
Basic functions of nitric oxide

Nitric oxide (NO) is a short-lived signaling molecule that 

plays an important role in a variety of physiologic 

functions, including the regulation of blood vessel tone, 

infl ammation, mitochondrial functions and apoptosis 

[1,2]. NO was originally identifi ed as endothelium-

derived relaxant factor based on the observations of 

Furchgott and Zawadzki [3]. Th ey observed that 

acethylcholine-induced blood vessel relaxation occurred 

only if the endothelium was intact. Some years later, the 

endothelium-derived relax ant factor was identifi ed as 

NO [4]. NO is synthesized from L-arginine by NO 

synthetases (NOSs): neuronal NOS (nNOS), inducible 

NOS (iNOS), and endothelial NOS (eNOS) [5]. NO also 

serves as a potent immuno regulatory factor, and infl u-

ences the cytoplasmic redox balance through the genera-

tion of peroxynitrite (ONOO-) following its reaction with 

superoxide (O
2

-) [6]. In addition, NO regu lates signal 

transduction by regulating Ca2+ signaling, by regulating 

the structure of the immuno logical synapse, or through 

the modifi cation of intra cellular proteins, such as by 

inter actions with heme groups (Figure 1). Here we 

summarize the eff ects of NO on T lymphocyte functions 

in both systemic lupus erythe matosus (SLE) and rheuma-

toid arthritis (RA).

NO regulates mitochondrial membrane potential in 

human T cells [7], and may both stimulate and inhibit 

apop tosis [8]. It was shown to inhibit cytochrome c 

oxidase, leading to cell death through ATP depletion 

(Figure  1). In addition, NO was shown to regulate 

mitochondrial biogenesis in U937 and HeLa cells and 

adipocytes through the cGMP-dependent peroxisome 

proliferator-activating receptor λ coactivator 1α [9]. 

According to our earlier work, NO regulates mito chon-

drial biogenesis in human lymphocytes as well [10]. 

Nitrosylation of sulfhydryl groups represents an impor-

tant cGMP-independent, NO-dependent post-trans-

lational modifi cation. Several important signal transduc-

tion proteins are potential targets of S-nitrosylation, such 

as caspases and c-Jun-N-terminal kinase (JNK) [11,12].

The role of nitric oxide in T cell activation and 

diff erentiation

NO regulates T lymphocyte function in several ways: 

T  cell activation is associated with NO production and 

mitochondrial hyperpolarization (MHP) [13]. According 

to our previous data, eNOS and nNOS are expressed in 

human peripheral blood lymphocytes and both are up-

regulated several times following T cell activation [13]. 

TCR stimulation induces Ca2+ infl ux and, through 

inositol-1,4,5-triphosphate (IP
3
), the release of Ca2+ from 

intracellular stores. Th e IP
3 

inhibitor 2-APB 

(2-aminoethoxydiphenyl borane) decreases T-cell-

activation-induced Ca2+ and NO production, and NO 
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treatment of T lymphocytes leads to an increase in mito-

chondrial and cytoplasmic Ca2+ levels. In contrast, th e 

NO che lator C-PTIO (carboxy-2-phenyl-4,4,5,5-tetra-

methyl-imidazoline-1-oxyl-3-oxide) powerfully inhibits 

the T-cell-activation-induced Ca2+ response, NO produc-

tion and MHP, indicating that T cell receptor (TCR)-

activation-induced MHP is mediated by NO [13].

A central event in the antigen-specifi c interaction of 

T  cells with antigen-presenting cells is the formation of 

the immunological synapse, in which the TCR complex 

and the adhesion receptor LFA-1 (leukocyte function-

associated antigen 1) are organized in central and 

peripheral supramolecular activation clusters. eNOS was 

shown to translocate with the Golgi apparatus to the 

immune synapse of T helper cells engaged with antigen-

presenting cells [14] (Figure 1). Overexpression of eNOS 

was associated with increased phosphorylation of the 

CD3ζ chain, ZAP-70, and extracellular signal-regulated 

kinases, and increased IFN-γ synthesis, but reduced pro-

duc tion of IL-2. Th ese data indicate that eNOS-derived 

NO selectively potentiates T cell receptor signaling to 

antigen at the immunological synapse [14].

