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Abstract

Besides atherosclerosis and lung cancer, smoking is considered to
play a major role in the pathogenesis of autoimmune diseases. It
has long been known that there is a connection between
rheumatoid factor-positive rheumatoid arthritis and cigarette
smoking. Recently, an important gene—environment interaction has
been revealed; that is, carrying specific HLA-DRB1 alleles
encoding the shared epitope and smoking establish a significant
risk for anti-citrullinated protein antibody-positive rheumatoid
arthritis. We summarize how smoking-related alteration of the
cytokine balance, the increased risk of infections (the possibility of
cross-reactivity) and modifications of autoantigens by citrullination
may contribute to the development of rheumatoid arthritis.

Introduction

It has long been known that there is a connection between
seropositive rheumatoid arthritis (RA) and smoking. The exact
underlying mechanism, however, has only been speculated.

Cigarette smoking is one of the major environmental factors
suggested to play a crucial role in the development of several
diseases. Disorders affecting the great portion of the
population, such as atherosclerosis, lung cancer or cardio-
vascular diseases, are highly associated with tobacco con-
sumption. More recently, it has been reported that smoking is
involved in the pathogenesis of certain autoimmune diseases
such as RA, systemic lupus erythematosus, systemic
sclerosis, multiple sclerosis and Crohn's disease.

Firstly, Vessey and colleagues described an association
between hospitalization due to RA and cigarette smoking,
which was an unexpected finding of their gynecological study
[1]. Since then several population-wide case—control and
cohort studies have been carried out [2]. For example, a
population-based case—control study in Norfolk, England
showed that ever smoking was associated with a higher risk
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of developing RA [3]. Only an early Dutch study from 1990
involving female RA patients (control patients with soft-tissue
rheumatism and osteoarthritis) reported that smoking had a
protective effect in RA, albeit they only investigated recent
smoking and their controls were not from the general
population [4]. Investigations have elucidated that many
aspects of RA (rheumatoid factor (RF) positivity, severity, and
so forth) can be linked to smoking. Recent data suggest that
cigarette smoking establishes a higher risk for anti-citrulli-
nated protein antibody (ACPA)-positive RA. In the present
paper we attempt to give a thorough review of this field,
concerning the main facts and hypotheses in the
development of RA in connection with smoking.

Smoking and immunomodulation

Smoking in general

Smoking is considered to have a crucial role in the
pathogenesis of many diseases and, as a significant part of
the population smokes, it is one of the most investigated and
well-established environmental factors. Cigarette smoke
represents a mixture of 4,000 toxic substances including
nicotine, carcinogens (polycyclic aromatic hydrocarbons),
organic compounds (unsaturated aldehydes such as
acrolein), solvents, gas substances (carbon monoxide) and
free radicals [56]. Many data suggest that smoking has a
modulator role in the immune system contributing to a shift
from T-helper type 1 to T-helper type 2 immune response;
pulmonary infections are increased, immune reactions against
the invasion of microorganisms are depleted (see below), and
(lung) tumor formation is augmented.

Exposure to cigarette smoke results in the depression of
phagocytic and antibacterial functions of alveolar macro-
phages (AMs) (Table 1) [6,7]. Although AMs from smokers
are able to phagocytose intracellular bacteria, they are unable

ACPA = anti-citrullinated protein antibody; AM = alveolar macrophage; CCP = cyclic citrullinated peptide; EBV = Epstein—Barr virus; HLA = human
leukocyte antigen; IFN = interferon; IL = interleukin; LPS = lipopolysaccharide; NARAC = North American Rheumatoid Arthritis Consortium; NF =
nuclear factor; PAD = peptidyl arginine deiminase; PTPN22 = protein tyrosine phosphatase nonreceptor 22; RA = rheumatoid arthritis; RF =
rheumatoid factor; SE = shared epitope; siRNA = small interfering RNA; SONORA = Study of New Onset Rheumatoid Arthritis; TNF = tumor

necrosis factor.
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Table 1

Effects of smoking

Effect of smoking Details

Immune cells
macrophages [6,7].

Exposure to cigarette smoke results in the depression of phagocytic and antibacterial functions of alveolar

Killing of intracellular bacteria in smokers’ alveolar macrophages is impaired [8].

Owing to smoke condensate, the primary immune response is diminished [9].

Chronic smoking causes T-cell anergy [10,15].

Nicotinic acetylcholine receptor is involved in the suppression of antimicrobial activity [16].

Nicotine decreases the induction of antigen-presenting cell-dependent T-cell responses in dendritic cells [10].

Nicotine attenuates neutrophil functions such as superoxide production [10].

Cytokine production
animals is decreased [11,12].

Due to smoke exposure, lipopolysaccharide-induced TNF secretion of alveolar macrophages from experimental

Smokers’ alveolar macrophages release less TNFo, IL-1 and IL-6 [13,14].

Nicotine decreases the production of IL-12 in dendritic cells [10].

Nicotinic acetylcholine receptor is involved in the downregulation of IL-6, IL-12, and TNFo. [16].

Acetylcholine attenuates the release of TNF, IL-1 and IL-6 in lipopolysaccharide-induced human macrophage cultures [17].

Hydroquinone causes suppression in the production of IL-1, IFNy and TNFa. in human macrophages [19].

Hydroquinone inhibits IFNy secretion in lymphocytes [20].

Unsaturated aldehydes evoke the release of IL-8 and TNFo. in human macrophages [21].

Oxidative stress

Smoke contains high amounts of free radicals.

