
Introduction

It is now widely acknowledged that early diagnosis of 

rheumatoid arthritis (RA) and aggressive treatment to 

control disease activity off er the highest likelihood of 

preserving function and preventing disability. RA is a 

chronic autoimmune disease characterized by poly-

articular infl ammation associated with synovitis, osteitis, 

and peri-articular osteopenia, often associated with 

erosion of subchondral bone and progressive joint space 

narrowing [1]. Th ese features commonly lead to pro-

gressive joint damage, impaired function, and progressive 

disability [2-4]. Since roughly half of RA patients suff er 

disability within 10 years of diagnosis, it is critical to 

eff ectively treat the disease early to suppress infl am-

mation and prevent destruction of bone and joint 

cartilage [5,6]. Treatment is commonly determined by 

the extent or severity of disease activity, assessed by 

counting the number of swollen and tender joints, 

measuring patient-reported outcomes (for example, 

patient global quality of life assessment), and assaying 

acute phase responses, such as the erythrocyte sedi men-

tation rate (ESR) and C-reactive protein (CRP) levels.

While infl ammation markers are clinically relevant, 

markers that reliably detect ongoing bone and cartilage 

damage are potentially more useful for timely monitoring 

of effi  cacy of treatment. Joint infl ammation and damage 

are so far assessed by various imaging methods, including 

hand and feet radiographs, hand magnetic resonance 

imaging (MRI), and high-resolution ultrasound of 

specifi c joints [7]. Biochemical markers of bone and 

cartilage turnover are also receiving increasing attention 

in other conditions characterized by joint and/or skeletal 

infl ammation and damage [8]. Th ey may provide an 

additional and potentially more sensitive method of 

detection of active bone and cartilage degradation that is 

likely to lead to structural damage in RA [0].
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An evolving line of evidence suggests that markers 

associated with clinical response may not be the same 

biomarkers that predict risk of further joint damage, as 

verifi ed by radiological progression, and thus diff erent 

marker combinations are likely to be needed, with 

specifi c combinations selected for specifi c uses, poten-

tially contri buting to personalized health care [10-12]. 

Prog nostic markers could be divided into at least two 

categories: those that predict clinical response in terms 

of signs and symptoms of RA, and those that predict and 

monitor joint damage, as detected cumulatively by 

various imaging modalities, and ultimately demonstrated 

by the clinical manifestations of deformity and 

dys func tion.

Th e aims of this review are to describe pathobiology 

that generates biochemical markers of joint metabolism/

damage in RA, including application in assay develop-

ment; to survey the current use of biochemical markers 

of joint damage in RA and some other relevant diseases; 

to discuss the limitations of some of these established 

biochemical markers, including the need for further 

research into serum and urine markers, to encourage 

optimal study designs and sample acquisition; to describe 

how biochemical markers may allow for diagnosis of 

patients who are experiencing joint damage with rapid 

degradation of bone and/or cartilage and thus are most in 

need of timely, aggressive treatment; and to discuss how 

advances in personalized health care, including mapping 

of a patient’s specifi c biomarker and clinical profi le, will 

allow treatment selection according to those that will be 

most likely to benefi t.

Pathobiological processes associated with 

progression of joint damage, and biochemical 

markers of joint damage

Th e diff erent cellular phenotypes involved in joints (osteo-

blasts, osteoclasts, chondrocytes, macrophages, B  cells, 

T  cells, fi brobast-like synoviocytes and macro phages) 

play distinct complex and inter-related roles in the patho-

genesis and progression of RA joint damage [13]. Sub-

chondral bone erosion, sclerosis and articular cartilage 

degradation leading to joint space narrowing are central 

features of joint damage in RA. Synovitis and osteitis 

associated with osteoclast activation and degra da tion of 

bone by matrix metalloproteinases (MMPs) and cathep sin 

K appear to precede erosions visualized by MRI or radio-

graphy [13-17]. Further, cytokines such as IL-1, TNF-

alpha, IL-6, and IL-17 stimulate chondrocyte activa tion 

and expression of MMPs and aggrecanases, resulting in 

articular cartilage degradation. Th us, a wide range of 

processes contribute to the pathobiology of joint damage 

that eventually leads to joint failure [3,10,11,14] (Figure 1). 

A detailed discussion of the cellular inter actions and 

molecular pathways involved in bone and cartilage 

damage in RA is out of the scope of this review, and has 

been documented elsewhere [3,10,12-15,17,].

Th e generation of a tissue-specifi c biochemical marker is 

presented in Figure 2. Th e enzymes in the infl amed joint 

generate specifi c biochemical metabolic products from the 

extracellular matrix; the actual protein frag ments of type II 

collagen and aggrecan that are the result of pathobiological 

actions in the joint are schematically presented in Figure 3. 

Th ese specifi c products, which will be described, can be 

measured [7,18], facilitating assess ment of various 

molecular, cellular and pathophysio logical processes in the 

joint. Each marker may provide unique insights into the 

pathology of the disease by allowing quantitative 

information on the level of disease activity in terms of 

target tissue damage, on the action of cytokines driving 

disease progression, and on the specifi c mode of action 

and potential effi  cacy of therapeutic interventions. Th ese 

features provide perspective for the characterization of the 

ongoing pathobiology using sets of biomarkers that 

potentially describe the type of damage occurring. A 

combination of specifi c biomarkers may thus provide 

more detailed and accurate information on joint pathology 

and ongoing structural damage than individual markers.

As described above, the biochemical markers may be 

useful by providing quantitative information on the patho-

logy and unique processes associated with joint damage in 

RA. In addition, from a patient-management perspective, 

the biochemical markers may be useful for the diagnosis of 

patients with ongoing, active damage to, and degradation 

of, bone and/or cartilage, for early detection and 

monitoring of response to treatment, and for personal izing 

health care. Patients with such ongoing, active damage and 

degradation of bone and/or cartilage might be classifi ed as 

‘rapid progressors’ and are those most in need of eff ective 

treatment. Th ey may be identifi ed by detection of abnor-

mal serum and/or urine levels of bone, synovium and/or 

cartilage degradation/turnover markers, prior to estab-

lished, irreversible damage being identifi ed using one or 

more imaging modalities. Early detection and monitor ing 

of response to treatment potentially provides more rapid 

verifi cation of control of joint damage than improve ment 

in clinical symptoms or imaging changes, since a minimum 

of 6  months is needed to ascertain radiological progres-

sion, although newer MRI technologies may detect changes 

in osteitis and synovitis within several months. Health care 

can be personalized by identifying patients most likely to 

respond or not to a particular treatment, thus enabling 

informed selection of an appropriate thera peutic agent, as 

well as timely verifi cation of its expected effi  cacy.

Biochemical markers as predictors of progression 

of structural damage

Biochemical markers of bone turnover have been used as 

standard practice to measure the eff ects of therapy in 
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osteoporosis (OP), a slowly progressing condition [17]. 

