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Abstract

Introduction Rat adjuvant-induced arthritis (AIA) and collagen-
induced arthritis (CIA) feature bone loss and systemic increases
in TNFα, IL-1β, and receptor activator of NF-κB ligand (RANKL).
Anti-IL-1 or anti-TNFα therapies consistently reduce
inflammation in these models, but systemic bone loss often
persists. RANKL inhibition consistently prevents bone loss in
both models without reducing joint inflammation. Effects of
these therapies on systemic markers of bone turnover and
inflammation have not been directly compared.

Methods Lewis rats with established AIA or CIA were treated
for 10 days (from day 4 post onset) with either PBS (Veh), TNFα
inhibitor (pegsunercept), IL-1 inhibitor (anakinra), or RANKL
inhibitor (osteoprotegerin (OPG)-Fc). Local inflammation was
evaluated by monitoring hind paw swelling. Bone mineral
density (BMD) of paws and lumbar vertebrae was assessed by
dual X-ray absorptiometry. Markers and mediators of bone
resorption (RANKL, tartrate-resistant acid phosphatase 5b
(TRACP 5B)) and inflammation (prostaglandin E2 (PGE2), acute-
phase protein alpha-1-acid glycoprotein (α1AGP), multiple
cytokines) were measured in serum (day 14 post onset).

Results Arthritis progression significantly increased paw
swelling and ankle and vertebral BMD loss. Anti-TNFα reduced

paw swelling in both models, and reduced ankle BMD loss in
AIA rats. Anti-IL-1 decreased paw swelling in CIA rats, and
reduced ankle BMD loss in both models. Anti-TNFα and anti-IL-
1 failed to prevent vertebral BMD loss in either model. OPG-Fc
reduced BMD loss in ankles and vertebrae in both models, but
had no effect on paw swelling. Serum RANKL was elevated in
AIA-Veh and CIA-Veh rats. While antiTNFα and anti-IL-1 partially
normalized serum RANKL without any changes in serum TRACP
5B, OPG-Fc treatment reduced serum TRACP 5B by over 90%
in both CIA and AIA rats. CIA-Veh and AIA-Veh rats had
increased serum α1AGP, IL-1β, IL-8 and chemokine (C-C motif)
ligand 2 (CCL2), and AIA-Veh rats also had significantly greater
serum PGE2, TNFα and IL-17. Anti-TNFα reduced systemic
α1AGP, CCL2 and PGE2 in AIA rats, while anti-IL-1 decreased
systemic α1AGP, IL-8 and PGE2. In contrast, RANKL inhibition
by OPG-Fc did not lessen systemic cytokine levels in either
model.

Conclusions Anti-TNFα or anti-IL-1 therapy inhibited
parameters of local and systemic inflammation, and partially
reduced local but not systemic bone loss in AIA and CIA rats.
RANKL inhibition prevented local and systemic bone loss
without significantly inhibiting local or systemic inflammatory
parameters.
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α1AGP: acute-phase protein alpha-1-acid glycoprotein; AIA: adjuvant-induced arthritis; BMD: bone mineral density; BSA: bovine serum albumin; 
CCL2: chemokine (C-C motif) ligand 2; CIA: collagen-induced arthritis; ELISA: enzyme-linked immunosorbent assay; Fc: constant domain of immu-
noglobulin; H & E: hematoxylin and eosin; IL: interleukin; NF: nuclear factor; OPG: osteoprotegerin; PBS: phosphate-buffered saline; PEG = polyeth-
ylene glycol; PGE2: prostaglandin E2; RA: rheumatoid arthritis; RANKL: receptor activator of NF-κB ligand; TNF: tumor necrosis factor; TRACP 5B: 
tartrate-resistant acid phosphatase 5b; Veh: vehicle.
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Introduction
Rheumatoid arthritis (RA) is an immune-mediated disease that
affects synovial membranes, articular cartilage, and bone.
Arthritis progression is associated with chronic soft tissue
inflammation, which is commonly followed by joint destruction.
RA is initiated and maintained by interacting cascades of
proinflammatory cytokines [1,2]. TNFα and IL-1 are key medi-
ators of inflammation in patients with inflammatory arthritis [3-
6]. Their central importance is demonstrated by the ability of
anti-TNFα and anti-IL-1 therapies to markedly reduce clinical
and structural measures of disease in arthritic patients [7,8]
and in animals with induced arthritis [9-14]. While inhibition of
IL-1 or TNFα yields significant anti-inflammatory effects in rats
with adjuvant-induced arthritis (AIA) [10,15,16] and in human
arthritis [17-19], focal bone erosions in affected joints and sys-
temic bone loss are not fully prevented.

Focal bone erosions within inflamed joints are a hallmark of
immune-mediated arthritis and have been attributed to exces-
sive osteoclast activity [20-22] mediated primarily by receptor
activator of NF-κB ligand (RANKL), also known as osteoclast
differentiation factor (ODF), osteoprotegerin (OPG) ligand
(OPGL), and TNF-related activation-induced cytokine
(TRANCE). RANKL is an essential mediator of bone resorp-
tion. RANKL and its natural inhibitor OPG play important roles
in the skeletal deterioration associated with RA [23]. In animal
models, RANKL inhibition with recombinant OPG inhibits
bone erosions in rats with AIA or collagen-induced arthritis
(CIA) [16,21,24-26], and in transgenic mice overexpressing
TNFα [27,28]. TNFα and IL-1β have been shown to stimulate
RANKL expression [29,30], which could contribute to the
increases in RANKL and to the bone erosions that have been
documented in rats with CIA or AIA [31] and in arthritic
patients [32]. Consistent with this, anti-TNFα therapy has
been shown to significantly reduce serum RANKL in arthritic
patients [32]. The effects of anti-IL-1 therapy on serum RANKL
have not been previously examined in arthritis settings, and
were therefore a focus of the current study.