Smoke induces the depletion of intracellular glutathione, resulting in cell injury [23].

Owing to smoking, redox-sensitive NF-kB and activator protein-1 are activated [22].

Activator protein-1 is a cis-acting factor bound to the promoter of PAD4 [27].

Agents, acting on cysteine sulfhydril groups, inactivate peptidyl arginine deiminase, while reduced compounds

enhance its activity [28].

Peptidyl arginine deiminase expression and activity are increased in the lungs of smokers [29].

Anti-estrogenic effect

Fibrinogen

Smoking has an anti-estrogenic effect through the formation of inactive estrogens [30].

Smokers have higher levels of serum fibrinogen [31].

to kill the bacteria — which consequently implies the deficiency
of these cells in smokers [8]. Cigarette smoke condensate,
administered to mice, leads to a decrease in primary antibody
response [9]. Chronic smoking results in T-cell anergy by
impairing the antigen receptor-mediated signaling [10].

Smoking induces a decline in TNF production, which is
supported by several data in the literature. In the work of
Higashimoto and colleagues, in vivo exposure to tobacco
smoke caused a significant decrease in the production of
TNFo by AMs after lipopolysaccharide (LPS) stimulation. /n
vitro exposure of AMs to tobacco smoke extracts (water-
soluble extracts) also caused a drop in the secretion of TNFo.
with stimulation of LPS [11].

Owing to chronic smoking, AMs from rats significantly
increase the generation of superoxide anion and release high
amounts of TNFa after smoking sessions; when challenged
with LPS, however, even though a more pronounced cytokine
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secretion can be found, it is not as marked as in the control
groups [12]. It therefore seems that macrophages of
experimental animals are activated, but at the same time are
somehow depressed, and respond less to LPS.

In line with the abovementioned observations, the capacity of
AMs of healthy smokers to release TNFa, IL-1 and IL-6 is
significantly decreased [13,14].

Nicotine

Data on alterations of macrophage functions by nicotine
(such as pinocytosis, endocytosis, microbial killing and
reducing TNFa secretion induced by LPS) date back more
than 40 years [6]. It is known that various kinds of immune
cells carry nicotinic and muscarinic acetylcholine receptors
(T cells and B cells), through which the nervous system and
also the immune system itself can modulate and coordinate
the proliferation, differentiation and maturation of immune
cells [10]. It is suggested that the major portion of acetyl-



choline in the circulating blood originates from T-cell lines.
The thymic epithelium as well as T cells in the thymus express
nicotinic acetylcholine receptor, as do mature lymphocytes
[10]. Chronic smoking leads to T-cell anergy, while its acute
effects are primarily mediated via the activation of the hypo-
thalamic—pituitary—adrenal axis [10,15]. The nicotinic acetyl-
choline receptor is involved in the suppression of anti-
microbial activity and cytokine responses (downregulation of
IL-6, IL-12, and TNFa, but not that of the anti-inflammatory
cytokine IL-10) of AMs [16].

In recent work of Borovikova and colleagues, acetylcholine
significantly attenuated the release of cytokines (TNF, IL-1
and IL-6, but not anti-inflammatory IL-10) in LPS-induced
human macrophage cultures [17]. Particularly the a., subunit,
mediated by the inhibition of NF-xB, has a role in the
alteration of cytokine responses [18]. Nicotine also affects
the quality of antigen presentation: in mature dendritic cells,
nicotine exposure decreases the production of proinflam-
matory T-helper type 1 IL-12, and decreases the capacity of
dendritic cells to induce antigen-presenting cell-dependent
T-cell responses. Other reports contradict this, however,
suggesting that the effect of nicotine on mature dendritic
cells is proinflammatory in nature. Moreover, nicotine alters
various neutrophil functions; for example, attenuates super-
oxide anion production [10].

All of these data suggest an immunosuppressive effect of
nicotine on the immune system, inhibiting various functions of
almost all immune cell types.

Other organic compounds

Hydroquinone is found in high concentrations in cigarette
smoke, causing prominent suppression in the production of
IL-1, IFNy and TNFo. in human peripheral blood macrophages
[19]. Hydroquinone seems to also significantly inhibit IFNy
secretion in lymphocytes in a dose-dependent manner. In
addition, hydroquinone treatment results in the reduction of
IFNY secretion in effector CD4* T cells and T-helper type 1-
differentiated CD4* T cells. These findings provide evidence
that hydroquinone may suppress immune responses and
contribute to the increased incidence of microbial infections
caused by cigarette smoking [20].

Besides hydroquinone, other organic compounds are also
present in cigarette smoke. Certain data suggest that un-
saturated aldehydes such as acrolein and crotonaldehyde,
contained in the aqueous phase of cigarette smoke extract,
can evoke the release of neutrophil chemoattractant IL-8 and
TNFo in human macrophages [21], which can be inhibited by
N-acetyl-cysteine or glutathione monoethyl ester. Endogenous
unsaturated aldehydes are found in high amounts in chronic
obstructive pulmonary disease patients and are involved in the
promotion of inflammation, so the exogenous analogues in
smoke may have similar effects impeded by glutathione
derivates.
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Oxidative stress

Chronic smoking as a repetitive trigger causes marked
oxidative stress in the body [5], which might be responsible
for a constant inflammatory process. High amounts of
exogenous free radicals contained in smoke can react to
endogenous nitrogen monoxide, producing the harmful
peroxy nitrite and decreasing the protective effect of nitrogen
monoxide. Smoke also induces the production of
endogenous free radicals; for example, reactive oxygen
species (peroxide, superoxide, hydroxyl ion). Oxidative free
radicals can lead to a wide variety of damages in cells via lipid
peroxidation as well as via the oxidation of DNA and proteins,
resulting in apoptosis. Several enzymes (for example, o-
protease inhibitor) containing redox-sensitive amino acids
(cysteine or methionine) in their catalytic site can lose their
activity or can undergo conformational changes. This may
cause a higher susceptibility for degradation or may challenge
the equilibrium of proteases/protease inhibitors.