For example, early changes in CTX-I (C-terminal telo-

peptide of collagen type I), a marker of bone resorption, 

and changes in osteocalcin, a marker of bone formation, 

can be used to predict increases in bone mineral density 

[8]. In contrast to imaging techniques, biochemical 

markers of bone and cartilage turnover, measured in 

serum or urine samples collected during fasting or as 

second morning void specimens, show clinically relevant 

changes over a larger range compared with the impre-

cision of the assay (8% to 10%) [17]. A typical decrease of 

50 to 80% or an increase of 100 to 200% is observed in the 

level of biochemical markers within days to weeks after 

initiation of treatment with anti-resorptive or anabolic 

drugs [17]. However, the respective change in bone mass 

ranges from 6 to 7% after 2 years of bisphosphonate 

therapy, which is a comparatively small increment 

relative to a precision error of 1 to 2% for bone mineral 

density (BMD) measurements, as reviewed recently [17], 

and thus could be considered inferior to the dynamic 

range observed with biochemical markers. Because 

biochemical markers are sensitive and dynamic indicators 

of tissue turnover, they have the potential to provide 

information on treatment effi  cacy more rapidly than a 

variety of imaging methods (Figure 4) [16]. Th is use of 

biochemical markers of bone turnover has so far been 

validated in OP, as have markers of cartilage turnover in 

osteoarthritis (OA) [8,17]. In OP, a dynamic biochemical 

marker such as CTX-I changes within days of initiating 

treatment with anti-resorptives or the anti-receptor 

activator of NF-kB ligand (RANKL) drug denosumab, 

whereas BMD im prove ments can only be reliably 

detected over 6 to 12 months. Similarly, urinary CTX-II 

(C-terminal telo peptide of collagen type II) levels have 

been shown to predict articular cartilage degradation 

[19] in OA. Th e same markers have been examined in RA 

Figure 1. Cells involved in rheumatoid arthritis joint damage include osteoblasts, osteoclasts, chondrocytes, monocytes/macrophages, 

B cells, T cell subsets (including regulatory T cells), and fi brobast-like synoviocytes, each playing distinct complex and interrelated 

roles in its pathogenesis and progression. This cellular diversity highlights the need for biomarkers for a range of pathological events. Diff erent 

markers of cell signaling (for example, receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG)), cell diff erentiation, collagen I and 

II degradation and turnover, matrix production, and matrix degradation and the enzymes mediating that degradation may be measured. The 

pleiotrophic cytokines IL-1β, TNF-α, IL-6, and IL-17, as well as several other cytokines and chemokines, are associated with the induction of matrix 

metalloproteinases (MMPs), as well as osteoclast diff erentiation, activation and release of cathepsin K [36]. This range of interactive events leads 

to progressive joint destruction if not managed attentively, for example, using tight control strategies [15,18,22,104,140,141]. C2C, type II collagen 

fragment; CIIM, MMP mediated type II collagen degradation; CTX-I, C-terminal telopeptide of collagen type I; CTX-II, C-terminal telopeptide of 

collagen type II. 
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[20]. CTX-II as a marker of cartilage (collagen II) 

degradation and CTX-I as a marker of bone (collagen I) 

degradation in RA at 4 and 12 weeks have been demon-

strated to predict joint damage (Tables 1, 2 and 3).

Research eff orts are underway to apply these principles 

to proactive management of RA to enhance the detection 

and prevention of joint damage. X-ray imaging is the 

standard technique for diagnosis and measurement of 

effi  cacy of therapies aimed at inhibiting joint damage. 

Further eff orts are ongoing to validate the use of MRI in 

this process, and even combine the use of biochemical 

markers and imaging modalities [7,21]. In RA, joint 

damage characterized by subchondral bone erosions and 

joint space narrowing, rather than BMD as in OP, is 

measured by various scoring methods applied to X-rays 

of hands and feet. However, X-ray imaging in both 

diseases is encumbered by rather low precision and could 

conceivably benefi t from combination with biochemical 

marker analysis (Figure 4).

Need for biochemical markers to facilitate 

treatment decisions

Recently, three biological agents with novel mechanisms 

of action, rituximab, abatacept and tocilizumab, have 

become available for the treatment of RA, adding to the 

armamentarium already containing the approved TNF-α 

inhibitors (infl iximab, etanercept, adalimumab, 

certoli zu mab and golimumab). Clinical studies with these 

agents have demonstrated that they are eff ective in RA 

patients who did not respond to treatment with at least 

one disease-modifying antirheumatic drug (DMARD) 

and/or TNF inhibitor. In the absence of head-to-head 

trials, the use of specifi c biochemical markers may aid in 

diff erentiating the onset and/or the magnitude and even 

duration of effi  cacy of the diff erent drugs, and in 

understanding which patient may respond best to a given 

intervention. Th e early identifi cation of responders and 

non-responders to the increasing range of treatments for 

RA, a disease recognized to lead to loss of function and 

disability if not aggressively treated, will prove valuable to 

patients, regulators, healthcare providers and payers. Th e 

emphasis in RA management today is on early diagnosis 

and treatment to prevent the progressive joint deteri ora-

tion predominantly driven by infl ammation [22-24]. 

Selecting the most appropriate intervention has become 

increasingly complex because, for example, combinations 

of some therapies have proven more eff ective in clinical 

trials than single agents alone and also because diff erent 

interventions may be more appropriate than others 

according to the stage and risk of disease progression in 

individual patients. In some patients, joint damage pro-

gresses slowly over time and then begins to progress in a 

more rapid and dynamic fashion. In those where infl am-

mation is more severe, structural damage can occur 

Figure 2. A graphic representation of the generation of pathology-relevant neoepitopes of infl amed joint cartilage. The enzymes presently 

receiving the most attention are the matrix metalloproteinases (MMPs) and aggrecanases (ADAM-TS (a disintegrin and metalloproteinase with 

thrombospondin motifs)). The most abundant cartilage proteins are collagen type II and aggrecan. Protease-generated fragments of collagen type 

II and aggrecan produced through the action of these important enzymes, which may be relevant molecules in tissue destruction, can be used to 

monitor tissue turnover. These fragments, such as C-terminal telopeptide of type II collagen (CTX-II), may be used in clinical settings, in preclinical 

models and in simple ex vivo and in vitro systems. Figure adapted with permission from [8].
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within just a few months after disease onset. Conse-

quently, the greatest opportunity to change the course of 

the disease could be through the identifi cation of those 

patients who either have, or are at risk of developing, 

rapidly progressive disease. Using biomarkers to predict 

risk and response to therapy will not only aid the 

selection of an appropriate, eff ective intervention for the 

individual but will also protect patients with less severe 

disease from possible aggressive over-treatment and 

toxicities, and may have a signifi cant infl uence on allo-

cation of health care resources. Several biological 

markers and clinical indicators have been discovered to 

identify such patients.