In addition to focal bone erosions, inflammatory arthritis is also
a systemic disease characterized by bone loss in locations
away from affected joints [28,33-35], increased serum con-
centrations of bone turnover markers [36], and increased con-
centrations of circulating markers and mediators of
inflammation [36-39]. To date, there are only limited data
regarding the effects of anti-TNFα, anti-IL-1 or anti-RANKL
therapies on systemic bone loss in arthritis patients [40], and
there are no comparative data on the effects of these therapies
on systemic markers or mediators of inflammation in either
human or preclinical models.

Arthritis progression in two rat models - AIA and CIA - is
thought to arise from distinct immunopathogenic mechanisms
[41], a notion recently substantiated by descriptions of their
divergent cytokine profiles [38,39]. The current studies were

therefore conducted in rats with AIA or CIA to compare and
contrast the effects of specifically inhibiting TNFα, IL-1 or
RANKL on local and systemic bone loss, and on systemic
markers and mediators of inflammation. The novelty of the cur-
rent study is based on the fact that these therapies were intro-
duced at the peak of the clinical phase of arthritis to more
closely model the clinical scenarios where they might be
administered to human patients, in contrast to previous publi-
cations where treatments were already started at the onset of
arthritis. We hypothesized that RANKL inhibition would pre-
vent local and systemic bone loss without inhibiting systemic
markers and mediators of inflammation in both AIA and CIA
rats, while inhibition of IL-1 or TNFα would suppress systemic
levels of proinflammatory cytokines in these two arthritis mod-
els. Furthermore, based on the ability of TNFα and IL-1 to
directly induce RANKL expression, we hypothesized that inhi-
bition of TNFα or IL-1 would indirectly act to reduce RANKL
levels in arthritic rats.

Materials and methods
Animals
Lewis rats (7 to 8 weeks old; Charles River Laboratories,
Wilmington, MA, USA) were acclimated for 1 week and then
randomly assigned to treatments (see below). Animals
received tap water and pelleted chow (#8640, Harlan Labora-
tories, Indianapolis, IN, USA) ad libitum; the calcium and phos-
phorus contents were 1.2% and 1.0%, respectively. These
studies were conducted in accordance with federal animal
care guidelines and were pre-approved by the Institutional Ani-
mal Care and Use Committee of Amgen Inc.

Induction of arthritis
Both AIA and CIA were induced as detailed previously
[10,16]. Briefly, AIA was incited in male rats by a single intra-
dermal injection into the tail base of 0.5 mg heat-killed myco-
bacteria H37Ra (Difco, Detroit, MI, USA) suspended in
paraffin oil. CIA was elicited in female rats by intradermal injec-
tions (at 10 sites scattered over the back) of porcine type II
collagen (1 mg total; Chondrex, Redmond, WA, USA) emulsi-
fied 1:1 with Freund's incomplete adjuvant (Difco).

Treatments
For both the CIA and AIA models, rats were randomly
assigned to one of the following single-agent treatment groups
(n = 8/group): PEGylated soluble TNF receptor type I (peg-
sunersept) at 4 mg/kg/day (by daily subcutaneous bolus), IL-1
receptor antagonist (anakinra) at 100 mg/kg/day (by subcuta-
neous infusion using an Alzet osmotic minipump; Durect
Corp., Cupertino, CA, USA), or a modified version of OPG
(consisting of the RANKL-binding portion of OPG linked with
the constant (Fc) domain of IgG) at 3 mg/kg/day (given every
other day by subcutaneous bolus). All molecules were fully
human recombinant proteins made by Amgen Inc. (Thousand
Oaks, CA, USA). In addition, each model included a vehicle
(Veh) control group (PBS, pH 7.4, given by daily
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subcutaneous bolus). Doses for all agents were selected
based on the levels established in previous studies [10,15].
Treatments were started 4 days after the onset of clinical dis-
ease (that is, after both local inflammation and erosion were
well established) [16,38,39] and were continued for 10 days.

Evaluation of paw swelling as a parameter of arthritis-
induced local inflammation
Hind paw swelling was examined by measuring the average
hind paw volume via water plethysmography (for AIA rats) [10]
or measuring the hind paw diameter via precision calipers (for
CIA rats) [31].

Histology and immunohistochemistry of ankles and 
vertebrae
At the end of the study (day +14 post onset), the left ankle and
lumbar vertebrae were removed, fixed by immersion in zinc for-
malin, decalcified in eight serial changes of a 1:4 mixture of 8
N formic acid and 1 N sodium formate for approximately 1
week, trimmed along the longitudinal axis, and processed into
paraffin. Sections (3 μm) were deparaffinized, pretreated with
Antigen Retrieval Citra (BioGenex, San Ramon, CA, USA),
incubated with polyclonal anti-cathepsin K antibody (Amgen
Inc.) at 1 μg/ml for 1 hour at room temperature, and then
quenched with 3% H2O2. The location of the anti-cathepsin K
antibody was detected by EnVision Labelled Polymer Horse-
radish Peroxidase (Dako, Carpenteria, CA, USA) followed by
application of diaminobenzidine (Dako). All sections were
counterstained with H & E for analyses.