The oxidant/antioxidant imbalance may activate redox-
sensitive transcription factors such as NF-xB and activator
protein-1, which regulate the genes of proinflammatory
mediators (IFNY) and protective antioxidants [22]. Normally,
TNF can lead alternatively to activation of NF-xB or to
apoptosis, depending on the metabolic state of the cell.
Nicotine, as mentioned above, reduces TNF release of AMs
and consequently promotes less NF-kB activation through
TNF; however, the increased oxidative stress would permit
and contribute to NF-xB activation.

In accordance with this observation, mild exposure to
cigarette smoke can induce NF-kB activation in lymphocytes
through the increase in oxidative stress and the reduction in
the intracellular glutathione levels [23]. Vapor-phase cigarette
smoke can increase the detachment of alveolar epithelial cells
and decrease their proliferation. Furthermore, these cells
show a higher susceptibility for smoke-induced cell lysis.
Reduced glutathione seems to protect against the effects of
cigarette smoke exposure, and the depletion of intracellular
glutathione, produced by smoke condensates, enhances cell
injury [24]. It is intriguing that there is a strong association
between RA, smoking and the GSTM1 (the enzyme involved
in glutathione production) null genotype [25]. The poly-
morphisms of receptor activator of NF-xB (see below) have
also been linked to RA [26], which indicates that free radicals
in smoke may contribute to the pathological chain of RA
development.

Dong and colleagues have reported in MCF7 cells (human
breast adenoma line) that estrogen enhances peptidyl
arginine deiminase (PAD) type 4 (see information about
PADs below) expression via the estrogen receptor alpha —
activator protein-1 pathway [27]. Chromatin immunoprecipi-
tation and siRNA assays have also revealed that activator
protein-1 is a cis-acting factor bound to the promoter of
PAD4. These data suggest that free radicals in cigarette

Page 3 of 13

(page number not for citation purposes)



Arthritis Research & Therapy Vol 11 No 4 Baka et al.

smoke might influence PAD expression via the activation of
redox-sensitive factors in the respiratory tract.

It is noteworthy that PAD enzyme isoforms contain highly
conserved cysteine in their active site, which plays a crucial
role in the catalysis process. It has been shown that agents
acting on cysteine sulfhydryl groups via binding them
covalently can inactivate the enzyme, while reduced com-
pounds can enhance its activity [28]. Free radicals in smoke
produce an oxidative milieu, which may promote the formation
of disulfide groups in the active site of the enzyme and may
also have a disadvantageous impact on PAD. On the
contrary, PAD expression and activity are increased in the
lungs of smokers [29] — the explanation for this might be that
PAD is originally located intracellularly, and citrullinated
proteins may be released into the extracellular matrix after
apoptosis.

Anti-estrogenic effect

Another striking phenomenon is the estrogen—smoke
interaction in regulating PAD genes. PAD2 expression is
increased in bronchoalveolar lavage of smokers, compared
with nonsmokers [29]. The expression of PAD2 and PAD4 is
also elevated in the synovium of RA patients. The expression
of PAD (type 4) enzymes is dependent on estrogens [27].
Smoking, however, has an anti-estrogenic effect through the
formation of inactive 2-hydroxy catechol estrogens [30],
which would counteract PADs.

These statements suggest that the anti-estrogenic effect of
smoking may not have as much importance as its other
pleiotropic roles (immunomodulation, activation of redox-
sensitive factors, and so forth) in the contribution to the
development of ACPA + RA considering the estrogen
dependence of the PAD enzyme.

Elevation of serum fibrinogen

Fibrinogen is mainly involved in blood coagulation and
inflammation. The Framingham Study has revealed that
smokers have higher levels of serum fibrinogen [31]. The
citrullinated form of fibrin can be found in RA synovial tissue
co-localizing with citrullinated autoantibodies [32]. It has
been reported that the polymerization of citrullinated
fibrinogen catalyzed by thrombin is impaired, suggesting that
the function and antigenicity of citrullinated proteins are
somewhat altered, which may potentially contribute to
proinflammatory responses and autoimmune reactions in the
joints [33].

Smoking and aspects of RA

Genetics

Genetics of RA

RA is considered to have a complex etiology: both genetic
and environmental factors contribute to the disease
development [26,34,35]. The genetic component of RA is
widely investigated [36]: the strongest gene association is
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considered to be the one with the human leukocyte antigen
(HLA) region, particularly the HLA-DRB1 genes accounting
for about two-thirds of the genetics of RA. Certain HLA-
DRB1 alleles (DRB1*0401, DRB1*0404, DRB1*0405,
DRB1*0408, DRB1*0101, DRB1*102, DRB1*1001 and
DRB1*1402), encoding the so-called shared epitope (SE) at
amino acid positions 70 to 74 in the third hypervariable
region of the DRB1 molecule, are associated with a higher
susceptibility for RA [26].

