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Abstract
Autoimmunity, microangiopathy and tissue fibrosis are hallmarks of
systemic sclerosis (SSc). Vascular alterations and reduced capillary
density decrease blood flow and impair tissue oxygenation in SSc.
Oxygen supply is further reduced by accumulation of extracellular
matrix (ECM), which increases diffusion distances from blood
vessels to cells. Therefore, severe hypoxia is a characteristic
feature of SSc and might contribute directly to the progression of
the disease. Hypoxia stimulates the production of ECM proteins by
SSc fibroblasts in a transforming growth factor-β-dependent
manner. The induction of ECM proteins by hypoxia is mediated via
hypoxia-inducible factor-1α-dependent and -independent pathways.
Hypoxia may also aggravate vascular disease in SSc by perturbing
vascular endothelial growth factor (VEGF) receptor signalling.
Hypoxia is a potent inducer of VEGF and may cause chronic VEGF
over-expression in SSc. Uncontrolled over-expression of VEGF has
been shown to have deleterious effects on angiogenesis because
it leads to the formation of chaotic vessels with decreased blood
flow. Altogether, hypoxia might play a central role in pathogenesis
of SSc by augmenting vascular disease and tissue fibrosis.

Introduction
Oxygen homeostasis is a sine qua non for metazoan
organisms. Reduction in physiological oxygen concentrations
leads to metabolic demise because oxygen is the terminal
electron acceptor during ATP formation in mitochondria and
is a central substrate in many enzymatic reactions. Whereas
lack of oxygen causes metabolic cell death, increased oxygen
concentrations carry a risk for oxidative damage to proteins,
lipids and nucleic acids, possibly initializing apoptosis or
carcinogenesis. Thus, even slight changes in systemic and
cellular oxygen concentrations induce a tightly regulated
machinery of short-acting and long-acting response pathways
to keep the supply of oxygen within the physiological range.

Molecular responses to hypoxia and endogenous hypoxia
markers have been elucidated in detail during the past two
decades. In this context, the molecular characterization of the
transcription factor hypoxia-inducible factor (HIF)-1 and un-
ravelling of its regulation were breakthroughs for our
understanding of cellular adaptation to reduced oxygenation.
HIF-1 protein accumulates under hypoxic conditions in many
different cell types. It activates the transcription of genes that
are of fundamental importance for oxygen homeostasis,
including genes involved in energy metabolism, angiogenesis,
vasomotor control, apoptosis, proliferation and matrix produc-
tion [1].

Systemic sclerosis (SSc) is characterized by a triad of micro-
angiopathy, activation of humoral and cellular immune
responses and tissue fibrosis, affecting the skin as well as a
variety of internal organs, including lung, heart and gastro-
intestinal tract [2]. Using nailfold capillaroscopy, alterations in
the capillary network can be observed early in SSc. Vascular
alterations include sac-like, giant and bushy capillaries,
microhaemorrhages and a variable loss of capillaries that
result in avascular areas [3]. The microangiopathy with pro-
gressive loss of capillaries leads to decreased blood flow
followed by a lack of nutrients and tissue hypoxia. In advanced
disease, fibrosis of the skin and of multiple internal organs,
which results from excessive extracellular matrix production of
activated fibroblasts, is the most obvious histopathological
hallmark of SSc. Because the accumulation of extracellular
matrix increases diffusion distances from blood vessels to
cells, tissue malnutrition and hypoxia may be aggravated by
fibrosis. In summary, severe tissue hypoxia is present in SSc
and may even be involved in disease progression.
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The present review presents current knowledge of molecular
signalling pathways in response to hypoxia and discusses the
role that hypoxia plays in the pathogenesis of SSc.