Biochemical markers of joint damage

Currently, there is no single clinical or laboratory 

characteristic that identifi es RA patients with rapidly 

progressing joint damage and systemic bone eff ects. Th e 

best-characterized predictors of risk for rapid progression 

are the number of swollen joints and levels of acute-

phase reactants such as CRP and ESR. Th is is not surpris-

ing because swollen joints are a clinical manifestation of 

synovitis, and the acute-phase response acts as a 

biomarker of pro-infl ammatory cytokine production. It is 

well documented that elevated CRP is associated with 

increased risk of radiological progression in RA [24,25], 

and correlation between synovitis and subchondral bone 

Figure 3. Protease-generated neoepitopes in aggrecan and collagen type I and II. (a,b) The amino- and carboxy-terminal pro-peptides PINP 

(amino terminus propeptide of type I procollagen), PICP (carboxyl terminus propeptide of type I procollagen), PIINP (amino terminus propeptide 

of type II procollagen) and PIICP (carboxyl terminus propeptide of type II procollagen) in collagen type I (a) and collagen type II (b) are used to 

defi ne protein formation, as they are released during formation of the matrix. (a) In contrast, the degradation markers ICTP (type I collagen; MMP 

mediated) and C-terminal telopeptide of type I collagen (CTX-I; cathepsin-K mediated) located in the carboxy-terminal telopeptide are found in 

body fl uids after degradation of collagen type I. (b) The CTX-II (MMP mediated) degradation marker is located in the carboxy-terminal telopeptide 

in collagen type II. Coll 2-1, TIINE, C2C, and C2-3/4C are degradation markers located in the helix of collagen type II. (c) The aggrecan molecule is 

shown with the MMP cleavage sites (upward arrows) and ADAM-TS (a disintegrin and metalloproteinase with thrombospondin motifs) cleavage 

sites (downward arrows). CIIM is a novel MMP mediated type II collagen degradation marker [142]. Figure adapted with permission from [8].
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erosions has been established [26-29]. While not all 

patients with high disease activity that manifests in high 

swollen joint counts and elevated CRP are immediately 

eligible for biologic therapy, those who also show ongoing 

degradation of joint structure proteins may benefi t from 

the most intensive therapy, especially if effi  cacy can be 

detected early to manage benefi t and risk considerations 

[25]. Th e focus of research into joint damage biomarkers 

has been the identifi cation of proteins that might be 

surrogates of whole tissue metabolism and of bone and 

cartilage loss. One approach to identifying pathologically 

relevant molecules is to combine tissue-specifi c protein 

markers with the pathological expression of proteolytic 

enzymes. Th e action of enzymes on extracellular matrix 

components results in matrix degradation fragments, or 

neoepitopes. Th e most abundant molecules in the articular 

cartilage extracellular matrix are collagen type II and 

aggrecan. Th ese proteins are sequentially degraded when 

cartilage damage occurs in either RA or OA. Protease-

generated fragments of collagen type II and aggrecan 

produced by MMPs and aggrecanases (ADAM-TS) are 

considered relevant molecules in cartilage degra da tion 

[8] (Figure 3). Whole joint tissue pathophysiology may be 

assessed by the one or more markers of cartilage 

degradation, but these are only a subset of a larger panel 

of markers that provide information on bone and 

infl amed synovial tissue in the joint (Table 1).

As also described in Table 1, additional cartilage degra-

da tion markers are becoming available, aimed at more 

accurate and precise detection of articular cartilage 

damage. Specifi c fragments of cartilage proteins have 

been identifi ed as specifi c markers of joint damage. Much 

of this work has been applied according to the US Food 

and Drug Administration critical path for the 

development of biochemical markers in translational 

research [8], where such markers may be applied in both 

preclinical and clinical research settings.

Joint turnover markers

Infl ammatory joint diseases such as RA lead to alterations 

in the metabolism of the articular cartilage and sub-

chondral as well as periarticular bone [30-35]. Unique 

markers have been developed, and others are under 

development, to refl ect diff erent pathobiologic processes. 

How these processes occur at diff erent stages in the 

patho genesis, and result in unique metabolic products of 

joint infl ammation, is discussed in the sections below.

Cartilage turnover markers

Cartilage turnover normally occurs in a controlled 

fashion, with a balance between degradation and 

formation. However, in the infl amed joint, an imbalance 

is skewed towards degradation rather than formation 

[36]. Formation and degradation can be monitored by 

measuring several unique molecules generated during 

cartilage degradation and turnover [17]. Cartilage is pre-

domi nantly composed of collagen type II (comprising 60 

to 70% of the dry weight of cartilage) and proteoglycans 

(10% of dry weight), of which aggrecan is the most 

abundant [37]. Th e key mediators of cartilage degradation 

include the MMPs and the closely related aggrecanases, 

which are members of the ADAM-TS family [38,39]. 

Figure 4. Biochemical markers provide increased sensitivity to change compared with imaging techniques assessing joint space width 

(JSW). Figure adapted with permission from [16].
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Table 1. Biochemical markers of bone and cartilage turnover measurable in serum, urine and synovial fl uid 

Assay Target molecule Short description

Evidence of 
potential 

usefulness 

KS/mAb OA-1 Aggrecan Cartilage degradation. Sandwich ELISA using mAb to keratan sulfate and mAb OA-1 to 

AGase neoepitope ARGSVIL [143]. Detection of fragments in human synovial fl uid [143]

[143]

CS846 Aggrecan Cartilage turnover. mAb αHFPG-846 (IgM) recognizing chondroitin sulfate moieties on 

aggrecan. Manufacturer: Ibex, Canada

[144,145]

342-G2 Aggrecan Cartilage degradation. Sandwich ELISA using mAb AF28 binding to the neoepitope 

342FFGVG and monoclonal antibody F78 binding to G1/G2 for detection of MMP-

generated aggrecan fragments 

[45]

G1-G2 Aggrecan Cartilage turnover. Sandwich ELISA using mAb F78 binding to G1/G2 both as capture and 

detector antibody for detection of intact aggrecan and all aggrecan fragments carrying 

G1 and/or G2 

[45,146]

Serum CRP C-reactive protein General infl ammation. CRP, an acute phase protein, the assay for which is highly sensitive 

to detect small changes in magnitude of infl ammation 

[60,126, 

147-149]

COMP Cartilage oligomeric protein Cartilage turnover. Competition ELISA using polyclonal antibodies [58]. However, 

sandwich ELISA based on two monoclonal antibodies recognizing diff erent antigenic 

determinants is described [150]. Manufacturer: AnaMar Medical, Sweden

[60,61, 

151-155]

PICP Carboxyl terminus propeptide of 

type I procollagen

Bone formation. RIA using polyclonal antibodies raised to fi broblast PICP digested with 

bacterial collagenase [156]. Manufacturer: Orion Diagnostic, Finland

[156]

PINP Amino terminus propeptide of 

type I procollagen

Bone formation. RIA using polyclonal antibodies recognizing PINP [157]. Manufacturer: 

Orion Diagnostic, Finland. Electrochemiluminecense using mAbs to PINP. Manufacturer: 

Roche Diagnostics, Germany

[158]

CTX-I Type I collagen Bone resorption. A sandwich ELISA using mAb F1103 and F12, both binding to a 

cathepsin K-derived C-telopeptide neoepitope EKAHD-β-GGR, where D-β-G denotes 

an isomerized linkage between D and G [84]. Manufacturer: IDS, UK. Also available in an 

automated version (manufacturer: Roche Diagnostics, Germany)

[87-89]

NTX-I Type I collagen Bone resorption. EIA detecting a fragment of the N-telopeptide of type I collagen. 