Another significant association of RA is with the poly-
morphism of the protein tyrosine phosphatase nonreceptor
22 (PTPN22) gene. PTPN22 is an intracellular protein
expressed in hematopoietic cells; it sets the threshold of
T-cell receptor signaling [37]. PTPN22 is therefore likely to
be a general risk factor for the development of autoimmunity.
Certain functional variants (for example, R620W, 1858 C/T)
of PTPN22 have been shown to confer a moderate risk for
seropositive RA [38]. In addition, a significant interaction
between PTPN22 and smoking (>10 pack-years) has been
observed in a case-control study [39]. Other studies,
however, have failed to confirm this observation.

Association studies implicate the role of several other genes,
including TNF receptor 2 (TNFR2), solute carrier family 22,
member 4 (SLC22A4), runt-related transcription factor 1
(RUNX1) and the receptor activator gene of NF-xB
(TNFRSR11A) [26]. Furthermore, PADI4 polymorphisms
have been found to confer a risk for RA only in Japanese and
Korean populations, but not European populations [40].

RA therefore can be divided into two subsets of disease
entities (ACPA-positive RA and ACPA-negative RA), which
are likely to be genetically distinct: HLA-DRB1 SE alleles and
PTPN22 are restricted to ACPA-positive RA, while genes
such as interferon regulatory factor 5 (IRF-5) and C-type
lectin seem to confer risk for ACPA-negative RA [26].

Genetics of smoking

Smoking as a chronic habit is genetically determined to some
extent. The major candidate genes associated with smoking
are those of cytochrome P450 enzymes, which play a
substantial role in nicotine metabolism, and also those of
dopamine receptors influenced by nicotine in the meso-
corticolimbic dopaminergic reward pathways of the brain. A
significant linkage was found between the ever—never
smoking trait and chromosome 6 [41], which is associated
with the HLA genes. A Hungarian group has determined the
polymorphisms of the MHC class lll genes in coronary artery
disease patients versus healthy individuals with defined
smoking habits [41]. A significant association between ever
smoking (past and current smokers) and a specific MHC
haplotype (the TNF2 allele of the promoter of TNFo) has
been observed. More attempts were made to find a corre-
lation between TNF promoter polymorphisms and RA,
although most of them failed [42]. These results suggest that



genes (MHC classes) determining different aspects of
smoking behavior do not seem to predispose for RA; that is,
the genetics of these two entities, the habit and the disease
are unlikely to have a similar genetic root.

Smoking is a risk factor for RA in shared epitope carriers
According to a Swedish population-based case—control study,
there is a gene—environment interaction between smoking
and the HLA-DRB1 SE genotype [43]. The relative risk of RA
was extremely high in smokers carrying single SE alleles (7.5)
or double SE alleles (15.7). Nevertheless, neither smoking
nor SE alleles, nor the combination of these factors, have
increased the risk of developing seronegative RA [43]. The
case—control study of the lowa Women's Health Study
involving postmenopausal women has indicated a strong
positive association of smoking, SE positivity and GSTM1
null genotype with RA [25].

Smoking, seropositivity and disease activity

Smoking and seropositivity

A Finnish population screening has showed an association
between RF and smoking, but they have not investigated RA
[44]. In another study, a positive correlation was observed
between smoking and RF levels; particularly, IgA RF was
found to account for more severe disease [45]. Smoking
confers risk for only the seropositive form of RA [46],
suggesting that the two disease entities may have different
pathomechanisms.

Certain studies support the fact that there is an association
between smoking and RA only in men, but not in women [47] -
yet many other reports contradict this suggestion [48]. A
case—control study from Sweden has found that smokers of
both sexes have an increased risk of developing seropositive
RA but not seronegative RA [49].

Smoking intensity and RA

Many attempts have been made to clarify how smoking
history (duration of smoking in years or the intensity of
smoking per day) influences the development of RA.

A population-based case—control study of RA in the United
States showed that women with 20 pack-years or more of
smoking (number of pack-years = number of cigarettes
smoked per day x number of years smoked / 20) had a
relative risk for RA compared with never-smokers [48].
Similarly, a study of female health professionals has showed
that women smoking =25 cigarettes/day for more than
20 years (>25 pack-years) experienced an increased risk of
RA [50]. A strong association has been found between RA
and heavy cigarette smoking (history of 41 to 50 pack-years),
but not with smoking itself [51]. The smoking intensity
(number of cigarettes/day), however, was not associated with
RA after adjusting for duration of smoking, which suggests
that it is the duration of smoking and not the intensity that
confers risk for RA. Yet, in a prospective female cohort in
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lowa, both factors of smoking were found to be associated
with RA, and were observed only in current smokers and in
those ever-smokers who quit 10 years or less prior to the
study [52]. Similarly, in the prospective Nurses Health Study
both smoking intensity and duration were directly related to
risk of RA, with prolonged increased risk after smoking
cessation [63]. A case—control study of Sweden has
reported that the increased risk for RA is established after a
long duration of smoking (=20 years; the intensity was
moderate) and might be sustained for several years (10 to
20 years) after smoking cessation [49].

To summarize, it seems that both smoking duration and
intensity may be associated with the development of RA. The
duration might be more decisive (>20 years), however, and at
least 10 years of smoking cessation is needed to reduce the
RA risk.

RA is characterized by antibodies including RF and ACPA.
These data may indicate that a long duration of smoking with
appropriate intensity may cause permanent immunomodu-
lation and subsequent antibody production of memory cells,
resulting in a steady state of pathological antibodies. After an
unspecified time (about 10 years) of smoking cessation,
these cells may disappear from the body.