Histology slides were examined by routine light microscopy,
and the severity of inflammatory cell infiltration was scored
using a tiered, semi-quantitative scale: 0 = no infiltrate; 1 =
minimal (few cells in perisynovial and synovial tissues); 2 =
mild (infiltrating cells more numerous in perisynovial and syno-
vial tissues, and/or in bone marrow immediately beneath joints;
occasional small clusters of inflammatory cells); 3 = moderate
(inflammatory cell infiltrate more intense in perisynovial and
synovial tissues, and often extending into adjacent perios-
seous tissues including ligaments, tendons, and skeletal mus-
cle and/or in bone marrow immediately beneath joints;
occasional dense aggregates of inflammatory cells); and 4 =
marked (increasing intensity of inflammatory cell infiltrate in
synovial and perisynovial tissues, and extending into adjacent
periosseous tissues and/or widely dispersed in bone marrow;
often several dense aggregates of inflammatory cells). The
slides were examined without knowledge of the treatment
group on two occasions separated by several days.

Bone mineral density evaluation
Left ankle areal bone mineral density (BMD) and vertebral
BMD were measured in anesthetized rats on the day of arthri-
tis onset (day 0) and at the end of the study (day 14) by dual
X-ray absorptiometry (QDR 4500a; Hologic, Inc., Bedford,
MA, USA).

Biochemical evaluation of serum markers and mediators
Separate aliquots of terminal serum were used to quantify lev-
els of various analytes. The serum concentration of OPG-Fc
was assessed individually for OPG-Fc-treated animals by an
inhouse-developed ELISA (Amgen Inc.). Briefly, ELISA plates
were precoated with mouse anti-human IgG (Abcam, Cam-
bridge, MA, USA) as a capture reagent, incubated overnight at
4°C and blocked for 1 hour at room temperature with a 1%
BSA solution in PBS (Kirkegaard and Perry Laboratories Inc.,
Gaithersburg, MD, USA). Standards (human OPG-Fc gener-
ated inhouse; Amgen Inc.) and study samples were loaded
into the wells and incubated for 1 hour at room temperature.
After a wash step, horseradish peroxidase-conjugated anti-
human OPG detection antibody (generated inhouse; Amgen
Inc.) was added and incubated at room temperature for 1 hour.
Following a final wash step, a tetramethylbenzidine-peroxidase
substrate (Kirkegaard and Perry Laboratories Inc.) was added
to the plate. The reaction, visualized by color development,
was stopped with 2 M sulfuric acid and the absorbance (opti-
cal density) was measured at 450 nm wavelength (Spec-
traMax M5 plate reader; Molecular Devices Corp., Sunnyvale,
CA, USA). The conversion of optical density units for the study
samples to concentration was achieved through a computer
software-mediated comparison with a standard curve devel-
oped during the same analytical run using four-parameter
curve-fitting software (Softmax Pro; Molecular Devices Corp.).

The major rat acute-phase protein alpha-1-acid glycoprotein
(α1AGP) was measured with a precipitin ring assay (Ecos
Institute, Miyagi, Japan). Prostaglandin E2 (PGE2) was evalu-
ated using an enzyme immunoassay kit (Cayman Chemical,
Ann Arbor, MI, USA).

Multiple cytokines (RANKL, OPG, chemokine C-C motif ligand
2 (CCL2), IL-17, TNFα, IL-8 and IL-1β) and C-reactive protein
were assessed using multiplex or singleplex, rat-specific
Luminex kits (Linco Research, St Charles, MO, USA). Due to
the interference of pharmacological concentrations of OPG-
Fc with capture and/or detection antibodies used for RANKL
and OPG assays, we were not able to effectively evaluate
serum levels of rat RANKL and rat OPG in samples collected
from OPG-Fc-treated animals.

The serum concentration of the bone resorption marker tar-
trate-resistant acid phosphatase 5b (TRACP 5B) was evalu-
ated by enzyme immunoassay (RatTRAP; SBA Sciences,
Oulu, Finland).

All of the commercial assays were performed according to the
manufacturers' instructions.

Regression analyses
Correlations of the BMD percentage change or the paw swell-
ing percentage change versus serum concentrations of
RANKL, TNFα or IL-1β were established using linear
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regression analysis (GraphPad Prism software, GraphPad
Software, Inc., La Jolla, CA, USA).

Statistical analyses
Data represent means ± standard error of the means. Compar-
isons between the groups were made by one-way analysis of
variance followed by Dunnett's post-test, with P < 0.05 indi-
cating statistical significance. Comparisons were made for
each group versus nonarthritic controls, versus arthritic vehi-

cle-treated animals, or versus arthritic OPG-Fc-treated ani-
mals, as indicated.

Results
Effects of anti-TNFα, anti-IL-1, or anti-RANKL therapy on 
local joint inflammation
Based on previously reported results [16,38,39], anti-TNFα,
anti-IL-1, or anti-RANKL therapy was begun on day 4 after ini-
tial onset of arthritis, when paw swelling was at or near its peak
in both CIA and AIA rats (Figure 1a). At this time point, the paw

Figure 1

Effect of anti-TNFα, anti-IL-1, or anti-RANKL therapy on hind paw swellingEffect of anti-TNFα, anti-IL-1, or anti-RANKL therapy on hind paw swelling. Effect of PEGylated soluble TNF receptor type I (TNFRI), IL-1 receptor 
antagonist (IL-1Ra) or osteoprotegerin (OPG)-Fc on hind paw swelling. (a) Hind paw swelling was assessed on day 4 post onset, prior to the begin-
ning of therapies. Swelling was assessed in adjuvant-induced arthritis (AIA) rats by measuring average hind paw volume via water plethysmography, 
and in collagen-induced arthritis (CIA) rats by precision caliper measurements of paw diameter. (b), (c) Percentage changes in paw swelling in AIA 
and CIA rats, as measured from the time of treatment initiation (day 4) to day 14. Data represent means ± standard error of the means, n = 8/group. 
cSignificantly different from control (nonarthritic) rats, P < 0.05. vSignificantly different from vehicle (Veh)-treated arthritic rats, P < 0.05. oSignifi-
cantly different from osteoprotegerin-treated arthritic rats, P < 0.05.
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volume was increased by 70% in AIA rats (compared with
non-AIA controls, P < 0.05) while the paw diameter was
increased by 30% in CIA animals (P < 0.05 compared with
non-CIA controls). After 10 days of treatment with anti-TNFα,
paw swelling was significantly reduced in AIA rats, an effect
that ultimately reversed much of the swelling that developed
prior to treatment (Figure 1b). In contrast, there was no signif-
icant effect of anti-IL-1 or anti-RANKL therapy on paw swelling
in AIA rats. In CIA rats, anti-IL-1 therapy induced significant
reversal of paw swelling, which resulted in near normalization
of paw dimensions (Figure 1c). Anti-TNFα therapy partially
corrected paw swelling in CIA rats, although less effectively
than anti-IL-1. Anti-RANKL therapy had no significant effect on
paw swelling in CIA rats.