Molecular structure of hypoxia-inducible
factor-1
In 1995, Wang and coworkers cloned the transcription factor
HIF-1, based on its ability to bind to the 3’ enhancer region of
the erythropoietin gene [4]. Structural analysis revealed two
subunits: HIF-1α (120 kDa) and HIF-1β (91 to 94 kDa). Both
HIF-1 subunits contain a basic helix-loop-helix domain, enab-
ling them to recognize and bind to specific DNA sequences,
called HIF-1 DNA binding sites (HBSs), within the regulatory
regions of hypoxia-inducible genes. Both proteins are also
charactarized by two Per/ARNT/Sim (PAS) regions located at
the amino-termini. Using HIF-1α deletion mutants, Jiang and
coworkers [5] demonstrated that the helix-loop-helix domain
and the PAS-A region of HIF-1α are sufficient for
heterodimerization with HIF-1β. The most intriguing structural
element of HIF-1α is the oxygen-dependent degradation
domain (ODDD), which links HIF-1α to the cellular oxygen
sensor. Under normoxic conditions the hydroxylation of two
proline residues within the ODDD results in ubiquitinylation
and degradation of HIF-1α. In contrast, hydroxylation and
degradation of HIF-1α are decreased in hypoxic milieus
because oxygen is the critical substrate in hydroxylation reac-
tions. Thus, lack of oxygen leads to HIF-1α accumulation [6].

Stabilization of hypoxia-inducible factor-1αα
protein
In contrast to the expression of HIF-1β, that of HIF-1α is
tightly controlled by cellular oxygen levels. Cellular HIF-1α is
not detectable under normoxic conditions because it is
rapidly degraded after translation. After exposure to low
oxygen concentrations, levels of HIF-1α increase exponen-
tially. Maximal response is usually reached at oxygen concen-
trations of about 0.5% .

Hydroxylation of two proline residues within the ODDD
(positions 402 and 564) triggers the oxygen-dependent regu-
lation of HIF-1α. This hydroxylation is catalyzed by a family of
2-oxoglutarate dependent dioxygenases called prolyl hydroxy-
lase domains (PHDs) [7]. During the hydroxylation process,
PHDs split molecular oxygen and transfer one oxygen atom to
one of the proline residues. The second oxygen atom reacts
with 2-oxoglutarate, generating succinate and carbon dioxide.
The co-substrate ascorbic acid keeps the ferrous ion of the
catalytic site in its bivalent state. The ability of PHDs to
modify HIF-1α depends on the concentration of its substrate
oxygen. Under normoxic conditions, PHDs hydroxylate
HIF-1α efficiently, leading to the rapid degradation of the
HIF-1α subunit. In contrast, the rate of hydroxylation is
reduced at low oxygen levels. Thus, PHDs function as intra-
cellular oxygen sensors and provide the molecular basis for
the regulation of HIF-1α protein concentrations by cellular
partial pressure of oxygen [8].

The hydroxylation of HIF-1α is similar to the prolyl modification
of collagens [9,10]. However, collagen prolyl hydroxylases are
unable to hydroxylate the proline residues of HIF-1α [9]. Three
human HIF-1α dioxygenases have been identified thus far
[8,11,12]: PHD3 (HPH-1/EGLN3), PHD2 (HPH-2/EGLN1) and
PHD1 (HPH-3/EGLN2). All three PHDs have the potential to
hydroxylate HIF-1α. Nevertheless, PHD2 exhibits the greatest
prolyl hydroxylase activity in normoxic cells [13]. It is the key
limiting enzyme for HIF-1α turnover and its knockdown by small
interfering RNA stabilizes HIF-1α levels, whereas single
knockdown of PHD1 or PHD3 has no effect on the stability of
hypoxic conditions. Appelhoff and coworkers [14]
demonstrated that PHD3 activity exceeded the activity of PHD2
in MCF-7 breast cancer and BXPC-3 pancreatic cancer cell
lines under hypoxic conditions. Inhibition of PHD3 in hypoxic
cells led to higher HIF-1α levels than inhibition of PHD2.

Recently, an endoplasmatic prolyl-4-hydroxylase (P4H) with a
transmembrane domain, which is more closely related to the
collagen prolyl hydroxylases, has also been shown to hydroxy-
late HIF-1α in vitro [15].