Smoking and disease severity

Clinical evaluations of patients at the University of lowa have
revealed that cigarette smoking (especially >25 pack years)
was significantly associated with RF positivity, radiographic
erosions and nodules [54]. In another study there was a
correlation between heavy smoking (=20 pack-years) and
rheumatoid nodules, a higher Health Assessment Question-
naire score, a lower grip strength and more radiological joint
damage, suggesting the adverse effect of smoking on
progression, life quality and functional disability [55]. Some
reports support that smoking can increase extraarticular
manifestations (rheumatoid nodules, interstitial pulmonary
disease, rheumatoid vasculitis) [56-58].

In the work of Manfredsdottir and colleagues, a gradual increase
in disease activity was observed from never, former and current
smokers defined by the number of swollen and tender joints and
the visual analogue scale for pain, but smoking status did not
influence the radiological progression [59]. In a cohort of Greek
patients with early RA, cigarette smoking was associated with
increased disease activity and severity in spite of the early
treatment [60]. Only one study found reduced radiographic
progression and generally more favorable functional scores
among heavy smokers [61]. The recent results of Westhoff and
colleagues have revealed that smoking does not influence the
Disease Activity Score or radiographic scores, yet smokers
need higher doses of disease-modifying antirheumatic drugs,
which may indicate reduced potency of these drugs due to
smoking or higher disease activity that can be controlled by only
high doses of drugs [62].
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One can conclude that smoking influences the course of RA
in a negative way, although its extent differs in the various
studies. Therefore it is essential to draw patients’ attention to
the expected beneficial effect of smoking cessation.

Smoking and anti-cyclic citrullinated proteins

Recent data have revealed that smoking is highly associated
with ACPA-positive RA (Table 2). The evaluation of incident
cases of arthritis (undifferentiated arthritis and RA) has
revealed that tobacco exposure increases the risk of anti-
cyclic citrullinated protein (anti-CCP) antibodies (see
information about anti-CCPs below) only in SE-positive
patients [63]. In a national case—control study, tobacco
smoking was related to an increased risk of anti-CCP-positive
RA [64]. The investigation of consecutive sera of RA patients
in a rheumatology clinic has shown that anti-CCP titers were
associated with tobacco exposure [65].

In a case—control study involving patients with early-onset
RA, Klareskog and colleagues found that previous smoking is
dose-dependently associated with occurrence of anti-CCPs
in RA patients. A major gene—environment interaction was
also observed between smoking and HLA-DR SE genes: the
presence of double copies of SE alleles confers about
20-fold risk for anti-CCP-positive RA in smokers [66]. A
nationwide case—control study involving known and recently
diagnosed RA patients conducted in Denmark has also
proved strong gene—environment effects: there was an
increased risk for anti-CCP-positive RA in heavy smokers with
homozygote SE alleles [67].

In the study of the Leiden Early Arthritis Clinic, the
HLA-DRB1*0401, HLA-DRB1*0404, HLA-DRB1*0405 or
HLA-DRB1*0408 SE alleles conferred the highest risk of
developing anti-CCP antibodies, and the smoking—SE
interaction was highest in cases of HLA-DRB1*0101 or
HLA-DRB1*0102 and HLA-DRB1*1001 SE alleles [68]. The
same clinic has confirmed that anti-CCP-positive RA patients,
who are current or former tobacco smokers, show a more
extensive anti-CCP isotype usage compared with nonsmoker
anti-CCP-positive patients; these observations were also
valid for SE-negative RA patients [69]. In a French population
of RA patients (one-half of them were multicase families), the
presence of at least one SE allele (especially the
DRB1*0401 allele) was related to the presence of anti-CCP
antibodies [70]; smoking was associated with anti-CCP
antibodies only in the presence of SE, and the cumulative
dose of cigarette smoking was linked to the anti-CCP
antibody titers.

A case-only analysis of three North American RA cohorts —
RA patients from the North American Rheumatoid Arthritis
Consortium (NARAC) family collection, from the National
Inception Cohort of Rheumatoid Arthritis Patients, and from
the Study of New Onset Rheumatoid Arthritis (SONORA) —
has shown an association between smoking and anti-CCP in
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the NARAC and the National Inception Cohort, but not in the
SONORA [71]. The SE alleles correlated with anti-CCP in all
cohorts. Only the analysis of the NARAC cohort provided
some evidence, however, for gene—environment interaction
between smoking and SE alleles in anti-CCP-positive RA. In a
study of African Americans with recent onset of RA, there
was no association between smoking, anti-CCP antibody,
IgM-RF or radiographic erosions [72]. A recent report
comparing three large case—control studies — the Swedish
Epidemiological Investigation of Rheumatoid Arthritis study,
the NARAC study, and the Dutch Leiden Early Arthritis Clinic
study — has reinforced the previous results [73]; namely, the
association of smoking, HLA-DRB1 SE alleles and anti-CCP-
positive RA. No interaction was found between PTPN22
R620W and smoking, however, indicating that smoking may
have disadvantageous effects only in genetically susceptible
individuals (for example, those carrying SE genes).

To conclude, these data suggest there may be an association
between smoking, SE alleles and ACPA-positive RA. Further
environmental and genetic factors (because the studies
involving Americans show a more complex picture of RA risk
factors), however, should also be considered.