The results of histological evaluation of rat ankles for inflamma-
tion are summarized in Table 1. Inflammatory cell infiltration
into and around affected joints was decreased in CIA rats
treated with anti-TNFα or anti-IL-1. A similar effect on inflam-
matory cell infiltration was not seen with anti-RANKL treatment
of CIA rats. None of the therapies reduced the extent of inflam-
matory cell infiltration into arthritic joints of AIA rats. In contrast
to the ankles, inflammation was absent in histological sections
from vertebra in AIA and CIA groups treated with vehicle (Fig-
ure 2) or in sections from anti-TNFα-treated, anti-IL-1-treated
and anti-RANKL-treated groups (data not shown). The latter
finding indicated that inflammation was not a prominent fea-
ture of skeletal pathology at sites far distant from arthritic
joints.

Effects of anti-TNFα, anti-IL-1, or anti-RANKL therapy on 
local and systemic bone loss
Local bone loss within inflamed hind paws was evaluated by
dual X-ray absorptiometry analysis, with data presented as the
percentage change in ankle BMD from day 0 (onset of arthri-
tis) to the end of the study (day 14 post onset). Ankle BMD
was reduced by 35% in vehicle-treated AIA rats, and by 8.5%
in vehicle-treated CIA rats (Figure 3a, b; both P < 0.05 versus
healthy controls).

Treatment of AIA rats with anti-TNFα or anti-IL-1 reduced
ankle BMD loss, although these treatments did not provide full
protection as compared with healthy controls (Figure 3a). The
preservation was more modest for anti-IL-1. In contrast, anti-
RANKL therapy fully prevented ankle BMD loss (Figure 3a). In
the CIA rat model, anti-TNFα therapy yielded modest preven-
tion of ankle BMD loss (nonsignificant versus healthy controls;
Figure 3b), anti-IL-1 therapy provided nearly complete protec-
tion of ankle BMD, and anti-RANKL therapy fully prevented
ankle BMD loss (Figure 3b).

As with the ankle, vertebral BMD loss was greater in the AIA
model compared with the CIA model (-18.5% vs. -10.8%,
respectively, relative to healthy controls). Unlike the ankle,
however, neither anti-TNFα nor anti-IL-1 therapies significantly

Figure 2

Lumbar vertebrae from nonarthritic control and vehicle-treated adju-vant-induced arthritis and collagen-induced arthritis ratsLumbar vertebrae from nonarthritic control and vehicle-treated adju-
vant-induced arthritis and collagen-induced arthritis rats. Representa-
tive photomicrographs of lumbar vertebrae from nonarthritic control and 
vehicle (Veh) (PBS)-treated adjuvant-induced arthritis (AIA) and colla-
gen-induced arthritis (CIA) rats. The trabeculae beneath the physeal 
plate (pale vertical column at the left margin) were attenuated in arthritic 
animals but the bone marrow composition and density - including the 
population of subphyseal osteoclasts (brown cells, cathepsin K-posi-
tive) - were equivalent among nonarthritic and arthritic animals. Stain: 
immunohistochemistry for cathepsin K with H & E counterstain. Magnifi-
cation: ×100.

Non-arthritis  Control

AIA+Veh

CIA+Veh
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prevented vertebral BMD loss in either model (Figure 3c, d). In
contrast, anti-RANKL therapy afforded partial but significant
preservation of vertebral BMD in AIA rats (Figure 3c), and non-
significant preservation of vertebral BMD in CIA rats (Figure
3d). It is noteworthy that initial dual X-ray absorptiometry
measurements were obtained 4 days prior to the initiation of

treatments, by which time some irreversible bone loss might
have already occurred.

Effects of anti-TNFα, anti-IL-1, or anti-RANKL therapy on 
serum RANKL and TRACP 5B
Serum RANKL was significantly increased in vehicle-treated
AIA and CIA rats (2.9-fold and 2.6-fold, respectively; P < 0.05

Table 1

Histological evaluation of inflammation in rat hind paws

Treatment group Inflammation score

Adjuvant-induced arthritis Collagen-induced arthritis

Nonarthritis control 0†,‡ 0†,‡

Arthritis + vehicle 3.8 ± 0.1* 3.1 ± 0.1*

Arthritis + PEGylated soluble TNF receptor type I 3.6 ± 0.3* 2.0 ± 0.3* ,†,‡

Arthritis + IL-1 receptor antagonist 3.8 ± 0.2* 1.2 ± 0.1* ,†,‡

Arthritis + osteoprotegerin-Fc 3.8 ± 0.2* 3.4 ± 0.2*

Data represent mean ± standard error of the means, n = 8/group. *Significantly different from control (nonarthritic) rats, P < 0.05. †Significantly 
different from vehicle-treated arthritic rats, P < 0.05. ‡Significantly different from osteoprotegerin-treated arthritic rats, P < 0.05.