An additional mechanism for the regulation of HIF-1α stability
was demonstrated by Jeong and coworkers [16]. Arrest
defective (ARD)1, an acetyltransferase, binds directly to the
ODDD of HIF-1α in the cytoplasm and acetylates a single
lysine residue at position 532. Acetylation of this specific
lysine residue favours the interaction of HIF-1α and the E3
ubiquitin ligase complex, and stimulates the degradation of
HIF-1α. As shown by vascular endothelial growth factor
(VEGF) promoter-driven luciferase reporter gene assays,
ARD1 not only destabilizes HIF-1α protein, but it also
downregulates its transactivation activity in ARD1-transfected
HT1080 human fibrosarcoma cells under hypoxic conditions.
Mutation of lysine residue 532 to arginine or application of
antisense ARD1 results in stabilization of HIF-1α even under
normoxic conditions [16,17]. In contrast, levels of HIF-1α
decreased when deacetylation was inhibited. Finally, mRNA
and protein levels of ARD-1 are diminished under hypoxia,
resulting in less acetylated HIF-1α [16].

Blocking hydroxylation of proline residues 402 and 564 as
well as blocking acetylation of lysine 532 have been
demonstrated to prevent degradation of HIF-1α under
normoxic conditions, thus abolishing the oxygen-dependent
regulation of HIF-1α signalling [6,9,16]. These findings
suggest that both pathways - hydroxylation and acetylation of
HIF-1α - are essential for the physiological regulation of
cellular responses to hypoxia.

Upregulation of prolyl hydroxylase domain
activity in chronic hypoxia
Interestingly, PHD2 and PHD3 are induced by hypoxia in a
HIF-1α-dependent manner, thereby creating a negative
feedback loop of HIF-1α signalling [14,18]. In this context, a
functional hypoxia-regulated element has been identified in



the PHD3 gene, enabling direct regulation of PHD3 by HIF-1.
Recently, Ginouvès and coworkers [19] reported increased
PHD activity in response to chronic hypoxia. PHD2 and
PHD3 protein levels reached a maximum after 24 hours of
hypoxia, whereas PHD activity rose steadily for 7 days,
indicating that further mechanisms besides induction of
PHDs led to increased PHD activity. Consistent with these
findings, PHD activity increased with prolonged hypoxia in
vivo. Only low PHD activity but high HIF-1α levels were
observed in mice exposed to 6 hours of hypoxia at 8%
oxygen, whereas PHD activity increased markedly after
24 hours of hypoxia, resulting in a subsequent reduction in
HIF-1α. After 24 hours of 8% oxygen, escalation of hypoxia to
6% oxygen concentration for another 2 hours caused a re-
accumulation of HIF-1α [19]. Together these findings
suggest that HIF-1α is induced in response to hypoxia,
accumulates in acute hypoxia and is removed as the activity
of PHDs increases in chronic hypoxia.

Ginouvès and coworkers [19] also suggested a mechanism
that may lead to augmented PHD activity that is distinct from
PHD gene induction. During hypoxia, HIF-1 induces pyruvate
dehydrogenase kinase-1, which has been reported to
decrease mitochondrial oxygen consumption by inhibiting
mitochondrial respiration [20,21]. Inhibition of mitochondrial
respiration may increase intracellular oxygen levels and
accelerate oxygen-dependent HIF-1α hydroxylation by PHDs
[19]. Therefore, augmented PHD activity in chronic hypoxia
might create an effective negative feedback loop for HIF-1α
signalling. Although this hypothesis must be confirmed with
further experiments, separating acute from chronic hypoxia will
certainly gain importance for future studies, especially when
evaluating HIF-1α or PHDs as possible therapeutic targets for
diseases in which hypoxia has been implicated, such as SSc.

Degradation of hypoxia-inducible factor-αα
The rapid degradation of HIF-1α under normoxic conditions is
mediated by the von Hippel-Lindau tumour suppressor protein
(pVHL) [22]. The β-subunit of pVHL interacts directly with the
ODDD of HIF-1α when proline residue(s) 402 and/or 564 are
hydroxylated, but not without this modification. pVHL itself is
part of the E3 ubiquitin ligase complex. Interaction of proline-
hydroxylated HIF-1α with pVHL/E3 ubiquitin ligase complex
activates the ubiquitination machinery, thereby promoting
degradation of HIF-1α [1,9,23,24]. A similar mechanism of
recognition is proposed for the acetylation of the lysine
residue 532 [16]. Under hypoxic conditions, the ODDD is
neither hydroxylated nor acetylated, pVHL cannot bind and
HIF-1α is not ubiquitinated. Thus, degradation of HIF-1α in the
proteasome is inhibited and HIF-1α protein accumulates.

