

the T1 cell stage, while BAFF transgenic mice manifest 

T2 cell hyperplasia in their exocrine glands, which is 

reminiscent of the B-cell aggregates in the SGs of SS 

patients. Th e mice, then, develop systemic lupus erythe-

matosus and SS-like disease [64]. Th e explanation is that 

excess BAFF protects self-reactive B cells from deletion 

and allows them to move to forbidden follicle or marginal 

zone (MZ) niches [65].

In the SGs of BAFF transgenic mice, the expanded MZ 

B-cell compartment comprises self-reactive B cells 

[40,64,66], in contrast to a splenic architecture in LTα/β-

defi cient mice, which lack a structured MZ, preventing 

MZ B-cell development [67]. Noticeable in this regard is 

that the progeny of BAFF transgenic mice crossed with 

LT knockout mice lack MZ B cells and do not develop 

sialadenitis [68]. Th ese results came as no surprise, while 

more intriguingly, Treg cell expansion through B-cell-

dependent mechanisms [69] leads to profoundly 

compromised T-cell responses [70]. Based on these 

characteristics, BAFF might be regarded as a cytokine 

rather than a growth factor for B cells.

BAFF is produced by all sorts of macrophages and DCs, 

and from epithelial cells and activated T lymphocytes. Its 

mRNA has also been detected in myeloid cells, bone 

marrow-derived stromal cells, astrocytes, and fi broblast-

like synoviocytes in response to proinfl ammatory cyto-

kines. At the protein level, BAFF exists as a membrane-

associated molecule, or a cell-free protein, whereas 

APRIL occurs only in a soluble form.

BAFF overexpression and Sjögren’s syndrome

Serum levels of BAFF are increased in association with 

auto-antibodies in patients with primary SS. Moreover, 

high levels of BAFF in the serum and saliva of these 

individuals [71] are associated with anti-sicca syndrome 

A and anti-sicca syndrome B antibodies and/or rheuma-

toid factor and/or anti-double-stranded DNA antibody, 

in some [72,73], but not all [74,75], patients with SS, 

rheumatoid arthritis or systemic lupus erythematosus. 

Th ere exists, however, the issue of why serum levels of 

BAFF remain within, or even below, normal levels in a 

pro portion of SS patients [76]. In addition, estimates of 

BAFF fl uctuate with changes in infl ammatory activity. 

Convinced that such fl uctuations could be due to fl aws or 

variations in enzyme-linked immunosorbent assays, we 

developed an in-house assay [77] and detected elevated 

levels of BAFF in the sera of most SS patients.

BAFF, therefore, is a genuinely promising target for 

therapy, along with IL-6. Such a combination seems to be 

in some confl ict, since BAFF promotes B-cell responses 

whilst IL-6 promotes the Th 17 axis. However, IL-6 is also 

a prevailing factor in polyclonal activation of B cells, and 

by rescuing B cells from apoptosis, it promotes their 

production of IL-6. It is unclear at this stage which of the 

three cytokines, IL-6, BAFF or IL-17, should be con-

sidered the driving force since IL-6-induced B-cell 

activation also promotes BAFF production [32,38,42,55], 

and since local BAFF gene silencing suppresses Th 17 cell 

generation and ameliorates autoimmune arthritis [78]. 

Th ese data reveal that IL-17 is an eff ector cytokine for 

BAFF-mediated proinfl ammatory eff ects.

Figure 3. In secondary lymphoid organs and salivary glands 

of patients with primary Sjögren’s syndrome, immature B cells 

settle down before further ontogenesis. Transitional type 1 B cells 

(BT1) evolve to BT2 cells, depending on the affi  nity of antigen for 

the B-cell antigen receptor (BCR) and the amount of B-cell activating 

factor (BAFF) of the TNF family. Should the BCR signal be low, they 

move to the marginal zone (MZB); should it be high, they generate 

germinal centers within the follicle (FO).

