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Abstract

Introduction The decreased disc height characteristic of
intervertebral disc (IVD) degeneration has often been linked to
low back pain, and thus regeneration strategies aimed at
restoring the disc extracellular matrix and ultimately disc height
have been proposed as potential treatments for VD
degeneration. One such therapy under investigation by a
number of groups worldwide is the use of autologous
mesenchymal stem cells (MSCs) to aid in the regeneration of
the IVD extracellular matrix. To date, however, the optimum
method of application of these cells for regeneration strategies
for the IVD is unclear, and few studies have investigated the
direct injection of MSCs alone into IVD tissues. In the present
article, we investigated the survival and phenotype of human
MSCs, sourced from aged individuals, following injection into
nucleus pulposus (NP) tissue explant cultures.

Methods Human MSCs extracted from bone marrow were
expanded in monolayer culture and, after labelling with
adenoviral vectors carrying the green fluorescent protein
transcript, were injected into NP tissue explants (sourced from
bovine caudal discs) and maintained in culture for 2, 7, 14 and
28 days post injection. Following fixation and paraffin

embedding, cell viability was assessed using in situ
hybridisation for polyA-mRNA and using immunohistochemistry
for caspase 3. Immunohistochemistry/fluorescence for
aggrecan, Sox-9 and types |, Il and X collagen together with
Alizarin red staining was employed to investigate the MSC
phenotype and matrix formation.

Results MSCs were identified in all injected tissue samples and
cell viability was maintained for the 4 weeks investigated. MSCs
displayed cellular staining for Sox-9, and displayed cellular and
matrix staining for aggrecan and type Il collagen that increased
during culture. No type | collagen, type X collagen or Alizarin red
staining was observed at any time point.

Conclusions MSCs from older individuals differentiate
spontaneously into chondrocyte-like NP cells upon insertion into
NP tissue in vitro, and thus may not require additional
stimulation or carrier to induce differentiation. This is a key
finding, as such a strategy would minimise the level of external
manipulation required prior to insertion into the patient, thus
simplifying the treatment strategy and reducing costs.

Introduction

Approximately 11 million people in the UK experience low
back pain (LBP) for at least 1 week each month, leading to a
considerable loss of working days and significantly impacting
on the National Health Service [1,2]. The causes of LBP are
multifactorial but the role of intervertebral disc (IVD) degener-

ation per se in LBP is becoming clearer [3]. Imaging studies
indicate a link between IVD degeneration and LBP [3,4], with
the most clinically significant correlations between degenerate
disc space narrowing (which develops as degeneration
progresses [5,6]) and chronic LBP [7]. A key target for the
treatment of LBP is therefore the restoration of disc height,

Ad-GFP: adenoviral vectors carrying the green fluorescent protein transcript; DMEM: Dulbecco's modified Eagle's medium; FCS: foetal calf serum;
GFP: green fluorescent protein; IL: interleukin; IVD: intervertebral disc; LBP: low back pain; MSC: mesenchymal stem cell; NP: nucleus pulposus;

PBS: phosphate-buffered saline; PG: proteoglycan.
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which could be achieved via the regeneration of the extracel-
lular matrix in the degenerate IVD.

Evidence from studies investigating the pathogenesis of IVD
degeneration illustrates that IVD degeneration originates from
the nucleus pulposus (NP), where both type Il collagen and
proteoglycan synthesis and content decrease [8,9], thus the
NP is the area of the disc that is targeted by a number of
groups worldwide for regeneration strategies [10,11]. Numer-
ous methods are under investigation to stimulate regeneration
of the disc, including growth factor treatments and cell-based
therapies which either utilize cells alone or combined with
scaffolds [12]. A cell source that has been suggested for such
therapies is that of autologous disc cells harvested from adja-
cent nondegenerate discs, although removal of cells from a
donor disc can induce degeneration, and thus would be
unsuitable [13]. Other studies have suggested using autolo-
gous degenerate IVD cells extracted during discectomy,
which following in vitro expansion would be reinserted into the
degenerate IVD [14,15]. We have previously shown, however,
that cells derived from a degenerate IVD show a senescent
phenotype [16,17], which results in a reduced cell replication
potential, and thus the expansion capabilities of degenerate
IVD cells are limited. Furthermore we have shown that IVD
cells derived from a degenerate disc display an abnormal phe-
notype, with increased catabolic and decreased anabolic
activity, and thus are not the ideal cell type to stimulate regen-
eration, and indeed could even lead to accelerated degenera-
tion of the treated IVD [18-24].