Binding of HIF-1 to HIF binding sites,
formation of the transcriptional complex and
regulation of HIF-1 transactivation
After translocation into the nucleus HIF-1α dimerizes with
ARNT/HIF-1β. The HIF-1 heterodimer then binds via its basic

helix-loop-helix domain to the HBS within the hypoxia-
responsive element of most hypoxia-regulated genes [25-27].
The HBS is essential but not sufficient for HIF-1 gene
activation. Besides the HBS, a complete hypoxia-responsive
element contains additional binding sites for transcription
factors that are not sensitive to hypoxia. These co-stimulatory
factors, including cAMP response element binding protein
(CREB)-1 of the lactate dehydrogenase A gene [28] or
activator protein-1 (AP-1) in the VEGF gene [29], are also
required for efficient transcription of oxygen-sensitive genes.
Multimerization of HBS can substitute for additional
transcription factors in several HIF-regulated genes [30-33].

For efficient induction of HIF-1-regulated genes, HIF-1 must
be activated. Simple blockade of HIF-1α degradation (for
example with chemical proteasome inhibitors such as N-
carbobenzoxyl-L-leucinyl-L-leucinyl-L-norvalinal) results in
accumulation of HIF-1α but is often not sufficient for trans-
activation [34]. Two modifications of HIF-1α involved in the
regulation of HIF-1α transactivation have been identified:
hydroxylation of the carboxyl-terminal transactivation domain
and protein phosphorylation by tyrosine kinase receptors.

At low oxygen concentrations the carboxyl-terminal trans-
activation domain of HIF-1α recruits several co-activators,
including p300 and CREB-binding protein, which are re-
quired for HIF-1 signalling [35,36]. Under normoxic condi-
tions the enzyme FIH-1 (factor-inhibiting HIF-1) hydroxylates
an asparagine residue at position 803, thereby preventing
interaction of HIF-1α with p300 with CREB-binding protein
[37]. Consequently, oxygen-sensitive asparagine hydroxyla-
tion, inhibiting HIF-1 transactivation, is part of the oxygen-
sensing mechanism [37,38].

Other members of the hypoxia-inducible
factor family
Two proteins closely related to HIF-1α have been identified
and designated HIF-2α and HIF-3α [39,40]. HIF-2α and
HIF-3α are both able to dimerize with HIF-1β and bind to
HBSs [41,42]. HIF-2α is similar to HIF-1α with regard to its
genomic organization, protein structure, dimerization with
HIF-1β, DNA binding and transactivation [22,35,43,44].
Moreover, both proteins accumulate under hypoxic conditions
[45-47]. However, experiments with knockout mice revealed
that HIF-1α and HIF-2α could not compensate for loss of the
each other [31,48,49]. This finding suggests that the different
α subunits of HIF might not be redundant and possess
different biological functions.

Hypoxia in systemic sclerosis
Hypoxia and its central mediator HIF-1 control a large variety
of different genes. Upregulation of HIF-1 in response to
hypoxia regulates erythropoiesis, angiogenesis and glucose
metabolism, as well as cell proliferation and apoptosis [1,7].
Using DNA microarray studies on primary pulmonary arterial
endothelial cells, Manalo and coworkers [50] observed that a
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minimum of 2.6% of all human genes were regulated by
hypoxia in a HIF-1-dependent manner. In theory, microangio-
pathy and tissue fibrosis should result in reduced tissue
oxygenation and may provoke HIF-1-dependent response to
hypoxia. The reduced capillary density and vascular
malformations should lead to decreased blood flow with lack
of nutrients and oxygen in involved organs in SSc patients
[51]. Besides the microangiopathy, tissue fibrosis might
further aggravate tissue malnutrition and hypoxia. The
progressive accumulation of extracellular matrix proteins such
as collagens, fibronectin and glycosaminoglycans [52]
increases distances between cells and their supplying
vessels and may impair diffusion. Hence, lack of functional
capillaries as well as impaired diffusion implicate significant
tissue malnutrition and chronic hypoxia in SSc patients
(Figure 1).