Figure 3

Effect of anti-TNFα, anti-IL-1, or anti-RANKL therapy on bone mineral densityEffect of anti-TNFα, anti-IL-1, or anti-RANKL therapy on bone mineral density. Effects of PEGylated soluble TNF receptor type I (TNFRI), IL-1 recep-
tor antagonist (IL-1Ra) or osteoprotegerin (OPG)-Fc on areal bone mineral density (BMD) of the (a), (b) ankle and (c), (d) lumbar vertebrae. Base-
line BMD measures were obtained by dual X-ray absorptiometry on the day of onset for clinical arthritis (day 0). Treatments were initiated on day 4, 
and final BMD was measured on day 14 post onset. Data represent means ± standard error of the means, n = 8/group. cSignificantly different from 
control (nonarthritic) rats, P < 0.05. vSignificantly different from vehicle (Veh)-treated arthritic rats, P < 0.05. oSignificantly different from OPG-
treated arthritic rats, P < 0.05. AIA, adjuvant-induced arthritis; CIA, collagen-induced arthritis.
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versus healthy controls). In AIA and CIA rats, anti-TNFα or anti-
IL-1 therapy partially normalized serum RANKL, to levels that
were significantly lower than in vehicle-treated arthritic con-
trols but were still significantly higher than in healthy (nonar-
thritic) controls (Figure 4a, b). AIA or CIA rats treated with
human OPG-Fc had 177 ± 23.8 μg/ml circulating OPG-Fc at
the end of the study. The interference of pharmacological
amounts of OPG-Fc with the capture and/or detection anti-
bodies used in the commercial assays prevented reliable
determination of the concentration of endogenous OPG in ani-

mals treated with OPG-Fc. Endogenous serum OPG concen-
trations in AIA and CIA animals (180 ± 67 pg/ml) were not
different from those in nonarthritis groups and were not
affected by anti-TNFα or anti-IL-1 therapies. Serum TRACP
5B, an osteoclast marker, was not altered in vehicle-treated
AIA rats, and was modestly but significantly lower in vehicle-
treated CIA rats (P < 0.05 versus healthy controls). Anti-TNFα
or anti-IL-1 therapy did not significantly alter serum TRACP 5B
values in either model, while anti-RANKL therapy reduced
serum TRACP 5B by over 90% in both models, thereby con-

Figure 4

Effect of anti-TNFα, anti-IL-1, or anti-RANKL therapy on bone resorption markersEffect of anti-TNFα, anti-IL-1, or anti-RANKL therapy on bone resorption markers. Effects of PEGylated soluble TNF receptor type I (TNFRI), IL-1 
receptor antagonist (IL-1Ra) or osteoprotegerin (OPG)-Fc on serum levels of the bone resorption markers (a), (b) receptor activator of NF-κB ligand 
(RANKL) and (c), (d) tartrate-resistant acid phosphatase 5b (TRACP-5B) in (a), (c) adjuvant-induced arthritis (AIA) rats and in (b), (d) collagen-
induced arthritis (CIA) rats. Values were determined on day 14 post onset, 10 days after the initiation of treatment. Data represent means ± standard 
error of the means, n = 8/group. cSignificantly different from control (nonarthritic) rats, P < 0.05. vSignificantly different from vehicle (Veh)-treated 
arthritic rats, P < 0.05. oSignificantly different from OPG-treated arthritic rats, P < 0.05.
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firming that RANKL was significantly inhibited by OPG-Fc
(Figure 4c, d).

Effects of OPG-Fc on serum levels of inflammation 
markers
Recent analyses demonstrated that numerous markers and
mediators of inflammation are consistently elevated in the AIA
and CIA models from day 4 through day 14 after disease onset
[38,39]. Figures 5 and 6 provide data on the inflammatory

markers that were significantly elevated in vehicle-treated ani-
mals from one or both models.

Vehicle-treated AIA rats exhibited significant increases in
serum α1AGP, CCL2, C-reactive protein, IL-17, TNFα, IL-8, IL-
1β, and PGE2 (Figure 5). In this model, anti-TNFα significantly
reduced α1AGP, CCL2, C-reactive protein and PGE2, while
anti-IL-1 significantly reduced α1AGP and PGE2 (all P < 0.05
versus vehicle-treated controls).

Figure 5

Serum markers and mediators of inflammation in adjuvant-induced arthritis (AIA) ratsSerum markers and mediators of inflammation in adjuvant-induced arthritis (AIA) rats. Values were determined on day 14 post onset, 10 days after 
the initiation of treatment. Data represent means ± standard error of the means, n = 8/group. cSignificantly different from control (nonarthritic) rats, P 
< 0.05. vSignificantly different from vehicle (Veh)-treated arthritic rats, P < 0.05. oSignificantly different from osteoprotegerin (OPG)-treated arthritic 
rats, P < 0.05. α1AGP, acute-phase protein alpha-1-acid glycoprotein; AIA, adjuvant-induced arthritis; CCL2, chemokine (C-C motif) ligand 2; CRP, 
C-reactive protein; PGE2, prostaglandin E2.
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Vehicle-treated CIA rats exhibited significant increases in
serum α1AGP, CCL2, IL-8, and IL-1β (Figure 6). In this model,
anti-TNFα significantly reduced serum α1AGP, CCL2 and IL-
1β, while anti-IL-1 significantly reduced serum α1AGP, IL-8
and IL-1β (all P < 0.05 vs. vehicle-treated controls). OPG-Fc
treatment had no significant effect on markers or mediators of
inflammation in either model, with the sole exception of a 58%
increase in serum IL-8 in the CIA rat model. Serum IL-8 levels
in OPG-treated AIA rats were similar to levels found in AIA
vehicle controls.