An alternative cell source are adult stem cells, in particular,
bone-marrow-derived mesenchymal stem cells (MSCs). The
use of these cells would allow an autologous approach, reduc-
ing the risk of rejection and infection. MSCs are multipotent,
and have the ability to differentiate into an NP-like phenotype
when appropriately stimulated [25-29]. To date, however, the
optimum method of application of these cells for repair/regen-
eration strategies for the IVD is unclear. A number of studies
have described the development of tissue-engineered gels
and scaffolds seeded with MSCs to assist in the regeneration
of the IVD [10], and have shown promising results in vitro. Yet
it is unclear whether a scaffold would be required to assist in
tissue regeneration or whether the in vivo tissue niche and/or
local cells alone are sufficient to stimulate appropriate MSC
differentiation.

Work from our laboratory has shown that co-culture of MSCs
with NP cells in vitro is capable of inducing differentiation to
an NP-like phenotype [26]. This raises the possibility that the
native IVD cells in vivo could induce MSC differentiation with-
out the need for external manipulation. Such an approach
would be of great benefit for mild and moderate stages of
degeneration and could also be useful as a preventative strat-
egy following disc surgery to adjacent IVDs to prevent the
accelerated degeneration often seen within these discs. A
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recent study by Ho and colleagues also suggests that MSC
injection therapies may show potential at late stages of degen-
eration [30]. Treatment at this stage would, however, in all like-
lihood require some form of combined therapy utilising an
appropriate scaffold to provide support to the cells and restore
IVD height immediately whilst the matrix is formed. Addition-
ally, such strategies would probably require combined treat-
ments to restrain the degenerative processes — such as
inhibition of IL-1, which is significantly increased in IVD degen-
eration and has been shown to be involved in matrix degrada-
tion [18,31].

Interestingly only a limited number of studies have investigated
the injection of MSCs into IVDs, and, although these have
demonstrated cell survival and increased proteoglycan (PG)
production within the IVD [28,30,32-36], few have investi-
gated the phenotype of the injected stem cells. Sakai and col-
leagues investigated the injection of rabbit MSCs, within an
aetocollagen gel, into the rabbit disc, and demonstrated that
the MSCs differentiated to a chondrocyte-like phenotype and
increased the collagen and PG content within the disc [28].
Whether the carrier gel was responsible for inducing MSC dif-
ferentiation, however, was unclear. More recently Hiyama and
colleagues directly injected MSCs into a canine degenerate
disc model; although the study tracked the MSCs, only Fas lig-
and expression and overall PG production was assessed and
the authors did not determine whether the injected MSCs dis-
played appropriate differentiation and phenotype [36]. Impor-
tantly, no studies to date have investigated the phenotype of
human MSCs following injection into IVD tissue.

In the present article we established an in vitro model system
to investigate the survival and phenotype of human MSCs fol-
lowing injection into bovine NP tissue explants to test the fol-
lowing hypothesis: that the IVD tissue niche itself can induce
the differentiation of MSCs to a disc-like phenotype and direct
the cells to form a new and appropriate matrix.