Indeed, two studies demonstrated severe hypoxia in lesional,
fibrotic skin of SSc patients [53,54]. In both studies, low
oxygen levels were only found in lesional skin of SSc patients,
whereas the oxygen levels in nonfibrotic skin were not
decreased compared with skin of healthy volunteers.

Using a noninvasive transcutaneous technique to measure
oxygen levels, Silverstein and coworkers [53] showed that
oxygen levels of fibrotic skin were inversely related to skin
thickness. The lowest oxygen levels were measured in SSc
patients with severely thickened skin. Indirect correlation of
oxygen levels with dermal thickness supports the concepts of
impaired diffusion due to accumulation of extracellular matrix
in lesional skin of SSc patients. Patients suffering from
primary Raynaud’s disease did not exhibit hypoxic skin, and
oxygen levels were similar to those in healthy individuals.

We quantified oxygen levels in the skin of SSc patients by
applying an oxygen partial pressure (PO2) histography
method, involving introduction of a small polarographic
needle electrode directly into the dermis [54]. To exclude
systemic influences on local oxygen levels, we determined
arterial oxygen saturation, haemoglobin content, blood
pressure and heart rate, and patients rested for at least 10
minutes before the experiment. For each patient about 200
single measurements of PO2 were taken at a predefined area
on the dorsal forearm, and an individual PO2 mean value was
determined. Average PO2 in the skin of healthy individuals
was 33.6 ± 4.1 mmHg (4.4 ± 0.5% oxygen per volume),
whereas involved skin of SSc patients exhibited significantly
decreased oxygen levels, with a mean PO2 value of
23.7 ± 2.1 mmHg (3.1 ± 0.3%). In contrast, the average PO2
in nonfibrotic skin of SSc patients did not differ from that in
healthy individuals (mean PO2 37.9 ± 8.6 mmHg, correspon-
ding to 5.0 ± 1.1%).

In summary, both studies demonstrated that hypoxia is a
characteristic feature of involved, fibrotic skin of SSc patients.
Although cutaneous blood flow, a potential confounding

factor, was not determined in any of these studies, the
inverse correlation of skin thickness with cutaneous PO2
suggests that impaired oxygen diffusion due to extracellular
matrix accumulation might contribute to tissue hypoxia in
SSc.

Role played by hypoxia-inducible factor-1αα in
systemic sclerosis
Considering the presence of hypoxia, one would assume that
HIF-1α is strongly upregulated in SSc [54,55]. This
presumption is fortified by the fact that several cytokines and
growth factors, upregulated in SSc, are able to stabilize
HIF-1α under certain conditions. Examples include inter-
leukin-1β, transforming growth factor (TGF)-β, platelet-
derived growth factor (PDGF), fibroblast growth factor 2 and
insulin-like growth factors (IGFs) [56-58].

Despite severely reduced oxygen levels and despite the over-
expression of these growth factors, protein levels of HIF-1α in
the skin of SSc patients were even below the levels seen in
healthy control skin [54]. Skin specimens from SSc patients
did not exhibit increased expression of HIF-1α protein by
immunohistochemistry. HIF-1α staining was moderate to high
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Figure 1

Vicious circle of hypoxia and fibrosis in the pathogenesis of SSc. To
the upper left is shown nailfold capillaroscopy from a patient with
systemic sclerosis (SSc) with capillary rarification and vascular
alterations, including sac-like, giant and bushy capillaries. Vasculopathy
leads to reduced blood flow and causes tissue hypoxia in SSc. To the
upper right is shown a haematoxylin and eosin stained skin section
from an experimental mouse fibrosis model with increased skin
thickness due to extracellular matrix (ECM) deposition. ECM
deposition increases diffusion distances from blood vessels to cells
and reduces tissue oxygenation. In the ‘vicious circle’, shown at the
bottom of the figure, tissue hypoxia leads to activation of dermal
fibroblasts and upregulation of ECM production. Further ECM
deposition aggravates tissue malnutrition and hypoxia. Hypoxia once
again stimulates ECM production in dermal fibroblasts.