Manufacturer: Inverness, US

[159] 

ICTP Type I collagen MMP-mediated type I collagen type degradation. RIA detecting a fragment of the 

C-telopeptide of type I collagen. Manufacturer: Orion Diagnostic, Finland

[81,160]

PIINP Amino terminus propeptide of 

type II procollagen

Cartilage formation. mAb recognizing the amino acid sequence GPQPAGEQGPRGDR 

located in the amino-terminal propeptide of type II procollagen [46]

[46]

PIIANP Amino terminus propeptide 

of type II procollagen, splice 

variant A

Cartilage formation. An ELISA using rabbit polyclonal antibodies raised to recombinant 

exon-2 of the amino-terminal propeptide of type II procollagen 

[71]

CPII C-propeptide of type II collagen Cartilage formation. EIA using rabbit polyclonal antibodies binding to the C-propeptides 

of type II collagen, that is, a marker of collagen synthesis. Manufacturer: Ibex, Canada

[161]

9A4/5109 Type II collagen Cartilage degradation. The collagenase-derived neoepitope GEGAAGPSGAEGPPGPQG775 

containing the carboxyl terminus of the long three-quarter fragment. mAb 5109 detects 

the fi rst underlined sequence, mAb 9A4 the second (neoepitope) 

[162]

CTX-II Type II collagen Cartilage degradation. Competition ELISA using mAb F4601 recognizing the 

C-telopeptide neoepitope EKGPDP (manufacturer: IDS, UK) and mAb 2B4 recognizing the 

C-telopeptide neoepitope EKGPDP 

[42,163]

uTIINE Type II collagen Cartilage degradation. An LC-MS/MS assay using mAb 5109 (see above) to affi  nity purify 

fragments subjected to MS/MS. Detects a collagenase-derived 45-mer containing the 

carboxyl terminus of the long three-quarter fragment 

[53,54]

HELIX-II Type II collagen Cartilage degradation. A competition ELISA using polyclonal rabbit antibodies 

recognizing the neoepitope 622ERGETGPP*GTS632, where P* denotes hydroxyproline. 

However, a recent publication has highlighted unspecifi cities [164]

[164-166]

C2C Type II collagen fragment Cartilage degradation. EIA using a monoclonal antibody recognizing the carboxyl 

terminus of the three-quarter piece of the degraded alpha1(II) chain. Manufacturer: Ibex, 

Canada

[167,168] 

C1,C2 Type II collagen fragment Collagen degradation. EIA using rabbit polyclonal antibodies binding to the carboxy-

terminal (COL2-3/4C(short)) neoepitope generated by cleavage of native human type II 

collagen by collagenases. Cross-reactivity to type I collagen 

[169]

PIIINP Amino terminus propeptide of 

type III procollagen

Collagen type II formation. RIA using polyclonal antibodies recognizing PIIINP. 

Manufacturer: Orion Diagnostic, Finland

[170] 

Continued overleaf
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Aggrecan is degraded by both MMPs and aggrecanases, 

whereas collagen type II is degraded by MMPs [40]. Th e 

action of these proteases results in the release of collagen 

and aggrecan peptide fragments that can be measured by 

ELISA-type assays both in vitro and ex vivo [17] 

(Figure  4). Since collagen type II is the most abundant 

protein in cartilage, several diff erent degradation frag-

ments of collagen type II have been identifi ed as useful 

for monitoring the impact of joint infl ammation on 

cartilage [17,41].

One example of a novel biochemical marker based on 

neoepitopes [16] is CTX-II, an MMP-generated neo epi-

tope derived from the carboxy-terminal part of type II 

collagen [42,43]. Measurement of CTX-II has proven 

useful for monitoring degradation of type II collagen in 

experimental models assessing cartilage degradation 

[17,42,43]. Cartilage degradation and formation can be 

effi  ciently studied in ex vivo cultured explants of bovine 

articular cartilage [40,44-47]. In this model, a high rate of 

cartilage degradation can be induced, for example, by the 

combination of TNF-α and oncostatin M, which induce 

cartilage degradation in a time- and concentration-

dependent manner. Th e role of MMPs is demonstrated 

by the abrogation of cytokine- induced CTX-II release by 

the addition of the MMP inhibitor GM6001, but not the 

cysteine proteinase inhibitor E64. Further, biochemical 

studies showed that both MMP-9 and MMP-13 had the 

ability to generate CTX-II fragments [40]. In addition, 

immunohistochemical localization of CTX-II revealed 

that it is highly present in areas corresponding to 

proteoglycan depletion in TNF-α- and oncostatin M-

treated explants [40]. Additional analysis of CTX-II 

demon strated that it was localized in the damaged areas 

of the articular cartilage [48-50]. In clinical studies, high 

levels of CTX-II have been shown to be associated with 

the diagnosis of OA and to predict progression of RA and 

OA joint damage [51]. Th us, the assay for this MMP-

generated collagen type II neoepitope, CTX-II, is an 

example of a clinically and pathologically validated indi-

cator of cartilage degradation, although its responsiveness 

to therapeutic intervention continues to undergo inten-

sive investigation. With further charac ter i zation in pros-

pective clinical trials, the CTX-II assay may provide an 

example that assays for neoepitopes generated by a 

specifi c combination of enzyme and matrix molecules 

are potentially relevant for monitoring risk of joint 

damage and impact of therapy. Th e development of 

assays to assess cartilage degradation and formation is 

not limited to just CTX-II (Table 4). Degradation markers 

include urinary TIINE, serum C2C, C1C2, Coll-2-1, 

ICTP and HELIX-II, and synthesis markers include 

PIINP and PIIANP, as they are based on propeptides. 

COMP and YKL-40 have also been used to assess 

cartilage degradation, but have also been characterized to 

detect matrix turnover [17,19,45,47,52-74].

Bone turnover markers

Bone turnover is a continuous process that ensures 

calcium homeostasis and bone quality [75]. Th e total 

skeleton is completely replaced every 10 years on average, 

Table 1. Continued

Assay Target molecule Short description

Evidence of 
potential 

usefulness 

Glc-Gal-PYD Glucosyl-galactosyl-pyridinoline Synovial infl ammation. HPLC method for determination of the non-reducible collagen 

cross-linker glucosyl-galactosyl-pyridinium present in synovium and absent in bone 

cartilage and other soft tissue 

[171]

Serum HA Hyaluronic acid Cartilage turnover. Based on HA binding protein isolated from bovine cartilage. 

