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Abstract

An adequate supply of oxygen and nutrients is essential for survival
and metabolism of cells, and consequentially for normal homeo-
stasis. Alterations in tissue oxygen tension have been postulated to
contribute to a number of pathologies, including rheumatoid arthritis
(RA), in which the characteristic synovial expansion is thought to
outstrip the oxygen supply, leading to areas of synovial hypoxia and
hypoperfusion. Indeed, the idea of a therapeutic modality aimed at
‘starving’ tissue of blood vessels was born from the concept that
blood vessel formation (angiogenesis) is central to efficient delivery
of oxygen to cells and tissues, and has underpinned the develop-
ment of anti-angiogenic therapies for a range of cancers. An
important and well characterized ‘master regulator’ of the adaptive
response to alterations in oxygen tension is hypoxia-inducible factor
(HIF), which is exquisitely sensitive to changes in oxygen tension.
Activation of the HIF transcription factor signalling cascade leads to
extensive changes in gene expression, which allow cells, tissues
and organisms to adapt to reduced oxygenation. One of the best
characterized hypoxia-responsive genes is the angiogenic stimulus
vascular endothelial growth factor, expression of which is
dramatically upregulated by hypoxia in many cells types, including
RA synovial membrane cells. This leads to an apparent paradox,
with the abundant synovial vasculature (which might be expected to
restore oxygen levels to normal) occurring nonetheless together
with regions of synovial hypoxia. It has been shown in a number of
studies that vascular endothelial growth factor blockade is effective
in animal models of arthritis; these findings suggest that hypoxia
may activate the angiogenic cascade, thereby contributing to RA
development. Recent data also suggest that, as well as activating
angiogenesis, hypoxia may regulate many other features that are
important in RA, such as cell trafficking and matrix degradation. An
understanding of the biology of the HIF transcription family may
eventually lead to the development of therapies that are aimed at
interfering with this key signalling pathway, and hence to modulation
of hypoxia-dependent pathologies such as RA.
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Introduction

Alterations in oxygen tension have been postulated to
contribute to a number of pathologies, including rheumatoid
arthritis (RA). Hypoxia refers to subnormal levels of oxygen in
air, blood and tissue. Tissue hypoxia leads to cellular dys-
function and ultimately can lead to cell death, and the ability
of cells to adapt to periods of hypoxia is therefore important
for their survival. An important and well characterized ‘master
regulator’ of the adaptive response to alterations in oxygen
tension is hypoxia-inducible factor (HIF). Activation of the HIF
signalling cascade leads to extensive changes in gene
expression, which allow cells, tissues and organisms to adapt
to reduced oxygenation. These changes include enhanced
glucose uptake, increased expression of glycolytic enzymes
and increased expression of angiogenic factors [1].

RA is a chronic systemic inflammatory disease, which affects
approximately 1% of the population worldwide. The aetiology
of RA is still not fully understood, but data suggest an
interplay between environmental and genetic factors. The
financial impact of RA is considerable because of the high
level of functional impairment it causes; up to 30% of people
with RA become permanently work disabled within 3 years of
diagnosis if they do not receive medical treatment [2]. There
is now considerable evidence that hypoxia is a feature of RA.
Recent studies have also identified many parallels between
hypoxia and acute infection and/or inflammation, such as that
which is seen in RA. For example, HIF-1 is essential for
myeloid cell-mediated inflammation and bactericidal capacity
of phagocytes, suggesting crosstalk between angiogenesis
and inflammation.

BNIP = BCL2/adenovirus E1B 19 kDa-interacting protein; C-TAD = carboxyl-terminal transactivating domain; FIH = factor inhibiting HIF; HIF =
hypoxia-inducible factor; HRE = hypoxia-response element; [xB = inhibitor of nuclear factor-xB; IKK = inhibitor of nuclear factor-xB kinase; IL =
interleukin; MMP = matrix metalloprotease; NF-xB = nuclear factor-kB; OA = osteoarthritis; 2-OG = 2-oxoglutarate; PHD = prolyl hydroxylase
domain; RA = rheumatoid arthritis; TIMP = tissue inhibitor of matrix metalloprotease; TNF = tumour necrosis factor; VEGF = vascular endothelial

growth factor; vHL = von Hippel Lindau.
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This review series examines the evidence for hypoxia in
inflammatory and destructive joint disease, and discusses the
interplay between alterations in oxygen tension, vascularity
and inflammatory signalling pathways. In the present review
we focus on current knowledge of the regulation of the HIF
pathway, and then consider the potential role of hypoxia in
the pathogenesis of RA.