in the epidermis of healthy individuals, whereas the expres-
sion of HIF-1α in SSc patients was restricted to single
keratinocytes. HIF-1α protein was not detectable in the
dermis of healthy individuals and SSc patients. Moreover, the
HIF-1α expression pattern in involved skin in SSc patients did
not correlate with upregulated VEGF, one of the main
transcriptional targets of HIF-1α [54].

PHD-dependent HIF-1α negative feedback loops in chronic
hypoxic conditions might be a plausible explanation for
decreased HIF-1α levels in fibrotic skin of SSc patients.
Considering the clinical course of SSc, lesional skin in SSc
patients can be categorized as a chronically hypoxic tissue. In
this context, low HIF-1α levels may be caused by negative
HIF-1α feedback loops, even despite severe hypoxia.
Increased PHD activity in response to chronic hypoxia [19]
might lead to rapid HIF-1α degradation and decreased
HIF-1α levels in fibrotic SSc skin. This theory is also
supported by studies on the effects of prolonged hypoxia in
murine organs. In mice exposed to 6% oxygen, HIF-1α
protein reached maximum levels in the brain after 4 to 5 hours
but declined afterward, attaining basal normoxic concen-
trations after 9 to 12 hours. Similar results were obtained for
kidney and liver [59].

However, the low levels of HIF-1α in the skin of SSc patients
per se do not argue against the persistent activation of
oxygen-sensitive pathways in SSc. Marked and persistent
upregulation of the oxygen-dependent gene VEGF is observed
in lesional SSc skin even in late stages of SSc. Thus, the
response to hypoxia appears to persist in chronic states, but
might be driven by HIF-1α-independent pathways, for
instance HIF-2α and HIF-3α. However, the role played by
other members of the HIF family in the pathogenesis of SSc
has not yet been investigated in detail.

Insufficient response to hypoxia: dysregulation
of angiogenesis in systemic sclerosis
Angiogenesis and vasculogenesis are fundamental mecha-
nisms in improving oxygenation of hypoxic tissue. HIF-1
promotes vascularization by inducing the expression of
multiple angiogenic mediators such as VEGF, placental
growth factor, angiopoietin 1 and 2, and PDGF-BB [60].
VEGF drives angiogenesis by activating endothelial cells in
hypoxic tissue and vasculogenesis by mobilizing and
recruiting endothelial progenitor cells [61-63]. In addition,
VEGF exhibits synergistic angiogenic effects together with
PDGF and fibroblast growth factor-2 [64].

Sufficient tissue vascularization depends on strict regulation
of VEGF expression. Chronic and uncontrolled over-
expression of VEGF induces the formation of chaotic vessels,
characterized by glomeruloid and haemangioma-like
morphology [65,66]. Dor and coworkers [67] demonstrated
in pTET-VEGF165/MHCα-tTa transgenic mice, in which VEGF
expression can be conditionally switched off in an organ-

dependent manner by feeding tetracycline, that time-depen-
dent regulation of VEGF expression was essential for
adequate vascularization. Although short-term over-expres-
sion of VEGF induced the formation of new mature and
functional vessels in adult organs, prolonged exposure to
VEGF without subsequently switching off its gene expression
by tetracycline resulted in the formation of irregularly shaped,
sac-like vessels leading to reduced blood flow. Irregularly
shaped, sac-like vessels are reminiscent of the disturbed
vessel morphology in SSc [3]. Hence, the microvascular
defects in SSc might partly be caused by uncontrolled over-
expression of VEGF.