Manufacturer: for example, Pharmacia, Sweden

YKL-40 Human glycoprotein 39 Cartilage turnover. RIA using polyclonal antibodies to a 40 kDa glycoprotein. A combined 

monoclonal capture and polyclonal (rabbit) detector sandwich assay is available. 

Manufacturer: Quidel Corporation, US

[172]

OC Osteocalcin Bone formation. Numerous assays available

MMP-3 and 

MMPs

Varous cell types Numerous assays available [173,174]

DKK1/Sclerostin Dkk-1 Measurement of Wnt signaling [175,176]

TRACP 5a Macrophages Infl ammation [111]

TRACP 5b Osteoclasts Osteoclast number. mAb to TRAcP 5b, which may be specifi c for osteoclasts but not their 

activity

[74,111, 

177,178]

Cat K Osteoclasts Osteoclast number [110]

CRP, C-reactive protein; EIA, enzyme immunoassay; HA, hemagglutinin; LC, liquid chromatography; mAb, monoclonal antibody; MMP, matrix metalloproteinase; MS/
MS, tandem mass spectrometry; RIA, radioimmune assay. Modifi ed and extended from [179].
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emphasizing the dynamic nature of this organ and 

refl ecting changes in endocrine function as well as the 

eff ects of disease, drugs, and nutritional defi ciencies [76]. 

Perturbation of this delicate balance leads to pathological 

conditions such as OP and fracture risk, that is, bone 

loss. Bone turnover is mediated by activated osteoclasts, 

which degrade the established bone matrix, and 

osteo blasts, which form new bone matrix, two processes 

that, under normal circumstances, are tightly coupled 

and balanced [77]. Th e primary osteoclast driver is 

RANKL [78], although co-stimulators such as the 

cytokines IL-1β, IL-6 and/or TNF-α co-stimulate 

osteoclasts to secrete cathepsin K into the resorption 

lacunae [79,80], resulting in degradation of the organic 

Table 2. Biochemical markers in rheumatoid arthritis clinical trials: selected studies evaluating biochemical markers

Reference N Design/study if named Therapy Markers evaluated Results/timeframe

[168] 47 Open, single arm Adalimumab MMP-1, -3; COMP Decrease at 2 years only

[55] 49 Open, single arm Infl ixamab (32)/etanercept (17) COMP Decrease at 3 months

[169] 68 Open, single arm Infl ixamab Osteocalcin Increase weeks 2 to 6

P1NP Increase weeks 2 to 6

BAP No change

CTX-I No change

ICTP Decrease week 6

[170] 102 Open, single arm Infl ixamab Osteocalcin No change

CTX-I Decrease weeks 14 to 42

RANKL Decrease week 14

OPG No change

[24] 144 Post hoc, substudy in 

DB RCT

Infl ixamab (two dose levels) 

versus MTX

CTX-I No change

Col2-3/4c No change

MMP-3 Decrease week 2

[98] 139/138 24-week DB RCT, MTX 

versus two dose levelsa

Tocilizumab Osteocalcin Increase high dose

CTX-I Decrease both doses

ICTP Decrease both doses

PIIANP Decrease, dose-related

HELIX-II Decrease, dose-related

MMP-3 Decrease, dose-related

[171] 132/124 DMARD monotherapy Sulfasalazine, MTX, and 

adjunctive corticosteroids

MMPs, TIMP-1 COMP, 

glu-gal-pyr CTX-II

2 years, AUC measurements; 

MMP-3 + CTX-II, AUC was 81% for 

predictive accuracy 

[172] 155 DMARD monotherapy Sulfasalazine, MTX, and 

adjunctive corticosteroids

CTX-I, CTX-II Normalization of CTX-II predicted 

RA intervention effi  cacy 

[106] 48 1-year, open, single arm 

(with BMD)b

Infl ixamab P1NP No change weeks 6 and 52

CTX-I Decrease week 6

ICTP Decrease week 52

CTX-II No change

[109] 66 1-year, open, single arm, 

with X-rays at baseline 

and week 52c

Infl ixamab CTX-II No change

Glc-Gal-PYD No change

[110,111] 145/157 1-year, open RCT/X-rays 

(SAMURAI)

Tocilizumab (anti-IL-6R) Osteocalcin Increase

NTX Decrease

PIIANPd Decrease

MMP-3d Decrease

aChanges with anti-IL-6R evident within 4 to 16 weeks, and at week 24 for CTX-I. bStable bone mineral density at month 12. cPatients with progressive joint damage 
had higher baseline levels. dWith hsCRP, modest correlation with progression of joint damage. AUC, area under the curve; BAP, bone alkaline phosphatase; COMP, 
cartilage oligomeric protein; CTX-I, C-terminal telopeptide of collagen type I; CTX-II, C-terminal telopeptide of collagen type II; DB, double blinded; DMARD, disease-
modifying antirheumatic drug; hsCRP, high-sensitive CRP; ICTP, type I collagen; MMP, matrix metalloproteinase; MTX, methotrexate; NTX, N-terminal telopeptide 
of collagen type I; OPG, osteoprotegerin; PIIANP, amino terminus propeptide of type II procollagen, splice variant A; PINP, amino terminus propeptide of type I 
procollagen; RA, rheumatoid arthritis; RANKL, receptor activator of NF-kB ligand; RCT, randomized controlled trial; TIMP, tissue inhibitor of metalloproteinases.
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matrix of bone. Type I collagen is the most abundant 

protein in bone [75], and its degradation by cathepsin K 

leads to the release of the CTX-I or N-terminal telo-

peptide of collagen type I (NTX) neoepitope [81,82] 

(Figure 5). CTX-I levels increase in line with elevated 

levels of IL-6 after the menopause, indicating increased 

osteoclast activity and bone resorption [83,84]. CTX-I 

can be measured in both urine and serum and decreases 

rapidly in response to anti-resorp tive treatment in OP 

[84-86]. Decreased CTX-I levels within 4 weeks of 

initiating anti-resorptive therapy corre late with BMD 

increase at 1 year, demonstrating the effi  cacy of the 

intervention [87-89]. As a result, CTX-I is being used in a 

large number of studies [88-93] to monitor the effi  cacy of 

anti-resorptive therapies.

In RA a variety of factors, such as the impact of 

systemic infl ammation, corticosteroid use, and meno-

pause, may infl uence bone resorption, bone turnover and 

skeletal status over time. Activated osteoclasts participate 

in altered bone balance since absence of osteoclasts or 

absence of osteoclast activities will lead to attenuation of 

bone resorption but only modest eff ects on cartilage 

degradation [3,94,95]. Th e role of cathepsin K has been 

extensively studied, and the data are somewhat confl ict-

ing for RA [40,96-98]. Levels of cathepsin K are in creased 

in RA, indicating that it can be used as a marker [99,100], 

although cathepsin K does not appear to be the primary 

enzyme driving bone destruction in RA [98,101,102]. 