Materials and methods
Mesenchymal stem cell source and extraction

Bone marrow samples were received from two patients (aged
66 and 74 years) undergoing hip replacements. Informed con-
sent from the patients and local ethical committee approval
were obtained. Bone marrow was negatively sorted for hae-
matopoietic cells using RosetteSep (STEMCELL Technolo-
gies SARL, Grenoble, France) prior to isolation of
mononuclear cells using a Histopaque 1077 gradient (Sigma,
Poole, UK). Cells were cultured for 7 days and any nonadher-
ent cells were removed. MSCs (characterised by their adher-
ence to plastic and morphology) were then expanded in a
monolayer and used at low passage (passage < 2). The
multipotentiality of these MSCs was assessed via differentia-
tion along the three common mesenchymal lineages (osteo-
genic, adipogeneic and chondrogenic) using standard
methodology.



Nucleus pulposus tissue explant culture

Bovine tails from 9-month-old to 18-month-old cows were
obtained from the abattoir. Caudal IVDs were excised and NP
tissue was isolated. Cores of NP tissue (0.5 cm in diameter
and 0.6 cm high) were formed and placed into a Perspex ring
culture system as described previously [37]. DMEM + F12
media supplemented with 10% v/v heat-inactivated FCS
(Gibco, Paisley, UK), 100 U/ml penicillin (Sigma, Poole, UK),
100 pg/ml streptomycin (Sigma), 260 ng/ml amphotericin, 2
mM glutamine (Sigma) and 50 ug/ml ascorbic acid (Sigma)
(complete cell culture media) was applied and tissue explants
were maintained in culture for 1 week prior to MSC injection.

Cell labelling

To allow cell tracking following cell injection, the MSCs were
infected with adenoviral vectors carrying the green fluorescent
protein transcript (Ad-GFP). The optimal multiplicity of infec-
tion was determined as 1,000, which resulted in 100% infec-
tivity without cytotoxic effects (data not shown). To perform
infection, MSCs in a monolayer culture were typsinised from
flasks, cell counts were performed and then cells were re-
seeded into T75 flasks in 5 ml complete media and were
allowed to adhere for 4 hours. Following adherence of MSCs,
an appropriate volume of Ad-GFP (Vector Biolabs, Philadel-
phia, PA, USA) was applied to achieve a multiplicity of infec-
tion of 1,000 and was left for 2 hours to allow initial infection.
Thereafter, 10 ml fresh complete media was applied to each
flask and left for 72 hours for viral transfer to occur as previ-
ously published [31].

MSC transfer to nucleus pulposus tissue explants
Ad-GFP-infected MSCs were trypsinised in 1x trypsin/ethyl-
enediamine teraacetic acid (Invitrogen, Paisley, UK) and inac-
tivated in complete media, and cell counts were performed.
Cells were centrifuged at 400 x g for 10 minutes and were
resuspended in complete media at a cell density of 2 x 1086
cells/ml. An aliquot of Ad-GFP-infected MSCs was visualised
using fluorescent microscopy (450 nm excitation) to ascertain
the infection efficiency. The media was removed from NP tis-
sue explants and 50 pl Ad-GFP-infected MSC suspension
(that is, 100,000 cells) was injected into tissue explants while
50 pl media containing no cells was injected into control tis-
sue explants. Such a cell number equates to an extra 1,178
cells/mms3, which is approximately one-quarter of the cell den-
sity reported for normal human NP (4,000 cells/mm3) [38] and
thus should be maintainable in vivo. Ten millilitres of complete
media was then applied to each tissue explant, and the
explants were cultured for up to 4 weeks and the media
changed every 2 to 3 days. Duplicate tissue samples (that is,
two control explants; two explants injected with MSC sample
1; and two explants injected with MSC sample 2) were
removed at 48 hours, 1 week, 2 weeks and 4 weeks post
injection.
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Processing of tissue explants and identification of the
injection site