VEGF levels are markedly upregulated in the skin of SSc
patients compared with healthy volunteers [54]. As analyzed
by in situ hybridization, the mean percentage of epidermal
keratinocytes expressing VEGF was significantly increased in
SSc patients compared with normal individuals. These
findings were consistent with dermal expression levels of
VEGF. In contrast, normal individuals did not exhibit VEGF
expression in the dermis. VEGF was expressed in most SSc
patients in a variety of different dermal cell types, including
fibroblasts, endothelial cells and leucocytes [54]. VEGF was
induced in dermal SSc fibroblasts in response to hypoxia, but
expression levels did not differ significantly between fibro-
blasts from SSc patients and those from healthy volunteers
[54]. However, as the oxygen levels are significantly lower in
lesional skin of SSc patients than in control individuals, the
induction of VEGF by hypoxia is only operative in SSc
patients, but not in normal volunteers. Both receptors for
VEGF, namely VEGF receptors 1 and 2, were also over-
expressed in the skin of SSc patients. Therefore, enhanced
activation of the VEGF/VEGF receptor axis may lead to
typical changes in SSc vascularization, causing tissue
malnutrition and hypoxia [54]. Because the expression of
VEGF is stimulated by hypoxia, one might speculate that the
hypoxia could augment vascular disease in SSc by
contributing to persistent over-expression of VEGF. However,
it remains to be demonstrated that chronic hypoxia alone is
indeed sufficient to cause persistent upregulation of VEGF in
vivo. Alternatively, the persistent over-expression of VEGF in
SSc might also be driven by cytokines. Interleukin-1β, PDGF
and TGF-β are all upregulated in SSc and can stimulate the
expression of VEGF [54,68,69].

Induction of fibrosis by hypoxia
Microangiopathy with impaired angiogenesis and excessive
accumulation of extracellular matrix may cause severe hypoxia
in SSc [53,54]. However, what is the exact role played by
hypoxia in the pathogenesis of SSc? Is it just the conse-
quence of microangiopathy and fibrosis or does it contribute
to the progression of SSc?

DNA microarray studies revealed the first causal links
between hypoxia and fibrosis [50]. Manalo and coworkers
[50] detected a striking number of genes encoding collagens
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or collagen-modifying enzymes that were induced in pulmo-
nary endothelial cells after 24 hours at 1% oxygen. These
genes included collagen (COL)1A2, COL4A1, COL4A2,
COL5A1, COL9A1 and COL18A1, as well as procollagen
prolyl hydroxylases (P4HA1 and P4HA2), lysyl oxidase (LOX)
and lysyl hydroxylases (procollagen lysyl hydroxylase and
procollagen lysyl hydroxylase 2). Similar links between
hypoxia and fibrosis have also been found in other models
and organs, for example kidney [70,71], liver [72] and lung
[73]. Together, these findings indicate that hypoxia could
promote extracellular matrix production and that it may
actively be involved in the pathogenesis of profibrotic
disorders such as SSc.

We could demonstrate that hypoxia induced several extra-
cellular matrix proteins, including fibronectin-1, thrombo-
spondin-1, proα2(I) collagen (COL1A2), IGF-binding protein
3 (IGFBP-3) and TGF-β-induced protein (TGF-βi) in cultured
dermal fibroblasts [74]. Type 1 collagens and fibronectins are
the major matrix proteins within fibrotic lesions [52].
Thrombospondin-1 also accumulates in SSc and modulates
angiogenesis. TGF-βi is an extracellular matrix protein that is
known to be highly expressed in arteriosclerotic plaques [75]
and in zones of thickened extracellular matrix in the bladder
[76]. IGFBP-3 directly induces the synthesis of fibronectin in
lung fibroblasts [77] and protects IGF-1 from degradation.
IGF-1 itself stimulates collagen synthesis and downregulates
the production of collagenases in fibroblasts [77].

Induction and production of these extracellular matrix proteins
in response to hypoxia was time dependent and inversely
correlated with oxygen levels [74]. Most of these proteins
were significantly upregulated after 24 hours of oxygen
deprivation, with a further significant increase after 48 hours.
The expression of fibronectin-1, thrombospondin-1, COL1A2
and IGFBP-3 was significantly enhanced at 8% oxygen
concentration and increased further with lower oxygen levels,
reaching a maximum at 1% oxygen. Of note, severe and
chronic hypoxia, as may be found in the skin of SSc patients
[54], was associated with the most marked effects on the
induction of extracellular matrix proteins.