CTX-I levels correlate only to some extent with joint 

damage in RA, and are likely also infl uenced by loss of 

skeletal structure/osteopenia/OP, which are also 

prevalent in RA [22,103,104]. MMPs also play a role in 

infl ammation-associated bone loss [105,106]. Studies 

showing that the MMP-derived collagen type I fragment 

ICTP is increased in RA may indicate that osteoclasts 

induce MMP-mediated matrix degradation under these 

circumstances [82,107,108]. Infl iximab and tocilizumab 

treatment have been shown to reduce ICTP levels, as well 

as osteoclast numbers [103,109], consistent with osteo-

clast MMP-mediated bone degradation in RA. However, 

a direct link between the production of ICTP and 

osteoclasts has not been demonstrated yet.

As illustrated in Figure 5, a range of diff erent markers is 

available for assessing bone balance in RA. Th e most 

Table 3. Biochemical markers in rheumatoid arthritis clinical trials: selected studies evaluating MRI-based measures and 

biochemical markers 

 Reference N Design/study if named Image modality Markers evaluated Results

 [180] 84 Longitudinal analysis MRI and X-ray sCTX-I and uCTX-II sOPG, sYKL-40,  sCTX-I and uCTX-II were signifi cant

     sCOMP and sMMP-3 predictors of progressive joint destruction

 [181] 377 Cross-sectional analysis MRI CTX-II Correlation of uCTX-II with BME

 [155] 98 Cross-sectional analysis MRI COMP, MMP-3, CRP COMP was elevated in those with bone 

      erosions

 [182] 72 Longitudinal analysis MRI IL-6, VEGF, YKL-40, CRP and ESR Only IL-6 correlated with disease 

      progression

BME, bone marrow edema; COMP, cartilage oligomeric protein; CRP, C-reactive protein; CTX-I, C-terminal telopeptide of collagen type I; CTX-II, C-terminal telopeptide 
of collagen type II; ESR, erythrocyte sedimentation rate; MMP, matrix metalloproteinase; OPG, osteoprotegerin; s, serum; u, urinary; VEGF, vascular endothelial growth 
factor.

Table 4. Parameters for optimal use and interpretation of markers

Biological parameters Sampling parameters  Analyte features Assay format Assay parameters Study parameters

Food intake [183] Sample acquisition Active enzyme Competitive assay Dilution recovery Mode of action

Diurnal variation [184-188] Sample matrix (serum,  Latent enzyme Sandwich assay Buff er robustness Duration of study

 urine, plasma or 

 synovial fl uid)

Seasonal variation Anticoagulant (EDTA,  Total protein Monoclonal or Range of quantization Onset of action

 heparin, citrate)  polyclonal antibody

Joint activity [189,190] Freeze-thaw cycles Fragment of the  Multiplex or other Sensitivity and limit of Number of samples, 

  protein [9] technique  detection sampling frequency 

     (time course)

Medical condition Shipping and storage   Sample volume Specifi city and Patient populationa

 conditions   selectivity of pathology 

    and parameter

Compilation of parameters known to infl uence biological variation or analytic performance of a given biochemical marker. These parameters include, but are not 
limited to, biological variation or analytical performance of a given biochemical marker. aAge, gender, menopause status, ethnicity, duration of rheumatoid arthritis, 
prior treatments such as TNF antagonists, concomitant medications such as corticosteroids, estrogen, SERMs, and bispohosphonates, and comorbidities such as 
osteoporosis, diabetes, and hypertension with or without renal insuffi  ciency.
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important markers are those of bone formation (PINP, 

osteocalcin, bone specifi c alkaline phosphatase (BSAP)) 

and bone resorption (for example, NTX and CTX), while 

assessment of osteoclast numbers by levels of the 

enzymes TRACP 5b and cathepsin K has more recently 

provided additional information complementary to bone 

resorption markers [74,110]. Another TRACP isoform, 

TRACP 5a, is a macrophage marker, and appears to 

corre late with infl ammation [111]. Circulating levels of 

the formation marker PINP correlate with histomorpho-

metric indices of bone formation [17]. Osteocalcin levels 

are characteristically low in RA, associated not only with 

systemic bone loss but also corticosteroid treatment, and 

levels may stabilize or increase with eff ective control of 

infl ammation [112-114].

In conclusion, the infl amed joint is composed of several 

tissues, each of which is subject to degradation and 

dysregulated collagen and matrix metabolism, in contrast 

to a normal joint where the balance between formation 

and degradation is tightly controlled. Changes in bio-

chemical markers generated as a result of dysregulated 

metabolism may be useful for timely detection of changes 

in response to treatment in order to limit joint damage 

and bone loss in RA.

Currently available biochemical markers of joint 

damage

Th e strategy for developing biochemical marker assays 

has evolved with experience in applying results from 

disease diagnosis and prognosis as well as from 

monitor ing the eff ects of treatments for conditions 

commonly associated with joint damage. Th e selection of 

particular assays depends on the objectives for study, but 

in most settings these include: examination of the 

mechanism of action to verify potential benefi ts in 

limiting joint damage; prediction of risk of joint damage; 

diagnosis of ongoing bone and/or cartilage degradation 

in joints; and monitoring for timely detection of onset of 

action and maintenance of eff ect to limit joint damage.

Currently available and commonly used biochemical 

marker assays are described in Table 1. Th is is not 

intended to be an exhaustive list; rather, it is intended to 

orient the reader to assays that have been commonly 

reported in clinical studies in arthritis, together with 

several assays that are currently being examined for 

improvements to meet the above objectives.

Biological marker assays for detection of tissue 

turnover in the human joint

Biochemical markers in ankylosing spondylitis - examining 

unique features of dysregulated bone and cartilage 

metabolism

Due to the paucity of information provided by standard 

clinical and laboratory parameters to guide treatment 

decisions, several of the biomarkers studied in RA have 

been analyzed in other infl ammatory joint diseases, 

particularly spondyloarthritis (SpA), on the basis that 

these disorders may share aspects of pathophysiology 

with RA. Th ere has been particular interest in evaluating 

biomarkers in AS that refl ect disease activity and predict 

Figure 5. In bone, cell activation, cell diff erentiation, matrix production, matrix degradation and the enzymes mediating that 

degradation may be measured by diff erent markers. Each marker provides unique information and may indicate both pathological aspects 

and serve as a surrogate measure of the mode of action and potential effi  cacy of therapeutic interventions [85]. BSAP, bone specifi c alkaline 

phosphatase; CTX, C-terminal telopeptide of collagen; ICTP, collagen type I fragment; NTX, N-terminal telopeptide of collagen type I; OC, 

osteocalcin; OPG, osteoprotegerin; PICP, carboxyl terminus propeptide of type I procollagen; PINP, amino terminus propeptide of type I procollagen; 

RANK, receptor activator of NF-kB; RANKL, receptor activator of NF-kB ligand. Figure adapted with permission from [85].
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structural progression [13,15,21,115]. For disease activity, 

CRP and ESR lack the sensitivity seen in RA, as these 

markers are elevated in only about 50% of ankylosing 

spondylitis (AS) patients [116]. Unlike RA, they also 

correlate poorly with clinical measures of disease activity, 

although good correlations have been noted with MRI 

evidence of infl ammation in the spine [117,118]. In 

contrast to RA, they do not appear to predict progression 

of structural damage, although similar to RA, CRP does 

predict clinical response to anti-TNF therapy [119,120].