Relationships between serum cytokines, local and 
systemic bone loss, and joint inflammation
Linear regression analyses were performed to determine the
extent to which serum levels of biochemical markers predicted
changes in BMD or paw swelling as a marker of local inflam-
mation. With the exception of the OPG-Fc group, for which
RANKL could not be reliably measured, all groups were com-
bined to test the hypothesis that serum RANKL regulates
BMD in each model independent of treatment. Consistent with
this hypothesis, serum RANKL was significantly and inversely

Figure 6

Serum markers and mediators of inflammation in collagen-induced arthritis (CIA) ratsSerum markers and mediators of inflammation in collagen-induced arthritis (CIA) rats. Values were determined on day 14 post onset, 10 days after 
the initiation of treatment. Data represent means ± standard error of the means, n = 8/group. cSignificantly different from control (non-arthritic) rats, 
P < 0.05. vSignificantly different from vehicle (Veh)-treated arthritic rats, P < 0.05. oSignificantly different from osteoprotegerin (OPG)-treated 
arthritic rats, P < 0.05. α1AGP, acute-phase protein alpha-1-acid glycoprotein; CCL2, chemokine (C-C motif) ligand 2; CIA, collagen-induced arthri-
tis; CRP, C-reactive protein; PGE2, prostaglandin E2.
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correlated with the percentage change in ankle BMD, with R2

values of 0.40 and 0.35 in the AIA and CIA models, respec-
tively (both P < 0.001; Figure 7a, b). Serum RANKL was also
significantly and inversely correlated with the percentage
change in vertebral BMD, with R2 values of 0.20 (P = 0.015)
in the AIA but not in the CIA model (Figure 7c, d). Serum
RANKL did not correlate significantly with paw swelling in
either model, with R2 values of 0.08 and 0.04 in the AIA and

CIA models, respectively (regressions not shown). Paw swell-
ing was significantly and positively correlated with serum IL-1β
in AIA rats (R2 = 0.15, P = 0.017) and CIA rats (R2 = 0.27, P
= 0.001) (Figure 7e, f), while serum TNFα correlated with paw
swelling in AIA rats (R2 = 0.25, P = 0.0015) but not in CIA rats
(R2 = 0.03, P = 0.31) (regressions not shown).

Figure 7

Linear regression analyses of serum cytokines versus local bone loss or local inflammationLinear regression analyses of serum cytokines versus local bone loss or local inflammation. (a) to (d) Bone loss was quantified as the percentage 
change in areal bone mineral density (BMD) from the day of onset for clinical arthritis (day 0) to day 14 post onset. (e) and (f) Paw swelling was 
quantified as the percentage change from day 4 post onset (treatment initiation) to day 14 post onset. Serum receptor activator of NF-κB ligand 
(RANKL) and IL-1β were evaluated on day 14 post onset. Open circles, nonarthritic controls + vehicle; black circles, arthritis + vehicle; open trian-
gles, arthritis + IL-1 receptor antagonist; grey diamonds, arthritis + PEGylated soluble TNF receptor type I; grey circles, arthritis + OPG-Fc. n = 8/
group. AIA, adjuvant-induced arthritis; CIA, collagen-induced arthritis.
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Discussion
The cytokines TNFα, IL-1 and RANKL are commonly elevated,
locally and/or systemically, in inflammatory arthritis
[31,38,39,42,43]. These molecules are thought to interact in
numerous ways that can exacerbate disease. The current stud-
ies were conducted to increase understanding of the relative
contributions of these proinflammatory and pro-erosive
cytokines to the local and systemic components of inflamma-
tion and bone loss.

Inhibition of TNFα or IL-1 typically inhibits local inflammation in
arthritic animals and patients, while partially preventing local
bone loss [10,16,26,44,45]. The differential response of RA
patients to anti-TNFα or anti-IL-1 therapies demonstrates that
the disease variants in certain RA patient populations are
driven preferentially by either TNFα or IL-1. This premise is
confirmed by our demonstration in the present study that anti-
TNFα is more effective at reducing clinical indices of AIA,
while anti-IL-1 is more efficacious against CIA. This outcome
is consistent with prior AIA and CIA studies in rats showing
that these two models exhibit differential sensitivity to various
cytokine blockers [38,39].

Two conundrums in interpreting rodent arthritis studies are the
incongruity between anti-inflammatory efficacy as predicted by
clinical (that is, paw swelling) versus structural (that is, his-
topathology) measurements for any given model, and the
divergence of anti-arthritic efficacy among different models in
the same species. Joint inflammation in rat arthritis models
chiefly presents as soft tissue edema superimposed on leuko-
cyte infiltration. Anti-cytokine agents readily alter leukocyte
function to thwart the additional release of proinflammatory
molecules that increase vascular permeability, but these
agents are noncytotoxic and do not completely remove exist-
ing inflammatory cell infiltrates.

With respect to the first incongruity, therefore, the divergent
clinical and structural responses in a given rodent arthritis
model result from the action of cytokine inhibitors to largely
alleviate paw swelling while only partially reducing leukocyte
influx, even if anti-inflammatory therapy is initiated the day of
disease onset [10]. Such residual disease is even more likely
if treatment is not initiated until disease has become estab-
lished, as was done in the present study by delaying treatment
until 4 days after disease onset. The second incongruity - the
divergence of anti-arthritic efficacy between AIA and CIA -
reflects the twin facts that CIA is a milder disease than AIA
(Figures 1 and 2, and Table 1) and that progression of the two
models is mediated by distinct immunopathogenic mecha-
nisms [41]. With respect to the dominant pro-arthritic
cytokines, AIA is driven mainly by TNFα [39] while CIA is
impelled principally by IL-1 [38]. Our current data confirm this
model-specific dependence on divergent cytokine profiles, as
administration of either anti-IL-1 or anti-TNFα in CIA signifi-
cantly decreased local indices of arthritis (paw swelling and

leukocyte infiltration), while anti-IL-1 had no effect on local
inflammation and anti-TNFα significantly reduced only paw
swelling in AIA (Figures 1 and 2, and Table 1).