These results were confirmed in a mouse model of systemic
normobaric hypoxia [74]. Consistent with the results obtained
in vitro, extracellular matrix proteins were upregulated in mice
exposed to hypoxia after 24 hours compared with control
mice breathing air with 21% oxygen. Prolonged exposure for
48 hours resulted in further upregulation of fibronectin 1,
thrombospondin 1 and COL1A2, whereas TGF-βi and
IGFBP3 mRNA levels decreased slightly. Because TGF-β is a
major stimulus for the induction of extracellular matrix proteins
in SSc [52,78], its role for hypoxia-dependent fibrogenesis
was also studied in dermal SSc fibroblasts. Neutralizing
antibodies against TGF-β completely abrogated the induction
of COL1A2, fibronectin 1, thrombospondin 1 and TGF-βi in
SSc fibroblasts that were cultured under hypoxic conditions

for 48 hours [74]. These findings suggest that inhibition of
TGF-β-dependent pathways may prevent the profibrotic
effects of hypoxia.

Consistent with the results on TGF-β signalling, the expres-
sion of the fibrogenic cytokine connective tissue growth
factor (CTGF) was also shown to be upregulated in SSc in
response to hypoxia [79]. CTGF is a critical mediator of
TGF-β-induced skin fibrosis in SSc [80]. Its serum levels are
elevated in SSc patients and have been suggested to
correlate with skin fibrosis [81]. Hong and coworkers [79]
found increased levels of CTGF mRNA and protein in
fibroblasts exposed to 1% of oxygen or treated with cobalt
chloride, a chemical stabilizer of HIF-1α. The induction of
CTGF in response to hypoxia depended on HIF-1α [79].
Because the authors concentrated on short-term hypoxia of
up to 4 hours, it remains unclear whether CTGF is also
induced by chronic hypoxia and by HIF-1α-independent
mechanisms in SSc.

Thus, accumulating evidence suggests that hypoxia might be
actively involved in pathogenesis of SSc by stimulating the
release of extracellular matrix protein. This could result in a
vicious circle of hypoxia and fibrosis. Hypoxia stimulates the
production and accumulation of extracellular matrix. The
resulting tissue fibrosis inhibits diffusion of oxygen, causing
further tissue hypoxia, which stimulates further the production
of extracellular matrix (Figure 1). Activation of TGF-β-
dependent pathways appears to play a central role in the
induction of extracellular matrix proteins by hypoxia, and
inhibition of TGF-β signalling might prevent hypoxia-induced
tissue fibrosis. However, further studies are needed to
characterize further the role played by hypoxia in SSc and to
identify the molecular mechanisms activated by hypoxia in
SSc.

Conclusions
Capillary rarification and disturbed blood flow, as well as
excessive extracellular matrix accumulation, cause chronic
tissue hypoxia in SSc. However, levels of HIF-1α protein are
decreased, probably due to PHD-dependent negative
feedback loops. Interestingly, physiological mechanisms to
overcome tissue hypoxia are impaired and dysregulated in
SSc. Insufficient angiogenesis and vasculogenesis cannot
abolish tissue malnutrition and hypoxia. Compensatory over-
expression of VEGF might even result in a futile vascular
response to hypoxia, characterized by the chaotic vessel
formation. Hypoxia stimulates the production of several
extracellular matrix proteins in SSc fibroblasts in a time- and
concentration-dependent manner. The excessive deposition
of matrix might impair further the diffusion of oxygen and
cause a vicious circle of hypoxia and tissue fibrosis. Currently,
there are no specific modulators of HIFs or PHDs available
for clinical use. Thus, it is not yet possible to target hypoxia
selectively in SSc patients. However, because inhibition of
TGF-β prevented the induction of extracellular matrix by
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hypoxia, blocking of TGF-β signalling might be one approach
to target at least in part the hypoxia-induced matrix
production in SSc.
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