Th e primary biomarker refl ecting tissue turnover 

related to infl ammation in AS that has been analyzed is 

MMP3. Most studies have shown lower levels of MMP3 

in SpA than in RA. Levels are elevated mainly in patients 

with concomitant peripheral joint infl ammation com-

pared to those with only axial infl ammation, and levels 

correlate with the histopathological grade of infl amma-

tion [121,122]. As for RA, there is evidence that levels of 

MMP3 can predict progression of radiographic changes, 

although for AS this means new bone formation rather 

than the erosive changes documented in RA [123]. Th is 

fi nding is one observation that supports the concept of a 

link between infl ammation and ankylosis in AS. Reduc-

tions in MMP3 levels following anti-TNF therapy corre-

lated with reductions in CRP, although MMP3 levels have 

not been shown to predict clinical response [124].

Biomarkers refl ecting cartilage turnover have been 

analyzed in limited cross-sectional studies of patients 

with AS. Elevated levels of CPII and the aggrecan 846 

epitope were observed, as they were in RA [125], and 

normalization was seen with anti-TNF therapy [126]. 

One study has shown that urinary CTX-II may predict 

progression of structural damage in AS, as also docu-

mented for RA [127]. However, unlike RA, the collagen II 

degradation markers C2C and C1-2C were not elevated.

Assessment of biomarkers refl ecting bone turnover in 

SpA have shown variable results depending on the stage 

and activity of disease, but most studies have reported 

lower levels for markers of bone resorption than in RA 

[128]. A major inhibitor of osteoblastogenesis, DKK-1, is 

markedly elevated in RA but is not predictive in AS [125], 

while sclerostin is increased in RA and reduced in AS 

[126]. Th ese changes are consistent with the excess bone 

formation observed in AS and impaired bone formation 

in RA.

In the current context, this use of biochemical markers 

in AS emphasizes that biochemical markers of bone and 

cartilage may be applied to SpA in well-controlled 

settings and studies.

Major clinical fi ndings with selected interventions 

and cohort studies

Bone and cartilage biomarkers have been used with 

various levels of success in both degenerative and 

infl am matory joint disease. Table 2 shows those 

applicable to RA in combination with X-ray imaging and 

Table 3 provides the current available publications on 

MRI and biochemical markers in RA. Th ese tables clearly 

indicate that a subset of markers have already proven 

useful for investigating effi  cacy in RA, although 

surprisingly few combinations of MRI and biochemical 

markers are currently used. Th ese tables also do not 

constitute a full list of relevant studies; important 

information is available in other publications to 

complement the condensed infor mation here 

[19,20,22,51,104,123,126,127,129-137].

Strategies for use of biochemical markers to 

enhance the benefi t:risk ratio of RA therapies

Th e lack of consensus on the optimal biochemical marker 

combination in RA is understandable given the varying 

outcomes from diverse studies in which their predictive 

value has been assessed. However, these diff ering out-

comes are likely due, at least in part, to diff erences in 

patient populations, such as varying duration of RA, and 

confounders, such as current and prior treatments, 

concomitant corticosteroids and other medications, as 

well as comorbid conditions (Table 4). Typically, studies 

with biologics with novel and unique mechanisms of 

action often recruit patients who have failed to respond 

to one or more therapies and were receiving a variety of 

concomitant medications. Th us, even though patient 

populations at fi rst glance may seem somewhat similar, 

important diff erences exist and these need to be carefully 

considered when interpreting results.

Based on our current knowledge on RA, diff erent 

marker combinations may be useful at diff erent disease 

stages for identifying severity and risk of progression of 

joint damage. Th is concept is illustrated in Figure 6a, and 

elaborated in Figure 6b-d. However, the use of bio-

chemical marker profi les to identify individual patients 

who will respond to a particular intervention, or are more 

likely to experience rapid progression of joint damage, 

still remains a major challenge.

Th e pathology of RA appears to consist of a variety of 

diff erent phenotypes. If RA is left un-segmented and the 

population treated as a whole, the proportion of patients 

experiencing remission is relatively low in most clinical 

trials. As illustrated in Figure 6b, if a biomarker combi-

nation can identify a subset of patients representing a 

given phenotype who will respond to treatment, or 

demonstrate a superior response to a specifi c therapeutic 

intervention, then response rates in this patient subset 

will be far greater than those in the unstratifi ed popu-

lation. Th is is an important socio-economic opportunity. 

By targeting the optimal treatment to patients who will 

derive the most benefi t, the most favorable benefi t:risk 

ratio will be obtained.
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Th e optimal biomarker combinations for specifi c pur-

poses and questions need to be carefully investigated, as 

illustrated in the fi gures in this paper. Combinations may 

depend on the duration and stage of disease in addition 

to the disease activity and associated eff ects on bone and 

cartilage tissues. It is now recognized that anti-TNF 

therapies may limit joint damage, even in clinical non-

responders, and responders to DMARD treatment may 

continue to experience ongoing joint damage, albeit at a 

slower rate [23,138]. Th us, a specifi c combination of 

biochemical markers may not enable discrimination 

between clinical responders and non-responders for both 

radiological progression and patient assessment schemes 

as outlined by the American College of Rheumatology 

responder criteria or Disease Activity Score systems. Th is 

feature of current therapies remains a further challenge 

for the use of ‘optimal’ combinations of biochemical 

markers and highlights the potential usefulness of bio-

chemical markers of active joint damage.