Such divergence between clinical versus structural predictors
of anti-inflammatory efficacy has also been reported following
administration of TNFα blockers to mice with established CIA
[46] or following overexpression of human TNFα in transgenic
mice with chronic polyarthritis [45]. A probable explanation for
this divergence is that TNFα is primarily responsible for tissue
swelling [47], presumably in part due to its role in augmented
vessel permeability by upregulating synoviocyte and monocyte
production of vascular endothelial growth factor [48], while IL-
1 is more consequential in regulating leukocyte infiltration and
eventual joint destruction [47]. Human clinical experience sug-
gests that the outcomes noted in these rat arthritis models are
also typical in human patients in which RA continues to
smolder despite the clinical appearance of remission.

RANKL is a pro-resorptive cytokine that is consistently overex-
pressed in arthritic joints of animals with inflammatory arthritis
[31,49]. RANKL can be produced by T cells and can promote
the survival of dendritic cells in vitro, suggesting a potential
immunomodulatory role [50,51]. Anti-RANKL therapy, how-
ever, consistently fails to influence inflammatory parameters
within arthritic joints of experimental arthritis models, despite
its ability to prevent arthritis-related bone loss in the face of
ongoing inflammation [21,22,24,26,45,52,53]. Similar find-
ings are evident in RA patients. Despite high expression of
RANKL in human arthritic synovium [20], RANKL inhibition via
denosumab had no significant effect on measured parameters
of inflammation in RA patients [54]. These data suggest that
the predominant and perhaps exclusive role of RANKL in
arthritis is to promote local and systemic bone loss. There are
minimal data, however, on the effects of RANKL inhibitors on
systemic parameters of inflammation in disease models. In CIA
rodents, RANKL inhibition had no significant effects on serum
levels of anti-type II collagen [53,55] or on paw swelling [16],
but cytokine profiles were not reported.

In two well-characterized rat arthritis models (CIA and AIA),
significant increases in circulating levels of numerous inflam-
matory markers have been described - some of which are over-
lapping, while others are unique to only one model [38,39].
The clinical stage (from day +4 post onset forward) of both
CIA and AIA is characterized by systemic upregulation of
acute-phase proteins, IL-1β, IL-8, CCL2 and RANKL, whereas
an increase of TNFα, IL-17 and PGE2 is elevated exclusively in
clinical AIA. We exploited these divergent marker profiles to
directly compare for the first time the effects of selective inhi-
bition of RANKL, TNFα or IL-1 on systemic (circulating) mark-
ers of inflammation. Both anti-inflammatory therapies
(PEGylated soluble TNF receptor type I and IL-1 receptor
antagonist) significantly inhibited concentration of acute-
phase proteins in serum of AIA and CIA rats. Anti-TNFα ther-
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apy was shown to significantly reduce serum PGE2 and CCL2
in AIA rats, and to significantly reduce IL-1β and CCL2 in CIA
rats. Anti-IL-1 therapy significantly reduced serum PGE2 in AIA
rats, while significantly reducing IL-8 and IL-1β in CIA rats. Nei-
ther of these anti-inflammatory therapies reduced IL-17, one of
the major contributors of initiation and progression of arthritis
in animal models [39,56].

Recent studies have shown that adenoviral overexpression of
IL-17 did not induce joint inflammation in TNFα-deficient mice
but did incite the inflammation in IL-1-deficient mice and wild-
type controls [57]. This strong IL-17 dependency on TNFα
was lost, however, when IL-17 was overexpressed in combina-
tion with arthritic stimuli, such as KxB/N serum or streptococ-
cal cell-wall derivatives [57]. Additional IL-1 blockade
demonstrated that such loss of TNFα dependency under
arthritic conditions was not the result of synergic effects of IL-
1 with IL-17 [57]. Hence, despite the strong dependency of IL-
17 on TNFα in a naive joint, IL-17 acts both synergistically with
and independent of TNF and IL-1 under arthritis conditions
[57,58]. Our current observation that anti-TNFα and anti-IL-1
therapies had no effect on increased circulating IL-17 levels in
rat AIA supports the hypothesis that IL-17 acts upstream of IL-
1 and TNF in experimental arthritis [59,60].

In contrast to anti-TNFα or anti-IL-1 therapies, anti-RANKL
therapy with OPG-Fc did not produce any evidence of immu-
nomodulation/immunosuppression at either the local or the
systemic levels. The only observed effect of anti-RANKL ther-
apy on the immune system was an increase in IL-8 that was
evident in the CIA model. This response might be specific to
this disease model, as RANKL inhibition did not influence
serum IL-8 in transgenic adult rats (or mice) that continuously
overexpressed high systemic levels of OPG [61], nor in AIA
rats from this study. IL-8 is produced by monocytes and oste-
oclasts in arthritis [62], and its major role is thought to be as a
chemoattractant for monocytes and granulocytes to inflamed
sites [63]. There is also evidence that IL-8 can stimulate the
formation and activity of cultured osteoclasts [64]. On the
other hand, RANKL - a major maturation factor for osteoclast
precursors - is also chemotactic for the recruitment of circulat-
ing monocytes at bone remodeling sites [65]. Prior work has
also shown that RANKL is chemotactic for human monocytes
[65].