Following activation, CD4 T cells proliferate and 

diff erentiate into two main subsets of primary eff ector 

Figure 1. Schematic diagram of T cell activation, nitric oxide production, and mitochondrial hyperpolarization. Nitric oxide (NO) is 

produced in the cytosol, the mitochondrial membrane, and at the immunological synapse of T cells. Localized NO production has been linked to 

targeting of endothelial NO synthase (eNOS) to the outer mitochondrial membrane and to the T-cell synapse. NO regulates many steps of T cell 

activation, the production of cytokines, such as IL-2, and mitochondrial hyperpolarization and mitochondrial biogenesis. NO regulates mammalian 

target of rapamycin (mTOR) activity. NO dependent mTOR activation induces the loss of TCRζ in lupus T cells through HRES-1/Rab4. Mitochondrial 

hyperpolarization is associated with depletion of ATP, which predisposes T cells to necrosis. In turn, necrotic materials released from T cells activate 

monocytes and dendritic cells. Solid arrows indicate processes upregulated by NO, while broken lines indicate processes down-regulated by NO. 

APC, antigen-presenting cell; DAG, diacylglycerol; IP
3
, inositol-1,4,5-triphosphate; LAT, linker for activation of T cells; MHC, major histocompatibility 

complex; PIP2, phosphatidylinositol 4,5-biphosphate; PLC, phospholipase C.
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cells, T helper 1 (Th 1) and Th 2 cells, characterized by 

their specifi c cytokine expression patterns [15]. Th e Th 1/

Th 2 balance is considered to be essential in chronic 

infl ammatory diseases. NO selectively enhances Th 1 cell 

proliferation [16] and represents an additional signal for 

the  induction of T cell subset response. According to our 

data, the NO precursor NOC-18 elicited IFN-γ produc-

tion, whereas the NO synthase inhibitors NG-mono-

methyl-L-arginine and nitronidazole both inhibited its 

production, suggesting a role for NO in regulating IFN-γ 

synthesis [17]. NO preferentially promotes IFN-γ syn the-

sis and type Th 1 cell diff erentiation by selective induction 

of IL-12Rβ2 via cGMP. Together, these data indicate that 

NO has a crucial role in the regulation of Th 1/Th 2 

polarization.

Nitric oxide regulates T lymphocyte activation in 

systemic lupus erythematosus

Considerable evidence supports that NO production is 

increased in SLE; for example, serum nitrite and nitrate 

levels were recently reported to correlate with disease 

activity and damage in SLE [18]. According to our 

previous work, NO plays a crucial role in T cell dys-

regulation in SLE [19-21]. Activation-induced rapid Ca2+ 

signals are higher in T cells from patients with SLE [22]; 

in contrast, the sustained Ca2+ signal is decreased in these 

lupus T cells. Interestingly, the mitochondrial membrane 

potential is permanently high in lupus T c ells [23-25]. 

Lupus and normal T cells produce comparable amounts 

of NO, but monocytes from lupus patients generate 

signifi cantly more NO than normal monocytes. As it is a 

diff usible gas, NO produced by neighboring cells may 

aff ect T cell functions. Accordingly, NO produced by 

mono cytes contributes to lymphocyte mitochondrial 

dysfunction in SLE [10]. Peripheral blood lymphocytes 

from SLE patients contain enlarged mitochondria, and as 

there are microdomains between mitochondria and the 

endoplasmic reticulum and because mitochondria may 

also serve as Ca2+ stores, this increased mitochondrial 

mass may alter Ca2+ signaling in SLE [10,26]. Although 

NO production was found to be increased in both lupus 

[10] and RA [27], MHP was confi ned to lupus T cells 

[10,13,28,29]. Th is diff erence may be attributed to the 

depletion of intracellular glutathione (GSH) in SLE but 

not in RA or healthy controls [28]. Indeed, low GSH pre-

disposes to MHP in human T cells, as originally des-

cribed by Banki and colleagues [30]. Increased exposure 

to IFN may contribute to the increased NO production of 

lupus monocytes [31].

NO regulates mammalian target of rapamycin 

activity and TCRζ expression in SLE

Th e mammalian target of rapamycin (mTOR) is a serine/

threonine protein kinase and a sensor of the 

mitochon drial transmembrane potential that regulates 

protein synthesis, cell growth, cell proliferation and 

survival [32]. Th e activity of mTOR is increased in lupus 

T cells [29] (Table 1); furthermore, NO regulates mTOR 

activity, which leads to enhanced expression of HRES-1/

Rab4, a small GTPase that regulates recycling of surface 

receptors through early endosomes [29,33]. HRES-1/

Rab4 over expression inversely correlates with TCRζ 

protein levels. TCR/CD3 expression is regulated by 

TCRζ, and dimin ished ζ chain expression disrupts TCR 

transport and function [34]. Th e TCR ζ chain is defi cient 

in lupus T cells [35,36], although this defi ciency has been 

shown to be independent of SLE disease activity [3 7,38]. 