Why is hypoxia a feature of rheumatoid arthritis?
Tissue hypoxia results from an inadequate supply of oxygen,
with resultant effects on biological functions. Within the
context of tumours, hypoxia is a well described phenomenon,
arising from a hyperplastic response by the tumour cells that
leads to an increased distance from pre-existing blood
vessels. Because arthritic synovium is also characterized by
an altered proliferative response, it is not surprising that
hypoxia is also thought to contribute to RA development. At
this point, it is worth noting that there is little agreement about
what constitutes ‘hypoxia’. Oxygen tensions under physio-
logical conditions range from arterial blood levels to much
lower tissue levels. Many studies ex vivo consider oxygen
tension in relation to atmospheric oxygen levels, namely 20%
to 21% oxygen, which is higher than in vivo oxygen levels.
Moreover, some authors’ definition of ‘hypoxia’ may actually
be more analogous to physiological ‘normoxia’, with studies
performed at 5% to 7% oxygen. The studies described in this
review all utilized levels of oxygen below 5% when describing
the effects of ‘hypoxia’.

With regard to RA, the environment in the inflamed joint is
characterized by a low partial pressure of oxygen. The first
study demonstrating the hypoxic nature of rheumatoid
synovium was carried out more than 30 years ago. Mean
synovial fluid oxygen in RA knee joints was reported to be
lower than in osteoarthritis (OA) patients or in traumatic
effusions in otherwise healthy control individuals [3]. An
interesting study also reported an inverse relationship
between synovial fluid oxygen values and synovial fluid
volume [4]. Despite these intriguing observations, it was only
recently that we were able to measure synovial oxygen
tension in RA patients directly using a highly sensitive gold
microelectrode [5]. We observed that synovial tissue in RA
patients was indeed hypoxic, with oxygen lower than in
noninflamed synovium in patients without RA. The median
oxygen in patients with RA was 26 mmHg (range 18 to
33 mmHg, equivalent to 2% to 49%), as compared with
74 mmHg in patients without RA (range 69 to 89 mmHg,
equivalent to 9% to 129%). Furthermore, in a number of RA
patients we were able to obtain matched measurements
from invasive and encapsulating tenosynovium and from joint
synovium, and we found that oxygen in invasive teno-
synovium was 43% lower than in matched joint synovium,
and 28% lower than in matched encapsulating teno-
synovium. This suggests the existence of hypoxic gradients
within RA synovium, and provides a potential mechanism for
tendon rupture in RA patients, which could be driven by
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hypoxia-mediated upregulation of angiogenic and matrix-
degrading factors.

A number of factors are believed to interplay to produce the
hypoxic environment. As mentioned above, the formation of a
hyperplastic inflammatory mass increases the distance
between proliferating cells and their nearest blood vessels
[6]. Several studies have demonstrated that the oxygen
consumption of the RA synovium is elevated, possibly
because of the increased proliferative activity of synovial
cells, and that glucose is oxidized via an anaerobic, rather
than aerobic, pathway [7,8]. A recent study assessed
whether synovial proliferation (assessed by ultrasonography
as visible synovial thickening and nodular or villous appear-
ance) differentially affects hypoxia in RA and OA. No differ-
ence was found between the OA patients with and without
synovial proliferation in terms of synovial fluid oxygen,
whereas RA patients had both increased proliferation and
significantly lower synovial fluid oxygen levels, suggesting that
the proliferative response may have different impacts on
synovial oxygenation in RA and OA [9]. These findings of an
anaerobic and acidic microenvironment have been supported
by nuclear magnetic resonance spectroscopy, confirming the
presence of low molecular weight metabolites, consistent
with hypoxia [8]. Movement has been also proposed to result
in intra-articular pressure exceeding synovial capillary
perfusion pressure [10]. The raised pressure further compro-
mises the vasculature and exacerbates the already ischaemic
environment. Furthermore, these cycles of hypoxia-reper-
fusion are likely to generate reactive oxygen species, as has
been demonstrated using electron spin resonance spectro-
scopy [11]. The data in RA patients are supported by findings
showing reduced oxygen levels in the joints of arthritic mice
[12,13].