Tissue explants were fixed in 4% w/v paraformaldehyde/PBS
overnight prior to routine paraffin embedding. Tissue samples
were serially sectioned at 4 um, and one section every 80 pum
was mounted onto positively charged slides (Thermo Shan-
don, Fife, Scotland, UK). Sections were air-dried, dewaxed in
xylene, dehydrated in industrial methylated spirit, air-dried, and
mounted in immersion oil (Sigma) and were viewed using flu-
orescent microscopy to identify green fluorescent protein
(GFP)-infected cells. Following identification of the position of
injection site and the presence of GFP-labelled cells, serial
sections in the area of the injection site were mounted onto
positively charged slides: for in situ hybridisation for polyA-
mRNA to assess cell metabolic activity; for immunohistochem-
istry for caspase 3 to identify the presence of apoptotic cells;
for immunofluorescence and immunohistochemistry for aggre-
can, Sox-9 and types |, Il and X collagen to assess phenotypic
characteristics; and for histochemistry with Alizarin red to
assess mineralisation.

In situ hybridisation for polyA-mRNA

In situ hybridisation for polyA-mRNA was performed as an
assessment of cell metabolic activity as described previously
[39,40].

Immunofluorescence and immunohistochemistry
Immunofluorescence and immunohistochemistry were both
performed for aggrecan, Sox-9, and types |, Il and X collagen,
and immunohistochemistry was performed for caspase 3 as
described previously [22]. Briefly, 4 um paraffin sections were
dewaxed, rehydrated and endogenous-peroxidase-blocked
using hydrogen peroxide. After washing in dH,O, sections
were then treated with the required antigen retrieval system
(Table 1). Following washing, nonspecific binding sites were
blocked at room temperature for 45 minutes with appropriate
serum, and sections were incubated overnight at 4°C with pri-
mary antibodies (Table 1). Negative controls in which mouse
IgG, rabbit IgG or goat IgG (Dako, Ely, Cambridgeshire, UK)
replaced the primary antibody (at an equal protein concentra-
tion) were used. After washing, sections were reacted with
secondary antibodies (Table 1) for 30 minutes at room temper-
ature. Disclosure of antibodies was performed by immunofluo-
rescence and immunohistochemistry.

Immunofluorescence detection

Disclosure of secondary antibody binding was performed by
incubation in 1:50 dilution of rhodamine-conjugated Biotin
(Jackson ImmunoResearch, Newmarket, Suffolk, UK) for 1
hour at room temperature. Following washes, sections were
counterstained with 4',6-diamidino-2-phenylindole for 10 min-
utes, air-dried, mounted in immersion oil and viewed immedi-
ately.
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Table 1

Le Maitre et al.

Details of the immunohistochemistry methodology employed

Target Antigen retrieval Blocking step and primary antibody Secondary antibody
Aggrecan 0.1% w/v hyaluronidase in Tris- 20% v/v rabbit serum, and mouse monoclonal  Biotinylated rabbit anti-mouse
buffered saline (Sigma, Poole, UK), 30  aggrecan 1° antiserum
minutes at 37°C (1:25 dilution; AbCam, Cambridge, UK) (1:400; Dako, Ely, Cambridgeshire,
UK)
Sox-9 None required 20% v/v swine serum, and rabbit polyclonal Biotinylated swine anti-rabbit

Type | collagen

Type Il collagen

Type X collagen

0.01% hyaluronidase (Sigma), 0.02%
trypsin (Sigma) w/v in Tris-buffered
saline

0.1% w/v hyaluronidase in Tris-
buffered saline (Sigma), 30 minutes at
37°C

1 mg/ml hyaluronidase, 0.25 U/ml
chondrotinase in Tris-buffered saline, 1

Sox-9 1°
(1:100 dilution; SantaCruz, Heidelburg,
Germany)

20% v/v rabbit serum, and mouse monoclonal
type | collagen 1° (1:250 dilution; ICN,
Basingstoke, UK),

20% v/v rabbit serum, and mouse monoclonal
type Il collagen 1°

(1:100 dilution; MP Biomedicals, lllkirch,
France)

259% v/v goat serum, and mouse monoclonal
type X collagen 1° (1:200 dilution; AbCam)

antiserum (1:400; SantaCruz)