Sequencing o f genomic DNA  and TCRζ transcripts 

showed mutations in the coding region of TCRζ from 

lupus T cells [39]. Th ere is a direct interaction between 

HRES-1/Rab4, CD4 and TCRζ. Rapamycin  treatment of 

lupus patients reversed the TCRζ defi ciency of lupus 

T cells, and normalized T-cell-activation-induced calcium 

fl uxing [29]. Th ese data suggest that NO-dependent 

mTOR activation induces the loss of TCRζ in lupus 

T  cells through HRES-1/Rab4. Several earlier fi ndings 

indicate that decreased TCRζ chain expression may also 

be independent of NO in SLE [40-44].

Consequences of increased nitric oxide production 

in rheumatoid arthritis

Several studies in patients with RA have documented 

evidence for increased endogenous NO synthesis, 

suggest ing that overproduction of NO may be important 

in the pathogenesis of RA. Th e infl amed joint in RA is the 

predominant source of NO [45,46]. Several investigators 

found correlations between serum nitrite concentration 

and RA disease activity or radiological progression while 

others did not fi nd such correlations [47,48]. NOS poly-

morphism has been observed in RA [49]. iNOS is regu-

lated at the transcriptional level, while eNOS and nNOS 

are regulated by intracellular Ca2+. Several diff er ent cell 

types are capable of generating NO in the infl amed syno-

vium, including osteoblasts, osteoclasts, macro phages, 

fi broblasts, neutrophils and endothelial cells [50-52]. 

NOS inhibition was reported to decrease disease activity 

in experimental RA [53].

We have shown recently that T cells from RA patients 

produce more than 2.5 times more NO than healthy 

donor T cells (P < 0.001) [27]. Although NO is an impor-

ta nt physiologic al mediator of mitochondrial biogenesis, 

mitochondrial mass is similar in both RA and control 

T cells (Table 1). By contrast, increased NO production is 

associated with increased cytoplasmic Ca2+ concentra-

tions in RA T cells (P < 0.001). Furthermore, in vitro 

treat ment of human peripheral blood lymphocytes or 

Jurkat cells with TNF increases NO production (P = 0.006 

and P = 0.001, respectively), whilst infl iximab treatment 
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of RA patients decreases T-cell-derived NO production 

within 6 weeks of the fi rst infusion (P = 0.005) [27]. 

Increased NO production of monocytes is associated 

with increased mitochondrial biogenesis in lupus T cells, 

while increased NO production of T cells is not asso-

ciated with increased mitochondrial mass in RA. Mono-

cytes express iNOS, while lymphocytes express both 

eNOS and nNOS. Although NO is generated more 

rapidly via the eNOS or nNOS than the iNOS pathway, 

iNOS can generate much larger quantities of NO than 

eNOS and nNOS. Th us, the lower amount of NO 

generated by T cells compared to monocytes may explain 

the diff erences in T lymphocyte mitochondrial biogenesis 

that we observed for lupus and RA T cells.

iNOS knockout mice are resistant to IL-1-induced 

bone resorption, suggesting that NO plays a central role 

in the pathogenesis of bone erosions in RA [51,54]. TNF 

blockade decreases iNOS expression in human peripheral 

blood mononuclear cells [55]. Tripterygium wilfordii 

Hook F (TWHF) was also reported to be eff ective in the 

treatment of experimental arthritis [56]. Th e specifi c 

inhibition of iNOS by TWHF is probably responsible for 

the anti-infl ammatory eff ects of this medicinal plant. NO 

treatment may lead to necrosis rather than apoptosis by 

decreasing intracellular ATP levels. Th e release of 

intracellular antigens through necrosis may accelerate 

autoimmune reactions leading to chronic infl ammation 

[57,58].

Oxidative stress and TCRζ expression in RA T cells - 

the possible role of NO

Reduced GSH levels may contribute to the hypo respon-

sive ness of T cells from synovial fl uid of RA patients 

[59,60]. Th e expression of the TCR ζ chain protein is 

decreased in synovial fl uid T cells of RA patients, similar 

to lupus T cells, which may contribute to the above-

mentioned hyporesponsiveness of the synovial fl uid 

T  cells [61]. TNF-α treatment decreases TCR ζ chain 

expression of T cells [62] in a GSH-precursor-sensitive 

way, showing the role of redox balance in the regulation 

of TCR ζ chain expression. TCRζ overexpression does 

not restore signaling in TNF-α-treated T cells [63]. 