Anti-citrullinated protein antibodies and
citrullination

A long time ago RA sera were revealed to specifically react to
filaggrin (found physiologically in keratin), which has been
proven to be a citrullinated protein; however, light has been
shed on the importance of citrullinated proteins only in recent
years. Commercial kits are nowadays available to detect
ACPAs: these antibodies react to synthetic CCPs — hence
the name anti-CCPs. ACPAs are markedly specific for RA —
only a small percentage of the general population carries
them [74]. Antibodies (for example, anti-filaggrin) against
citrullinated proteins — such as vimentin, fibrinogen, type |l
collagen, alfa-enolase — usually arise several years prior to
disease onset [74].

Citrullination is catalyzed by PADs dependent on a high
calcium concentration. Five PAD isoforms (PAD1, PAD2,
PAD3, PAD4=5, PAD®) are currently distinguished. Proteins
lose specific positive charges through deimination (arginine —
citrulline) and can change conformation, becoming more
susceptible for degradation [75]. Physiologically, citrullination
takes place in the epidermis and the central nervous system.
Pathologically, an increased citrullination has been observed
in the lining and sublining of joints and also in extraarticular
regions in RA [74]. Citrullination is not specific for RA,
however — other rheumatologic diseases with synovitis,
including inflammatory osteoarthritis, reactive arthritis,
undifferentiated arthritis, gout and even trauma, show the
presence of citrullinated proteins [76]. The highly specific
ACPAs are therefore the results of factors other than local
inflammation, involving genetic and environmental factors.
Only PAD2 and PAD4 isotypes are expressed in the
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Population studies of RA investigating the association of smoking and anti-CCPs

Study population

Results

Incident cases of arthritis (n = 1,305) (undifferentiated arthritis,
n=486; RA, n=407)

National case—control study (515 RA patients and 769 controls)

Consecutive sera of RA patients (n = 241)

Case—control study (EIRA, 967 RA patients and 1,357 controls)

Nationwide case—control study (309 seropositive RA and
136 seronegative RA patients and 533 controls)

Study of Leiden Early Arthritis Clinic (977 patients with early
arthritis)

Study of Leiden Early Arthritis Clinic (n = 216)

French population of RA patients (n = 274, one-half of them
multicase families)

Case-only analysis of three North American RA cohorts
(n=2,476) (NARAC, n=1,105; SONORA, n=618;
Inception Cohort, n = 753)

African Americans with recent-onset RA (n = 300)

Three case—control studies (1,977 cases and 2,405 controls)
(EIRA, NARAC, Dutch Leiden Early Arthritis Clinic)

Smoking increases the risk of anti-CCPs only in shared epitope-positive
patients [63].

Smoking is related to an increased risk of anti-CCP-positive RA [64].
Higher anti-CCP titers are associated with tobacco exposure.

Anti-CCP seropositivity is associated with a higher incidence of erosions.
Moderate correlation between anti-CCP and rheumatoid factor titers [65].

Previous smoking is dose-dependently associated with occurrence of
anti-CCPs.

Presence of double copies of shared epitope alleles confers about 20-fold
risk for anti-CCP-positive RA in smokers [66].

There is an increased risk for anti-CCP-positive RA in heavy smokers with
homozygote shared epitope alleles [67].

HLA-DRB1*0401, HLA-DRB1*0404, HLA-DRB1*0405, or
HLA-DRB1*0408 shared epitope alleles confer the highest risk of
developing anti-CCPs.

Smoking—shared epitope interaction is highest in case of HLA-DRB1*0101
or HLA-DRB1*0102 and HLA-DRB1*1001 shared epitope alleles [68].

Current or former tobacco smoker anti-CCP-positive RA patients show a
more extensive anti-CCP isotype usage, valid for shared epitope-negative
RA patients too [69].

Presence of at least one shared epitope allele (especially the DRB1*0401
allele) is related to the presence of anti-CCPs [70].

There is an association between smoking and anti-CCP in the NARAC and
the Inception Cohort, but not in the SONORA.

Only the NARAC cohort supports evidence for the interaction of smoking
and shared epitope alleles in anti-CCP-positive RA [71].

There is no association between smoking and anti-CCPs [72].

There is an association of smoking, HLA-DRB1 shared epitope alleles and
anti-CCP-positive RA.

No interaction between smoking and PTPN22 is found [73].

CCP, cyclic citrullinated peptide; EIRA, Epidemiological Investigation of Rheumatoid Arthritis; Inception Cohort, National Inception Cohort of
Rheumatoid Arthritis Patients; NARAC, North American Rheumatoid Arthritis Consortium; PTPN22, protein tyrosine phosphatase nonreceptor 22;
RA, rheumatoid arthritis; SONORA, Study of New Onset Rheumatoid Arthritis.

synovium of RA patients (and also other arthritides) [77].
Their sources are probably inflammatory cells; for example,
dying human macrophages and lymphocytes produce
citrullinated vimentin, which, if released into the extracellular
matrix of RA synovium, can specifically react with sera of RA
patients.

Anti-citrullinated protein antibodies, smoking
and other autoimmune diseases

Anti-CCPs are highly specific for RA, but they are found in
5 to 13% of patients with psoriatic arthritis [78] and also a
minority of patients with primary Sjogren syndrome have an
elevated anti-CCP titer, which is linked to the presence of
synovitis [79]. Whether smoking confers a risk for the

development of anti-CCPs in otherwise healthy individuals
has not been investigated, but increased protein citrullination
can be seen in the bronchoalveolar lavage of healthy smokers
[29].