Biotinylated rabbit anti-mouse
antiserum (1:400; Dako)

Biotinylated rabbit anti-mouse
antiserum (1:400; Dako)

Biotinylated goat anti-mouse
antiserum (1:100; SantaCruz)

hour at 37°C; followed by 0.1%
protease in Tris-buffered saline, 10
minutes at 37°C

Caspase 3 None required

20% v/v donkey serum, and goat polyclonal
caspase 3 1° (1:500 dilution; SantaCruz)

Biotinylated donkey anti-goat
antiserum (1:300; SantaCruz)

Immunohistochemical detection

Disclosure of secondary antibody binding followed the
streptavidin-biotin complex (Dako) technique with 3,3'-diami-
nobenzidine tetrahydrochloride solution (Sigma). Sections
were counterstained with Mayers haematoxylin (Raymond A
Lamb, Eastborne, East Sussex, UK), dehydrated and mounted
in XAM (BDH, Poole, UK).

Image analysis

All slides were visualised using a Leica RMDB research micro-
scope (Leica Biosystems Peterborough Ltd, Peterborough,
UK) and images were captured using a digital camera and Bio-
quant Nova image analysis system (BIOQUANT Image Analy-
sis Corporation, Nashville TN, USA). Immunofluorescence
images were viewed under a fluorescent microscope with fil-
ters for 4',6-diamidino-2-phenylindole (420 to 495 nm), GFP
(510 to 560 nm) and rhodamine (663 to 738 nm). Images
were captured within each sample to qualitatively analyse the
injection site and native disc cells and matrix. Image capture
for all three wavelengths on the same field of view was per-
formed to enable identification of GFP-positive cells and
immunopositivity for matrix proteins in the same cells.

Results

Identification of injected mesenchymal stem cells

No GFP-positive cells were observed within control tissue in
which no MSCs had been injected, demonstrating that native
disc tissue did not autofluoresce. Ad-GFP-labelled MSCs
were identified in all tissue samples in which Ad-GFP-infected
MSCs were injected and cells were observed in the vicinity of
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the injection site at all time points post injection. At 4 weeks
post injection some Ad-GFP MSCs appeared to have
migrated into the tissue away from the injection site, but the
majority of the MSCs remained in a cellular cluster within the
injection site (Figure 1).

Cell viability/metabolic activity

Few apoptotic bodies were observed within GFP-labelled
injected MSCs in all tissue samples. Low levels of apoptosis
were confirmed with immunohistochemistry for caspase 3,
which was performed on multiple sections throughout the
depth of injection site. At the site of injection no caspase-3-
immunopositive cells were observed at 48 hours post injec-
tion. A small number of caspase-3-immunopositive cells, how-
ever, were observed at 1 week (average 6.98%) and 2 weeks
(average 14.23%) post injection. No caspase-3-positive cells
were seen following 4 weeks post injection (Figure 2a). IgG
controls were negative (Figure 2a). No caspase 3 staining was
observed in any of the native disc cells at any time point. /n situ
hybridisation for polyA-mRNA demonstrated that MSCs
injected into tissue explants showed higher levels of metabolic
cell activity than the native cells, particularly 48 hours post
injection. Cell activity identified by red cell staining was main-
tained for the 4 weeks investigated (Figure 2b). Negative con-
trols (that is, no probe) did not display any positive staining
(Figure 2b).



Figure 1
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48 hrs I week

B -

DAP[- - --

2 weeks 4 weeks

Identification of injected green fluorescent protein adenoviral vector infectedmesenchymal stem cells in nucleus pulposus tissue explants. Photomi-
crographs of 4',6-diamidino-2-phenylindole (DAPI) staining and green fluorescent protein (GFP)-positive cells in the injection sites of intervertebral
disc tissue at 48 hours, 1 week, 2 weeks and 4 weeks post injection of mesenchymal stem cells infected with adenoviral vectors carrying the GFP

transcript. Scale bar =570 pum.