Lastly, as illustrated in Figure 6c,d and as discussed for 

the Burden of Disease, Investigative, Prognosis, Effi  cacy 

of Intervention and Diagnostic (BIPED) categorization of 

biochemical markers [139], diff erent questions can be 

addressed by using these tools. As illustrated in Figure 6c, 

prognostic markers are those able to predict who will 

progress most rapidly. Th is is an important part in 

identifi cation of those in most need of treatment. Th e 

prognostic marker may also allow for identifi cation of 

particular patient phenotypes that will respond to treat-

ment (Figure 6a,b). A marker of effi  cacy as illustrated in 

Figure  6d is a measurement at baseline or a temporal 

measurement compared to baseline, allowing the 

Figure 6. Schematic of the use and interpretation of biochemical markers. (a) Rheumatoid arthritis (RA) may consist of many diff erent 

subphenotypes, with similarities and dissimilarities, as illustrated by the overlap and non-overlap of the diff erent colored circles. If this population 

is left unsegmented, and the population treated as a whole, a relatively low number of responders may be identifi ed. (b) A biomarker combination 

may identify a subset of patients representing a given phenotype that will respond to treatment, or respond preferentially to a particular 

therapeutic intervention, increasing overall response rates. (c,d) Diff erent questions can be addressed by the use of biochemical markers. Each may 

require a diff erent biomarker subset. (c) Prognostic markers are those able to predict which patients will progress most rapidly. This is important for 

identifying those patients most in need of treatment. (d) A marker of effi  cacy will allow interpretation of potential effi  cacy far earlier than traditional 

radiological-based changes.
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interpretation of potential effi  cacy ahead of traditional 

radiological-based techniques, such as illustrated in 

Figure  2. In particular, in the fi eld of certain bone 

diseases, CTX-I is a surrogate marker of effi  cacy, aiding 

the prediction of a patient’s response to treatment before 

standard radiological assessment is possible [16].

Biomarker classifi cation

Not all biochemical markers provide the same infor-

mation. Some may be diagnostic, whereas others may aid 

prognosis, and others indicate the potential effi  cacy of 

interventions. Th us, one biomarker that may fail in one 

function or scenario may provide important information 

in another. Th is highlights the need for a framework to 

understand terminologies in the development and use of 

biochemical markers. Th e recently proposed BIPED 

classifi cation, developed by the Osteoarthritis Biomarkers 

Network, which is funded by the US National Institutes 

of Health, has further highlighted the need for under-

standing biomarkers and their use [139]. Th e BIPED 

classifi cation provides specifi c biomarker defi nitions with 

the goal of improving the development and analysis of 

OA biomarkers and of communicating advances within a 

common framework. Briefl y, the fi ve defi nitions for OA 

are burden of disease, investigative, prognostic, effi  cacy 

of intervention, and diagnostic. Burden of disease 

markers assess the severity or extent of disease, for 

example, severity within a single joint and/or the number 

of joints aff ected. Investigative is an investigative marker 

with insuffi  cient information to allow inclusion into one 

of the existing biomarker categories. Th e investigative 

category includes markers for which a relationship to 

various normal and abnormal parameters of cartilage 

extracellular matrix turnover has not yet been established 

in human subjects. Th e key feature of a prognostic 

marker is the ability to predict the future onset of OA 

among persons without OA at baseline or the progression 

of OA among those with the disease. An effi  cacy of 

intervention biomarker provides information about the 

effi  cacy of treatment among persons with OA or those at 

high risk for development of OA. Diagnostic markers are 

defi ned by the ability to classify individuals as either 

having or not having a disease.

Th is very simple yet elegant classifi cation could be used 

in other disease indications, such as RA, to foster optimal 

use, and avoid miscommunication of the benefi ts of 

selected biochemical markers.

Confounders that infl uence the application and 

interpretation of biochemical marker assay results

As many factors aff ect the measurement and inter pre-

tation of changes in levels of biochemical markers, a 

critical review of sample acquisition, storage and assay 

parameters must be undertaken to optimally assess the 

reliability of biochemical marker analysis. Some of these 

considerations are highlighted in Table 4, and the reader 

is referred to the referenced papers for an in-depth 

discus sion of the individual assays and guidance for 

appropriate, evidence-based interpretation of their 

results. Multiple biological or analyte-related factors, 

assay specifi cations, study parameters and the context in 

which the results are interpreted are often under-

estimated and ignored in the study design phase but can 

have tremendous impact on the fi nal interpretation of the 

results.

Technical performance strategies for reproducible and 

reliable biochemical marker analysis include, but are not 

limited to, the following parameters. Th e analytical 

method must be validated by the laboratory for each 

biomarker used in a clinical study before the laboratory 

begins analyzing samples from the study. Although 

manu facturers’ kit inserts provide useful assay para-

meters, it is mandatory that each laboratory verifi es it 

can reproduce these parameters. Th e validation should 

be performed on the same sample matrix (serum, plasma, 

urine or synovial fl uid) as collected in the clinical study. 

Results obtained from serum are not necessarily the same 

as those from plasma, for example. Th e analytical 

validation should include calibration curves, with at least 

six non-zero standards, intra- and inter-precisions and 

accuracy, the range of quantifi cation and sensitivity 

(lower and upper limits of quantifi cation, limit of 

detection, specifi city and selectivity, recovery, stability 

and dilution linearity. Th eoretically, to estimate intra- 

and inter-run accuracy and stability, fi ve diff erent 

validation samples should be analyzed in duplicate or 

more in at least six diff erent runs. One of the major 

problems with assays (especially microtiter plate-based 

assays) is reagent-lot variation, indicating a lack of assay 

robustness. Quality control (QC) samples with pre-

defi ned validated ranges must be analyzed together with 

the calibrators and the study sample in each run. Th ese 

QC samples must be prepared in the same matrix as the 

study samples and, whenever possible, must cover the 

range of the standards curve (lower, middle and upper 

limits). Th e run must be accepted (or rejected) based on 

the QC acceptance criteria (typically, a 4-6-X rule, where 

X is a selected percent deviation from nominal value), 

but also on the results of the calibration standards (back-

calculated value within 20% of nominal). Lastly, whenever 

possible, batches of samples collected during the fi rst 

visits of the patients, when changes in biomarker levels in 

response to drug treatment could be theoretically 

detected, should be assayed together in the same run. 

Th is should further minimize inter-assay variation.

Th ese examples serve to highlight that biochemical 

marker analysis includes a range of parameters that need 

to be carefully considered and accounted for in optimal 
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assay performance, which eventually will impact the 

results of the clinical trials.

Conclusion

RA is often characterized by progressive joint damage 

that, if not arrested by treatment, often leads to sub-

stantial limitation of function and progressive disability. 

It is evident that the nature of progressive joint damage 

varies considerably, with some RA patients experiencing 

more rapid progression than others, based on underlying 

pathobiology, levels of response to treatment, duration 

and stage of disease, as well as comorbidities and conco-

mitant medications. Patients with rapidly progressing 

joint damage may particularly benefi t from early 

aggressive treatment with a biologic agent. Consequently, 

the identifi cation of patients with ongoing joint damage 

and assurance that treatment is limiting cartilage 

degradation and improving bone balance is important in 

preventing irreversible joint damage. Biological markers 

and clinical measures can be used to help identify this 

group of patients, including elevated CRP levels and the 

number of swollen and tender joints. Additional 

application of biochemical markers, which are able to 

sensitively detect ongoing joint damage, may facilitate 

the appropriate use of targeted therapy in RA and help 

reduce the progression of joint damage in these patients.
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