Smoking is associated with several autoimmune diseases
such as systemic lupus erythematosus, primary biliary
cirrhosis or multiple sclerosis, where similar gene—environ-
ment interactions may exist — the knowledge gained from
research into these diseases could also help in the under-
standing of RA. For example, Moscarello and colleagues have
proposed that citrullinated myelin basic proteins may have a
crucial role in the pathogenesis of multiple sclerosis [80]: as
in RA due to citrullination, myelin basic protein may become
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more susceptible for degradation by metalloproteases. In
primary biliary cirrhosis, celiac disease or systemic lupus
erythematosus, antibodies against self-enzymes involved in
protein modification (deamidation, carboxylation, glycolysa-
tion) also exist, like the anti-PAD antibodies in RA (see later).

The connection of smoking, lung cancer, TNF
and RA

It is well known that smoking has a pivotal role in the develop-
ment of lung cancer. Smoke contains several carcinogens,
leading to severe DNA damage via adduct formation and
subsequently altered gene function. Contact-mediated cyto-
stasis of tumor cells is also decreased by AMs of smokers
[13]. As mentioned in a previous section, components in
smoke have significant immune modulator effects (they alter
the functions of T cells and B cells, macrophages, dendritic
cells and neutrophils) on several acting points involving the
reduction of the production of TNFo. Apart from the direct
cytotoxic effects of TNFa against tumors, its antitumor
activities may involve activation of different neutrophil
functions, alteration of endothelial cell functions and increased
production of IL-1. As a consequence, the inhibition of TNFa
(as an anti-tumor agent) via smoke components may
contribute to (lung) cancer formation besides the crucial
effects of direct carcinogens found in smoke.

In the pathogenesis of RA, TNFo. plays a key role considering
the joint and bone damage. Increased levels of TNFo can be
measured at the sites of inflammation. Moreover, transgenic
mice expressing high levels of TNFo. develop RA-like arthritis.
In an animal model of collagen-induced arthritis, the inhibition
of TNFo led to the amelioration of disease course. Later,
extensive multicentric studies proved the beneficial effect of
TNF blockage in RA [81], and nowadays TNF antagonists are
widely used. In RA patients who smoke, an elevated ratio of
TNFo/soluble TNF receptor released from activated T cells
can be seen — which may contribute to the increased TNFo.
activity observed in RA. The ratio is related to the extent of
smoking — sustained even after smoking cessation — proving
why smoking intensity and duration have an impact on the
development and course of RA [82].

Considering the TNFo-lowering effect of cigarette smoking,
one could also suggest that TNFa should have beneficial
effects on RA, even though the opposite is probably true.
Other pleiotropic factors (oxidative stress, infections,
citrullination) of smoke components rather than the TNF
antagonism alone, evoked by nicotine, may therefore be the
main susceptibility factors of disease development. To
support this hypothesis, in both types of inflammatory bowel
disease (ulcerative colitis and Crohn's disease), in which
smoke has an opposite role, TNF antagonists are beneficial
and are crucial components of the therapeutic repertoire.

Nowadays, three TNF antagonists exist — etanercept, a
soluble fusional receptor; infliximab, a chimeric monoclonal
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antibody; and adalimumab, a completely human monoclonal
antibody — and two other TNF antagonists (certolizumab and
golimumab) are in clinical development. There are concerns
about using biological agents, however, as the incidence of
malignancies, especially lymphomas, may be increased
compared with the normal population.

The increased proliferative drive of immune cells resulting in
autoantibody formation and disease severity rather than TNF
antagonism or disease-modifying antirheumatic drugs (metho-
trexate) seems to be responsible for the elevated lymphoma
risk, which is supported by the recent analysis of the Swedish
Biologics Register [83]. On the contrary, a previous meta-
analysis of randomized trials of anti-TNF therapy has revealed
a dose-dependent increased risk of malignancies in RA
patients treated with anti-TNF antibodies [84]. In conclusion,
patients treated with TNF antagonists should be closely
followed regarding malignancies.

RA, infection and citrullination

Data suggest that smoking has immunosuppressive effects
through the various substances contained in cigarette smoke,
among which nicotine has the most substantial role (Figure 1).
Nicotine can enter the bloodstream through the alveolar
compartment—endothelial barrier, and then may reach
different parts of the body, including lymphoid tissues, where
it may have systemic immunomodulator effects and may act
through the nicotinic receptors of the autologuous nervous
system. Owing to immunosuppression evoked by smoke,
infections are increased not only in the respiratory tract but in
other regions of the body.

Superantigens of specific bacteria (Streptococcus, Staphylo-
coccus) and viruses (Epstein—Barr virus (EBV)) bypass the
processing of antigen-presenting cells through directly bind-
ing to MHC Il molecule T-cell receptors outside the conven-
tional antigen-specific variable chains, initiating massive T-cell
activation (up to 20% of total). In addition, they may utilize not
only the T-cell receptor pathways but also other pathways
[85]. A wide repertoire of T cells may be activated due to
superantigens, and also those cells reactive to citrullinated
proteins or autodeiminated PADs (see below) in the
respiratory tract. In line with this knowledge, specific bacteria
and viruses have been incriminated in the pathogenesis of RA
— one of which is EBV. Pratesi and colleagues found that
sera from RA patients can react to citrullinated EBV nuclear
antigen [86], which suggests previous EBV infection
(superantigen) and also the presence of parallel citrullination
— which might be induced by chronic smoking, as the amount
of citrullinated proteins is increased in the bronchoalveolar
lavage of smokers. The role of EBV in the RA pathogenesis is
supported by several other data: the anti-EBV titer is elevated
in RA patients; certain EBV antigens share similarities with
synovial self-autoantigens providing the possibility of viral
cross-reactivity; the gp110 glycoprotein in EBV contains a
copy of SE; cell-mediated responses against EBV proteins
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were found in the synovial fluid of RA patients; and EBNA-1
can undergo citrullination, and the virus can induce antibody
formation against citrullinated proteins [87].