Matrix protein expression and formation by native disc
cells

Native disc cells displayed immunopositive staining (assessed
by both immunofluorescence and 3,3-diaminobenzidine
(DAB) disclosure) for Sox-9, type Il collagen and aggrecan. In
addition, matrix staining was observed for type Il collagen and
aggrecan (Figure 3). No immunopositivity was observed for
type | collagen or type X collagen.

Figure 2

Matrix protein expression and formation by injected
MSCs

Immunohistochemistry was used to assess the expression and
localisation of the chondrogenic transcription factor Sox-9,
and of the matrix genes aggrecan and types |, Il and X collagen
within MSCs both in the monolayer and in those injected into
NP tissue explants. Monolayer MSCs displayed no Sox-9
immunopositivity, but upon injection into NP tissue explants
MSCs were immunopositive (as assessed by immunofluores-
cence and 3,3-diaminobenzidine disclosure) for Sox-9 at 48
hours and 1 week post injection (Figure 4a). No immunoposi-

Postive control 48 hr 1wk

Caspase
3

Poly A
mRNA

2wks

4wks

-ve control

Cell viability/metabolic activity of injected mesenchymal stem cells. Photomicrographs representative of caspase 3 immunopositivity and polyA-
mRNA staining in mesenchymal stem cells injected into tissue explants at 48 hours, 1 week, 2 weeks and 4 weeks post injection. Scale bar =570

pm.
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Figure 3

Collagen type II Aggrecan
. o

: o
; ———

Phenotypic characteristics of native disc cells. Photomicrographs rep-
resentative of type Il collagen and aggrecan immunohistochemical
staining in control (that is, noninjected) tissue explants of nucleus pul-
posus tissue. Scale bar =570 pum.

Figure 4

tivity for Sox-9 in these injected cells, however, was observed
2 weeks or 4 weeks post injection (Figure 5a).

Monolayer MSCs showed no immunopositivity for aggrecan.
Following injection into IVD tissue explants, however, MSCs
were immunopositive (assessed both by immunofluorescence
and 3,3-diaminobenzidine disclosure) for aggrecan and the
staining intensity increased with time post injection (Figures 4
and 5b). Aggrecan matrix staining within the vicinity of the
injected cells was also observed 1 week following injection,
and the intensity of the matrix staining increased with time in
culture (Figures 4 and 5b).

Weak staining for type Il collagen was observed within a small
number of cells in monolayer culture. Following injection into
NP tissue explants, MSCs stained strongly positive for type |l
collagen and matrix staining in the vicinity of the injected
MSCs was also observed 1 week post injection (Figure 4b).
Both MSC cell and matrix staining for type Il collagen
increased with time in the explant culture (Figure 5b).

Type | collagen cell and matrix staining was observed in MSCs
in the monolayer culture. Following injection of MSCs into NP
tissue explants, type | collagen matrix staining was observed in
close proximity to the injection site, although this decreased
with time in culture. No cellular immunopositivity for type | col-
lagen or type X collagen was observed in MSCs injected into
NP tissue cultures at any time point. IgG controls were nega-

(@ Sox-9

m) Agg

© ColIl§

[HC High mag IHC

Phenotypic characteristics of injected mesenchymal stem cells following 48 hours in culture. Photomicrographs representative of 4',6-diamidino-2-
phenylindole (DAPI) counterstaining, green fluorescent protein (GFP) localisation and immunofluorescence (IF) for identical field of view and immu-
nohistochemistry (IHC) in tissue injected with mesenchymal stem cells and cultured for 48 hours post injection: (a) Sox-9, (b) aggrecan (Agg) and
(c) type Il collagen (Coll Il). High Mag IHC, high magnification of indicated IHC region. Scale bar =570 um.
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¢) Col II

Phenotypic characteristics of injected mesenchymal stem cells following 4 weeks in culture. Photomicrographs representative of 4',6-diamidino-2-
phenylindole (DAPI) counterstaining, green fluorescent protein (GFP)localisation and immunofluorescence (IF) for identical field of view and immuno-
histochemistry (IHC) in tissue injected with mesenchymal stem cells and cultured for 4 weeks post injection: (a) Sox-9, (b) aggrecan (Agg) and (c)
type Il collagen (Coll Il). High Mag IHC, high magnification of indicated IHC region. Scale bar =570 pm.

tive at all time points. Alizarin red staining was performed to
assess mineralisation, and no positive staining was observed
either in the MSCs or in native tissue during the culture period
investigated.