Increased NO production may alter redox balance 

through generating peroxynitrite following its reaction 

with superoxide. In this way NO may contribute to the 

decreased TCR ζ chain expression of T lymphocytes 

from synovial fl uid [61]. Importantly, FcR gamma substi-

tutes for the TCR ζ chain in SLE T cells [64], which may 

explain the enhanced T-cell-activation-induced Ca2+ 

fl uxing. Th e potential role of NO in the regulation of FcR 

gamma expression clearly needs further investi gation.

Th17 and regulatory T cells

Recently, the Th 1/Th 2 paradigm has been updated 

follow ing the discovery of a third subset of Th  cells, 

known as Th 17 cells. Th 17 cells have been identifi ed as 

cells induced by IL-6 and TGF-β and expanded by IL-23 

[65]. Similarly to Th 1 and Th 2 subsets, Th 17 development 

relies on the action of a lineage-specifi c transcription 

factor. Th 17 cells have emerged as an independent subset 

because their diff erentiation was independent of the Th 1 

and Th 2 promoting transcription factors T-bet, STAT1, 

STAT4 and STAT6. ROR-γt, RORα and STAT3 appear to 

be critical for the development of Th 17 cells. Th 17 cells 

produce IL-17 and are thought to clear extracellular 

pathogens that are not eff ectively handled by either Th 1 

or Th 2 cells, and have also been strongly implicated in 

allergic diseases [66]. In addition to IL-17, Th 17 cells 

produce other proinfl ammatory cytokines such as IL-21 

and IL-22. Increased levels of IL-17 have been observed 

in patients with RA. Indeed, IL-17 can directly and 

indirectly promote cartilage and bone destruction. IL-17-

defi cient mice develop attenuated collagen-induced 

arthritis. Th e role of NO in IL-6- and TGF-β-induced 

Th 17 cell diff erentiation has not been studied yet.

Regulatory T cells (Tregs) represent a subset of T cells 

involved in peripheral immune tolerance. Th ere are at 

least three major types of Tregs with overlapping func-

tions: Th 3, Treg1, and CD4+CD25+ Tregs. CD4+CD25+ 

Tregs (naturally occurring cells or nTREGs) are the best 

characterized, principally because it is relatively easy to 

obtain large numbers of these cells. Tregs seem to have 

Table 1. Nitric oxide-induced T cell functions in sysemic lupus erythematosus and rheumatoid arthritis

Altered T cell function SLE RA

Mitochondrial hyperpolarization and biogenesis Higher [10] Normal [27]

T lymphocyte NO production Normal [10] Increased [27]

TCR-induced rapid and sustained Ca2+ signal Rapid-increased, sustained-decreased [10] Normal [22]

TCRζ expression Decreased [34] Decreased [61]

mTOR activity Increased [29] Not known

ATP level Decreased [28] Normal [28]

Monocyte NO production Increased [10] Increased [46]

mTOR, mammalian target of rapamycin; NO, nitric oxide; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; TCR, T cell antigen receptor.
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an impaired regulatory function in RA. It was recently 

reported that NO, together with anti-CD3, induces the 

proliferation and sustained survival of mouse CD4+CD25- 

T cells, which became CD4+CD25+ but remained Foxp3-. 

Th is previously unrecognized population of Tregs 

(NO-Tregs) downregulated the proliferation and function 

of freshly purifi ed CD4+CD25- eff ector cells in vitro and 

suppressed colitis- and collagen-induced arthritis in mice 

in an IL-10-dependent manner [67]. Th e existence of 

human NO-Tregs has not been investigated yet. 

Although NO profoundly alters T cell activation and 

Th 1/Th 2 balance, the precise role of NO in Th 17 and 

Treg diff  erentiation is not known.

Conclusion

Whilst NO plays a central role in many physiological 

processes, its increased production is pathological. NO 

mediates many diff erent cell functions at the site of 

synovial infl ammation, including cytokine production, 

signal transduction, mitochondrial functions and apop-

tosis (Table 1). Th e eff ects of NO depend on its concen-

tration. Increased NO production plays an important 

role in the pathogenesis of both SLE and RA. Further 

studies are needed to determine the cellular and mole-

cular mechanisms by which NO regulates immune cell 

functions. NOS inhibition may represent a novel thera-

peutic approach in the treatment of chronic autoimmune 

diseases.
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