Another explanation for the primary steps towards RA might be
bacterial/viral cross-reactivity with autoantigens, as in the case
of EBV. On the one hand, Porphyromonas gingivalis causing
periodontitis has a functional PAD enzyme, which is quite
similar to human PADs, and subsequently the infection may
stimulate antibody production against the human PADs as well
[88]. The incidence of periodontitis is elevated due to smoking
[89], so the body might be exposed to a more increased
burden of P. gingivalis causing a constant antigen trigger
compared with nonsmokers. Autoantibodies against PAD4
enzymes are specific markers of RA, they exist in about 40% of
RA patients, and they account for more severe disease course.
Polymorphisms in the PADI4 gene (only in certain
populations) may influence the immune response to PAD4
enzyme, potentially contributing to disease propagation [90].
It is also reported that PADs can autodeiminate themselves,
due to which the structure of the molecule might be changed
profoundly and new epitopes may arise. Furthermore, the
modified citrullinated proteins and PAD may create an altered
molecule complex like the tissue transglutaminase and
deaminated gluten in celiac disease, which may result in
autoimmune reaction in genetically prone subjects.

On the other hand, emerging data suggest there might be a
connection between RA and Proteus mirabilis. These data
are supported by the following observations. There is an
increased incidence of urinary tract infections (especially
P. mirabilis) in RA patients [91]. Furthermore, Ebringer and
Rashid have found sequence homology between certain HLA
alleles associated with RA and hemolysins of P. mirabilis.
They also identified another homology between type XI
collagen and Proteus urease enzyme, yet they have failed to
show common motifs between P. urease and RA-targeted
synovial structures even though active RA patients have
elevated IgG and IgM antibodies against Proteus [91].
Consequently, due to infections, cross-reactivity might arise
against auto-structures of joints.

Similarly, CD19* B cells capable of secreting antibodies
reactive to type Il collagen are present in both RA patients
and in healthy subjects. In RA patients, however, the cells
accumulate in the inflamed joints, suggesting that they have
been activated due to certain factors (possibly superantigens
or cross-reactivity) [92].

It is known that synovitis in general, also in nonautoimmune
rheumatic diseases, is marked by citrullinated proteins,
although the presence of ACPAs is specific for RA, and is
likely to be the result of many tolerance-breaking immune
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steps. Neeli and colleagues have found that LPS-induced
neutrophils can produce marked citrullination of histones,
which then can be identified as the components of
extracellular chromatin traps [93]. Bacterial invasion can
provide the perfect background for neutrophil activation and
subsequent release of highly autoantigenic citrullinated
histones in the respiratory tract.

Besides common environmental factors, intrapersonal and
interpersonal psychological factors may also contribute to RA
pathogenesis. To support this hypothesis, RA patients with
an elevated daily stress level (daily hassles, interpersonal
conflicts) have poorer outcome and more erosions, while
major stress (major negative life events) might ameliorate the
disease course. Long-lasting (chronic) minor stress may lead
to proinflammatory responses via short-lived surges of
hormones and neurotransmitters, yet major stress might lead
to massive, long-lived release of stress-axe mediators of the
hypothalamic—pituitary—adrenal axis (norepinephrine, cortisol,
and so forth), resulting in anti-inflammatory responses [94].
Smoking might sustain a constant minor stress in the body
via its addictive nature, and subsequently may lead to
neurohumoral immunomodulation.

To summarize, if the constellation of genetic factors — for
example, HLA-DRB1 as it has a higher affinity to bind
citrullinated form of proteins [95], and perhaps other loci in
different populations such as the North American population —
and of environmental factors — smoking, concomitant infec-
tions (cross-reactivity, molecular mimicry) and also general
stressors (psychological as well) — is created, there is a
possibility for autoimmune disease development.

As citrullination is considered one of the crucial steps in the
development of RA, and also as ACPAs seem to be involved
in the progression of RA, new pharmaceutical agents target-
ing PADs have been investigated: PAD inhibitors including
F-amidine (the most potent known inhibitor), paclitaxel and
2-chloroacetamidine [40]. Their clinical utilization is a little
controversial, however, as ACPAs can appear several years
prior to the development of RA, and at the time when
healthcare professionals are able to interfere with the
pathological processes of their patients, the vicious circle of
the autoimmune process has already started, and may be
sustained by factors other than citrullination. Moreover, we
know little about the physiological functions of PADs - so
their inhibition may involve serious disturbances in the cells,
such as apoptosis [96].

Conclusion and future directions

The connection of smoking, anti-citrullinated antibodies and
RA is unambiguously proven by several studies and reports.
Consequently, it is essential to inform patients about the
hazardous role of smoking in the development and progres-
sion of RA. Moreover, as the autoimmune diseases in general
cause accelerated atherosclerosis due to constant
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inflammation, and increase the cardiovascular risk, it is
important for patients to understand smoking cessation is
required as much as taking disease-modifying antirheumatic
drugs or biologics to achieve remission and better life quality.

Although we have an effective therapeutic repertoire for RA,
we cannot reverse the developed joint deformity in advanced
stages, so the initiation of the early treatment prior to bone
and joint damage has great importance. To achieve this early
initiation, we need to better understand the pathogenesis of
the disease and the interaction of risk factors, and also to
develop better diagnostic tools on the basis of this
information.
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