Discussion

The decreased disc height characteristic of VD degeneration
has often been linked to LBP [3], and thus regeneration strat-
egies aimed at restoring the disc extracellular matrix and
restoring disc height have been postulated as potential treat-
ments. One such therapy under investigation by a number of
groups worldwide is the use of autologous MSCs to aid in the
regeneration of the IVD extracellular matrix. To date, however,
the optimum method of application of these cells for regener-
ation strategies for the IVD is unclear, and few studies have
investigated the direct injection of MSCs alone into IVD tis-
sues.

In the present article we investigated the survival and pheno-
type of human MSCs sourced from aged osteoarthritic hips
following injection into NP tissue explant cultures. The supply
of autologous MSCs used in cell-based therapies for regener-
ation of the degenerate IVD would probably be sourced from
older individuals similar to those used within this study as the
incidence of disc degeneration increases with age [41]. Fur-
thermore, MSCs sourced from aged and arthritic hips repre-
sents the poorest cell source for MSCs as these cells have
been suggested to have a tendency for osteogenic differenti-

ation [42], which would be detrimental for the repair of the IVD.
Our study, however, demonstrated no type X collagen forma-
tion or mineralisation in the IVD tissue 4 weeks post injection.
The finding that such cells not only survive following injection
into IVD tissue but appear to redifferentiate into a chondro-
cyte-like phenotype, typical of an NP cell, without any induc-
tion of mineralisation is therefore of paramount importance for
future autologous cell-based therapies.

Crevensten and colleagues injected rat MSCs within a viscous
hyaluronan gel into rat IVDs in vivo, and demonstrated a loss
in cell number between 1 and 7 days in culture [35] - indicat-
ing high levels of cell death, which the authors attributed to
carrier gel toxicity. In the present study we demonstrated good
cell viability at all time points post injection with little cell death
as evidenced by caspase 3 immunopositivity or the presence
of apoptotic bodies. The improved cell viability observed may
be the result of the injection method as cells were directly
injected into the tissue rather than seeding into a gel prior to
insertion, or may alternatively be a result of the in vitro culture
conditions in that there would be higher nutrient supply than
that in vivo. Zhang and colleagues showed no change in MSC
cell number between 1, 3 and 6 months post injection, sug-
gesting good cell viability of rabbit MSCs injected into rabbit
discs [34], and Hiyama and colleagues suggested that MSCs
following injection into canine discs appeared to proliferate
and have good survival rates [36].
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Zhang and colleagues demonstrated an increase in aggrecan
and type Il collagen following 1, 3 and 6 months post injection
of rabbit MSCs into rabbit discs in vivo compared with nonin-
jected tissues. Unfortunately, however, no localisation studies
were performed to determine whether this increase resulted
from the injected MSCs or from increased synthesis of aggre-
can and type Il collagen by the native disc cells [34]. In the
present study, however, we have demonstrated that cellular
protein expression and local matrix accumulation for aggrecan
and type Il collagen was observed within the MSCs following
injection into disc tissue. This suggests that the IVD tissue
niche within the in vitro system studied here results in the dif-
ferentiation of the injected MSCs to a chondrocyte-like pheno-
type, typical of an NP cell. An in vivo study also demonstrated
that MSCs transplanted into a rabbit IVD displayed an NP-like
phenotype with expression of proteoglycans and type Il colla-
gen at 2 weeks post transplantation [28], although in that
study it was unclear whether the carrier aetocollagen gel aided
differentiation.