The HIF transcription factor signalling pathway
The alterations in synovial oxygen tension that are observed in
RA synovium are likely to exert effects on the HIF
transcription factors, which are considered to be the ‘master
regulators’ of cellular responses to changes in oxygen
tension. The HIF family was first analyzed and defined
through studies of the glycoprotein hormone erythropoietin
[14], which regulates red blood cell production. To date, it
has been established that approximately 1% of all human
genes are regulated by HIF, including genes that are involved
in angiogenesis (in particular vascular endothelial growth
factor [VEGF]), as well as apoptosis, vasomotor control,
erythropoiesis and energy metabolism. HIF is a heterodimeric
transcription factor that is composed of two different
subunits: HIF-o,, which is oxygen regulated, and HIF-B, which
is expressed constitutively in the nucleus [15]. There are at
least two o subunits, termed HIF-1o0 and HIF-2¢.. Regulation
of HIF-dependent gene expression requires o subunit accu-
mulation in the cytoplasm and translocation into the nucleus,
which enables it to dimerize with B subunits of HIF. The HIF
heterodimers are then recognized by co-activators and bind



to the hypoxia-response elements (HREs) in the target gene
to initiate transcription.

HIF: regulation by prolyl hydroxylases

In 1996, Jiang and coworkers [16] described that maximal
levels of HIF-1o. protein in Hela cells exposed in vitro to
different oxygen concentrations were observed at 0.5%
oxygen, suggesting that HIF was possibly a cellular oxygen
sensor. The main regulators of HIF-o. post-translational modifi-
cations were subsequently characterized as oxygenases
governed by oxygen, 2-oxoglutarate (2-OG), iron (Fe2*) and
ascorbic acid (collectively termed HIF prolyl hydroxylase
domain [PHD]-containing enzymes), and factor inhibiting HIF
(FIH). HIF-o. subunits encompass an oxygen-dependent
degradation domain, responsible for hypoxic stabilization of
o-subunits, and two transactivating domains, namely the
amino-terminal transactivating domain and the carboxyl-
terminal transactivating domain (C-TAD). The C-TAD has
been shown to interact with co-activators such as p300 to
activate transcription. Further upstream of the transactivation
domains, a contiguous basic helix-loop-helix and Per-Arnt-Sim
domain creates a functional interface for dimerization of HIF-a.
with HIF-B and binding to HRE. The PHD enzymes hydroxy-
late proline residues in the oxygen-dependent degradation
domain, thus making HIF-o. recognizable by the von Hippel
Lindau (vHL) tumour suppressor protein/E3 ubiquitin ligase
[17], which leads to polyubiquitination and proteolytic des-
truction of o subunits by the 26S proteasome. Thus, under
conditions in which oxygen is limiting, HIF-o. subunits accu-
mulate and activate transcription of HRE-containing genes.