Since OPG-Fc therapy inhibits osteoclasts [16] but not local
and systemic inflammation in CIA rats, we hypothesized that
the 1.6-fold increase in serum IL-8 may be due to the accumu-
lation of osteoclast precursors and/or monocytes in the blood-
stream secondary to the inhibition of their osteoclastic
differentiation. This hypothesis is consistent with the observa-
tion that OPG-Fc treatment in the CIA model (but not in the
AIA model) was associated with a modest but significant
increase in circulating monocytes (from 7.5% in CIA-Veh to
11% in CIA-OPG-Fc, P < 0.05). Our findings also suggested

that, in apparent contrast to data from cell culture studies [64],
the ability of IL-8 to promote osteoclast formation or activity in
vivo does require RANKL.

RANKL inhibition by OPG-Fc markedly reduced bone resorp-
tion in both models. OPG prevented bone loss locally in
inflamed joints and also in far-distant lumbar vertebrae (Figure
3), while causing profound reductions in serum TRACP 5B in
both models (Figure 4). Interestingly, anti-TNFα and anti-IL-1
each afforded partial prevention of bone loss in ankle joints in
both models, but not in lumbar vertebrae of either model (Fig-
ure 3). This apparent difference could be related to the pres-
ence of substantial increased inflammatory cell infiltrates in
hind paws but not in vertebrae, as previously described in AIA
rats [66]. In paws, the direct inhibition of local inflammatory
cells by anti-TNFα or anti-IL-1 could have reduced their ability
to produce RANKL in response to proinflammatory cytokines,
several of which remained significantly elevated despite those
therapies. The absence of inflammatory cell infiltrates as ther-
apeutic targets in lumbar vertebrae, coupled with the persist-
ent elevation of serum RANKL in rats treated with anti-IL-1 or
anti-TNFα, might explain the lack of significant vertebral BMD
preservation with those therapies.

The partial normalization of serum RANKL in rats treated with
anti-TNFα or anti-IL-1 is consistent with previous evidence that
RANKL is a downstream mediator of bone resorption subject
to regulation by TNFα or IL-1 [30,67,68]. Cell culture studies
have suggested that TNFα and IL-1 can promote osteoclast
formation or activity independently of RANKL [69,70]. Neither
IL-1 nor TNFα, however, were capable of stimulating bone
resorption in RANK knockout mice [71,72], or in mice treated
with OPG [73]. Consistent with those findings, OPG-Fc treat-
ment was able to fully prevent bone loss and markedly reduce
TRACP 5B in AIA and CIA rats (Figure 4), even though their
serum TNFα and IL-1 levels remained significantly elevated
(Figure 5). It therefore remains to be demonstrated that TNFα
or IL-1, alone or in combination, can stimulate bone resorption
in vivo in a manner that is truly independent of RANKL.

The BMD loss associated with AIA was greater in magnitude
(-35%) than that associated with CIA (-8.5%). AIA rats also
exhibited significant increases in PGE2 and IL-17, neither of
which was significantly elevated in CIA rats. PGE2 has been
shown to increase RANKL mRNA in bone marrow cells, and
PGE2 inhibition via indomethacin reduces RANKL mRNA [74].
Similarly, IL-17 has been shown to stimulate RANKL mRNA
expression in synovial fibroblasts, while IL-17 inhibition
reduces RANKL expression [29,75]. The disease-specific
increases in PGE2 and/or IL-17 observed in AIA rats thus
might have contributed to the excessive bone loss in this arthri-
tis model relative to CIA. Alternatively, this excessive bone loss
in AIA could be related to the significant increase in serum
TNFα, which was not observed in CIA rats.
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The present study has several limitations. Circulating levels of
the osteoclast marker TRACP 5B did not respond to arthritis
induction in a manner consistent with the increases in osteo-
clasts that occurred with both models. A detailed time course
of serum TRACP 5B, conducted previously with AIA and CIA
rats, also revealed no significant disease-related increases in
serum TRACP 5B [31]. The same study, however, demon-
strated marked increases in TRACP 5B in protein extracts
obtained from inflamed joints [31]. These findings suggest that
TRACP 5B reflects bone resorption more accurately when
measured locally rather than systemically, at least in these two
rat models. Another limitation of the current study pertains to
the single time point used for some of the data analyses, and
the use of single dose levels for each inhibitor. The timing and
duration of treatment were chosen to begin at the peak of clin-
ical disease and to proceed through the major period of dis-
ease progression, as established in previous studies
[31,38,39]. It therefore remains possible that the local and
systemic cytokine profiles, and the responses to each specific
anti-cytokine intervention, might vary as a function of treatment
timing or the therapeutic dose selected.

Conclusions
In summary, inhibition of TNFα or IL-1 reduced not only local
inflammation but also systemic inflammation as evident by
decreased levels of several proinflammatory markers and
mediators in two rat models of immune-mediated arthritis.
Local inflammation was best predicted by serum IL-1β levels
in both models, while serum TNFα also modestly predicted the
degree of local inflammation in the AIA model. Anti-TNFα or
anti-IL-1 also partially prevented pathologic increases in serum
RANKL and local bone loss in inflamed ankles in both models
without preventing systemic bone loss in non-inflamed verte-
brae. In contrast, the direct pharmacologic inhibition of RANKL
by OPG-Fc prevented local (joint) and systemic (vertebral)
bone loss in both models, without inhibiting any measured
local or systemic parameter of inflammation. Serum RANKL
levels predicted the extent of local and systemic bone loss in
both models, independent of treatment condition, while show-
ing no correlation with local inflammation. Collectively, these
observations add to a growing body of evidence indicating
that RANKL does not regulate local inflammation in either AIA
or CIA in rats, while further supporting the premise that
RANKL is a common and important downstream mediator of
local and systemic bone loss in these models [16,21,24-26].
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