Interestingly, our results would appear to suggest that the
increased proteoglycan and collagen production observed in
a number of in vivo studies following injection of MSCs into
disc tissue [28,34,36] may be due to differentiation of the
MSCs to a chondrocyte-like phenotype, induced by the local
IVD tissue niche/native cells. The effect of the IVD tissue niche
on injected MSCs could be due to the close proximity of the
MSCs with native disc cells, as co-culture of MSCs with NP
cells has been shown to induce the differentiation of MSCs to
an NP-like phenotype in monolayer and pellet culture systems
in vitro [26,29]. Alternatively the availability of growth factors
such as transforming growth factor beta (which has been
shown to assist in MSC differentiation to an NP-like phenotype
[43,44]) sequestered in the IVD matrix may direct MSC differ-
entiation. The most probable scenario, however, is that the IVD
tissue niche composed of the native cells, matrix, and growth
factors all play a role in the differentiation of the MSCs post
injection.

Our work together with the data provided by others is promis-
ing for successful future therapeutic use of MSCs in that it
suggests spontaneous differentiation of MSCs into an NP-like
cell following insertion into the disc. The results of our study
importantly show that this differentiation occurs without the
need for additional stimuli such as that provided by a carrier
gel or additional growth factor treatments. There are limitations
to our study, however, which must be considered when extrap-
olating these data to repair of the degenerate human disc in
vivo. The culture conditions used here do not mimic that of the
human degenerate IVD, where the cells are exposed to a
hypoxic, low-nutrient and mechanically loaded environment.
These factors could of course alter the behaviour of the
injected MSCs and may affect their differentiation in the disc.
In addition, the degenerate disc is a hostile environment with
increased production of cytokines that alter matrix synthesis
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and expression of matrix degrading enzymes [19,21-23].
These cytokines may influence MSC differentiation and subse-
quent behaviour, and thus in such a situation a combined ther-
apy where these degenerative processes are also inhibited
may be required [18,31]. Interestingly, however, Sakai and col-
leagues demonstrated promising results in a rabbit model of
degeneration where they showed enhanced matrix formation
[33] following injection of MSCs embedded in atelocollagen.
Our current study utilising an in vitro model system suggests
that a simpler approach utilising direct injection of MSCs into
the disc could induce regeneration of the disc via differentia-
tion of injected MSCs and subsequent formation of new and
appropriate matrix. The key advantages of this technique
would be that such an approach reduces the cost, the risk of
infection and the time between MSC cell harvest and cell ther-

apy.

Importantly the development of the present in vitro model to
test the survival, phenotype and function of human MSCs fol-
lowing injection into IVD tissue is a major advance for testing
the efficacy of future therapies. This culture system can be uti-
lised to investigate MSC behaviour in human IVD tissue sam-
ples from both nondegenerate and, importantly, degenerate
tissue that would not be possible in vivo. This in vitro system
also allows the manipulation of the local environment in a con-
trolled manner to study factors such as reduced oxygen, nutri-
ents or the influence of load on the phenotype and survival of
injected MSCs. All of these are important questions to
address before clinical use of MSC therapies becomes a real-
ity — and the development of the in vitro system described
here, in which MSCs can be tracked and their phenotype/
function assessed under such conditions, will allow these
studies to be conducted.

Conclusion

Using an in vitro model system we have shown that MSCs dif-
ferentiate spontaneously upon insertion into NP tissue and
thus may not require additional stimulation or carrier to induce
differentiation. This is a key finding because such a strategy
would minimise the level of external manipulation of the MSCs
required prior to insertion into the patient, thus simplifying
treatment strategy and reducing costs. Future studies will
involve the investigation of the behaviour of these cells follow-
ing injection into degenerate human IVD tissue explants, and
the influence of a loaded, hypoxic and low-nutrient environ-
ment (mimicking the human in vivo milieu) on cell survival and
differentiation.
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