The PHD enzymes were first described by Epstein and
coworkers [18] through a forward genetic approach to
screening candidate 2-OG dependent dioxygenases in
Caenorhabditis elegans and termed PHD-1, PHD-2 and
PHD-3. The enzymes were also identified and described by
other groups on the basis of similarity to mammalian
procollagen prolyl-4-hydroxylase. The expression of PHD
isoforms is highly variable between tissues, and they are also
partitioned differently between nuclear and cytoplasmic
compartments [19]. There is also substantial variation in the
relative expression of the PHD isoforms in different cells, with
PHD-2 being the most abundant HIF prolyl hydroxylase.
Specific ‘silencing’ of all three enzymes using short interfering
RNA has shown that PHD-2 is the major player in stabilizing
HIF in normoxia in most, but not all, cell lines. Although PHD
enzymes regulate stability of HIF and thereby induce cellular
adaptations in response to hypoxia, it remains largely
unknown how these enzymes are regulated. PHD-2 and
PHD-3, and to a lesser extent PHD-1, are strongly induced by
hypoxia in many cell types, thus resulting in the increased
oxygen-mediated HIF-o. degradation that is observed after
long periods of hypoxia [20,21].

The recent generation of mice with specific global or
conditional inactivation of each of the three PHD enzymes is
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very promising and will promote better understanding of the
functions of the enzymes. Mice homozygous for targeted
disruptions in PHD-1 and PHD-3 genes are viable and
appear normal. In contrast, targeted disruption of PHD-2 in
mice led to embryonic lethality between embryonic days 12.5
and 14.5, caused by severe cardiac and placental defects,
suggesting an important role of PHD-2 in development of the
heart and placenta [22]. Because of the embryonic lethality
after global deletion of PHD-2, Takeda and coworkers [23]
conditionally inactivated lox P-flanked PHD-2 in adult mice
using tamoxifen inducible Cre under the control of the
ubiquitously expressed Rosa26 locus. This resulted in
hyperactive angiogenesis and angiectasia in multiple organs,
suggesting an essential role for PHD-2 in oxygen homeo-
stasis of the adult vascular system. Another study from the
same group showed that blood homeostasis in adult mice is
mostly maintained by PHD-2 but can be further modulated by
the combined actions of PHD-1 and PHD-3 [24]. Because
hypoxia and HIF activation and angiogenesis are features of
RA, it could be suggested that PHD enzymes are in some
way downregulated in RA, and such conditional PHD knock-
out mice could in the future shed light on this hypothesis.

Finally, genetic studies have shown that loss of PHD-1, but
not PHD-2 or PHD-3, selectively induced hypoxia tolerance in
skeletal muscle. This indicates that even though all PHD
enzymes are expressed in muscle, they are likely to play
specific physiological roles. In PHD-1-deficient myofibres,
oxygen consumption was reduced, leading to protection of
the cells against the lethal effects of acute severe hypoxia
[25]. In the same study it was shown that HIF-20. was a
downstream mediator of PHD-1 in hypoxia tolerance. HIF-10.
also appears to be involved in the PHD-1 pathway, although
less prominently. These findings are of significant importance
to our understanding of the molecular basis of hypoxia
tolerance, not only in muscle but also in numerous other
diseases (including cancer and RA) and in settings where
induction of hypoxia tolerance might be of therapeutic value,
such as organ preservation for transplantation.

There are nonetheless a number of questions that remain to
be answered, including the existence of new targets other
than HIF for prolyl hydroxylation and regulation. A recent
report has revealed inhibitor of nuclear factor-kB (IxB) kinase
(IKK)-2 to be a target for prolyl hydroxylation [26]. IKK-2 is a
significant component of the nuclear factor-kB (NF-xB)
signalling pathway, and it was shown that within its activation
loop IKK-2 contains an evolutionarily conserved LxxLAP
consensus motif for hydroxylation by PHD, thus linking two
major human signalling systems, namely NF-xB and HIF.
Mimicking hypoxia by treatment of cells with small interfering
RNA against PHD-1 or PHD-2 or the pan-hydroxylase
inhibitor dimethyloxalylglycine (a 2-OG analogue, and an
inhibitor of both PHD and FIH) resulted in NF-xB activation
via serine phosphorylation-dependent degradation of IkBo.
The investigators suggested that in Hela cells increased
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NF-xB activity during hypoxia was through decreased PHD
activity, and that PHD-1 negatively regulated IKK-2 via prolyl
hydroxylation. Again, if PHD enzymes are in some way
downregulated in RA, then this might lead to activation of the
NF-xB signalling cascade. However, there is hardly any
evidence in the current literature of expression of the HIF
regulating PHD enzymes in the RA synovium. Therefore, in
the future it will important to study the expression and
regulation of these enzymes in RA.