BT1 BT2

MZB

FO

Higher
BCR

signal

Lower BCR 
signal
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Another mouse model, the Act1-knockout mouse, 

provided information on the signaling pathways induced 

by BAFF in the development of SS. Act1 is a negative 

regulator in CD40- and BAFF-mediated B-cell survival 

[79]. It is relevant that co-stimulation with BAFF rescues 

Act1-defi cient T1 and T2 B lymphocytes from BCR-

induced apoptosis. Consequently, Act1 knockout mice 

develop autoimmune manifestations similar to SS. Th us, 

Act1 is negative for B-cell-mediated humoral responses 

[80], but instead positive for the IL-17 signaling pathway 

[81].

Th ere have been reports that the aberrant production 

of these cytokines could be due to excess IFN-α produced 

by plasmacytoid DCs [82]. A credible candidate for the 

induction of IFN-α secretion by plasmacytoid DCs is 

viral infection. Alternatively, IFN-α production in SS may 

be induced by immune complexes containing nucleic 

acids. Th e role of this cytokine in SS was recently 

reviewed by Mavragani and Crow [83]. Th ey highlighted 

the noted increase in circulating type-1 IFN and an IFN 

signature in peripheral blood MNCs and minor SGs from 

SS patients [84]. Altered levels of production of this 

cytokine may be dependent on genetic and/or epigenetic 

mechanisms [85], and its blockade therefore is a logical 

therapeutic target for the treatment of SS.

More importantly, there is good evidence that local 

production of BAFF contributes to deleterious eff ects of 

activated B cells by raising their expression of CD19 

molecules [4], and ensuring survival of B-cell aggregates, 

and auto-antibody isotype switching outside and inside 

GCs [41]. Th is process is sustained by the aberrant 

expression of BAFF by B lymphocytes infi ltrating the SGs 

[86,87].

Aberrant production of BAFF by B cells in SS patients

Indeed, due to the dependency of newly formed B cells 

on BAFF, it is tempting to believe that this cytokine 

needs to be produced in tissue nearby the cell 

aggregates. We have demonstrated aberrant expression 

of BAFF not only in epithelial cells and activated T 

lymphocytes, but also by single cells isolated from the 

SGs and by B lympho cytes infi ltrating the SGs of 

patients with SS [87]. Such might be the reason why 

rituximab-induced B-cell depletion reduces the Th 17 

response [88] in rheumatoid arthritis synovium as well 

as that of normal Th 17 cells in the absence of B cells in 

culture. Th is fi nding is also consistent with in vitro and 

in vivo evidence [89] that activation of B cells induces 

BAFF and APRIL expression in B cells from normal and 

autoimmunity-prone mice. Production of BAFF by B 

lymphocytes is unusual, but malignant B cells produce 

BAFF [90], which promotes their survival in an auto-

crine manner. Th is aberrancy is caused by amplifi cation 

of the BAFF gene in B cells.

Conclusion

Th ere is little doubt that exploring the role of cytokines in 

SS is a highly promising fi eld of investigation. How the 

cells and cytokines interact to promote the development 

of SS is summarized in Figure 4. In general, B-cell deple-

tion has provided clinical benefi ts [91-95]. Some failures 

might be ascribed [95] to imbalances in Th  cell subsets or 

the depletion of Breg cells. Such striking conceptual 

advances off er novel perspectives in the treatment of 

primary SS. Clearly, IL-6, IL-17 and BAFF are major 

agents in the pathogenesis of SS and, therefore, cytokine 

targeting would have great therapeutic potential. 

Nevertheless, B-cell-directed therapies notwithstanding 

[94], much uncertainty remains as to the best therapeutic 

Figure 4. Polarization of T cells and B cells within the salivary 

gland infl ammatory response. Naïve B cells (B0) polarized in the 

presence of T helper (Th)1 cells are designated B eff ector (Be)1 

cells. Naïve T cells (Th0) polarized in the presence of Be2 cells are 

designated Th2 cells. Consequently, interconnections exist between 

the B-cell and T-cell cytokine networks. TGF, transforming growth 

factor; T Reg, regulatory T cell.
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strategy for the treatment of SS. Further development of 

biotherapies is beyond the scope of this review. However, 

we can reasonably expect progress in the near future 

based on the aforementioned new insights into distur-

bances of the cytokine networks in SS.
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