HIF: role of FIH

FIH is an asparaginyl B-hydroxylase, which belongs to the
same superfamily of 2-OG and Fe2+-dependent dioxygenases
as the PHD. As opposed to proteolytic regulation of HIF-a
subunits through proline hydroxylation, FIH regulates HIF
function by deactivating the C-TAD, using oxygen as a co-
substrate, thereby preventing HIF-o. heterodimerization with
HIF-B and co-factors and preventing HIF transactivation in
normoxia [27]. The C-TAD of HIF-o. contains asparagine
residues (Asn803 in HIF-10 and Asn851 in HIF-20) targeted
by FIH hydroxylation [28]. Hydroxylation occurs at the
B-carbon of the asparagine residue, consequently (by way of
steric hindrance) preventing the interaction of the HIF-o
C-TAD with the cysteine/histidine-rich 1 domain of p300, a
co-activator required for the heterodimerization and trans-
criptional activity of HIF [27]. The crystal structure of FIH
reveals it to be a homodimeric protein [29], and disruption of
dimerization of FIH, by use of site-directed mutagenesis, has
shown the importance of the dimeric state for its function in
recognizing HIF-o. as a substrate [30]. Substrates other than
HIF have been identified as targets for asparaginyl hydroxy-
lation by FIH. These include proteins such as ankyrin repeat
and SOCS box protein 4 (ASB4), thought to mediate
ubiquitination of various target proteins, and the intracellular
domain of the Notch receptor (involved in the maintenance of
cells in an undifferentiated state), both of which notably
contain ankyrin repeat motifs containing the asparagine
residue hydroxylated by FIH [31]. Another target, identified
only recently as an FIH substrate and also possessing an
ankyrin repeat motif, is the IkB family of inhibitory proteins
[32], providing further evidence that FIH-dependent aspara-
ginyl hydroxylation is not restricted to HIF-o. subunits.
Although the functional result of asparaginyl hydroxylation of
these proteins remains unclear (because the downstream
effects are small), there is a suggestion that it may in fact
involve HIF regulation, by the sequestering of FIH away from
HIF, particularly in hypoxia.

Microenvironmental conditions in RA joints are characterized
by low oxygen levels [3]. One property of FIH that contrasts
with that of the PHD is its ability to function even in severe
hypoxia [33]. In other words, when the availability of oxygen is
low and PHD enzymes can no longer function (through lack
of oxygen substrate), FIH is potentially still able to deactivate
HIF that has escaped proteosomal degradation. It is unclear
at present whether FIH is still active in RA synovium. As
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recently as 2005, a small molecule inhibitor was developed to
inhibit FIH specifically and upregulate a host of bona fide HIF
target genes such as erythropoietin and VEGF [34]. This
selective inhibition could therefore be of future benefit for
therapeutic strategies requiring upregulated HIF activity.

HIF regulation by inflammatory stimuli

In parallel to the oxygen dependent pathway, HIF-1a is also
regulated by receptor-mediated signals under normoxic
conditions [35-39], although the molecular pathways under-
lying these more subtle changes in HIF gene/protein expres-
sion have not been fully characterized. As is the case under
hypoxic conditions, upregulation of HIF-1o by inflammatory
cytokines such as tumour necrosis factor (TNF)-o. and IL-1B is
thought to involve at least in part stabilization of protein
[35,40,41]. For example, TNF-o. was shown to upregulate HIF-
1o protein levels whereas the HIF-1a. mRNA levels remained
unchanged [35,38,42]. IL-1f has also been shown to induce
HIF-1o protein in a lung epithelial cell line A549 through an
NF-xB dependent pathway but did not alter the steady-state
level of HIF-1o. mRNA in these cells [42]. However,
transcriptional effects have also been reported. Interestingly, in
the context of RA, both IL-1B and TNF-o. have been shown to
increase mMRNA for HIF-1a in RA fibroblasts [43,44]. IL-13
could also induce HIF-1 DNA binding activity in these cells.
Bacterial lipopolysaccharide has also been reported to
upregulate HIF-10o transcription and/or protein levels [45,46].

Several regulatory pathways have been reported to be
involved in the control of HIF-o, in particular phosphatidyl-
inositol 3-kinase [47-52], p42/p44 mitogen-activated protein
kinase [563], p38 mitogen-activated protein kinase and protein
kinase CO& [64]. The NF-xB pathway has also been
implicated. Recently, using IKK-2 deficient mice, it was
shown that NF-xB is required for HIF-10. protein accumu-
lation, and that absence of IKK-2 results in defective
induction of HIF targets such as VEGF [55,56]. Conversely,
hypoxia itself has been identified as an activator of NF-xB
[57,58]. Given the importance of the HIF and NF-xB
signalling cascades in the regulation of inflammation, further
work to clarify the importance of crosstalk between these
pathways is clearly required.

RA synovium is both hypoxic and expresses elevated levels of
inflammatory cytokines. The HIF transcription factor family
may thus represent an important convergence point in RA,
integrating cellular responses to low oxygen tension and to
inflammatory cytokines.

HIF and rheumatoid arthritis: regulation of
angiogenesis and inflammation

What might be the consequence of the hypoxic milieu in terms
of RA pathogenesis? The classic hypoxia-responsive gene is
VEGF, which has been detected at higher levels in the serum
and synovial fluid of RA patients [569,60]. We have shown in
several studies that hypoxia is a potent stimulus for VEGF



induction in RA synovial membrane cell cultures, which contain
lymphocytes, as well as macrophages and fibroblasts [60].

Besides VEGF, many other genes have been reported to be
regulated by hypoxia in fibroblasts, including a variety of
angiogenic and inflammatory mediators. Hypoxia has been
reported to cause a general downregulation of gene expres-
sion in microarray studies in murine fibroblasts. Greijer and
coworkers [61] observed a significant upregulation or down-
regulation of 159 genes by hypoxia; of these 45 were up-
regulated and 112 were downregulated. Using HIF-1o. null
mouse fibroblasts, these authors were able to establish that,
of the genes that were upregulated in their study, 89% were
dependent on HIF-1, as opposed to only 17% of the down-
regulated genes. This supports a role for HIF-1 in up-
regulating genes necessary for cell survival and adaptation to
stress. Chemokines play a key role in regulating cell traffick-
ing to RA synovium. Stromal cell-derived factor-1 is a chemo-
kine of the C-X-C family that is involved in inflammation and
angiogenesis. RA fibroblasts are capable of secreting large
amounts of stromal cell-derived factor-1 in response to treat-
ment with hypoxia (1% oxygen) for 24 hours [62]. Monocyte
chemoattractant protein-1 is elevated in RA synovium.
Interestingly, we and others have reported a suppressive
effect of hypoxia on monocyte chemoattractant protein-1 in
RA synovial cells [5,63].

It is also becoming apparent that matrix metalloprotease
(MMP) enzymes and their tissue inhibitors (TIMPs) are a
further subset of molecules that may be regulated by hypoxia.
The balance between MMPs and TIMPs is likely to influence
cell invasion, within the context of angiogenesis (via
degradation of extracellular matrix) and/or in terms of invasion
by synovium of underlying tissue such cartilage, bone and
tendon. A variety of MMPs have been shown to be regulated
by hypoxia. When exposed to hypoxia, RA synovial fibroblasts
exhibit increased protein levels of MMP-1 and MMP-3 [64].
Conversely, hypoxic RA synovial fibroblasts have been shown
to decrease expression of TIMP-1 at both protein and mRNA
levels [64]. TNF-o. converting enzyme was also recently
shown to be HIF-1 dependent [65], which could be important
in regulating TNF-a. levels in RA.

In summary, hypoxia may affect a host of genes that are
involved in angiogenesis, apoptosis, cellular metabolism,
matrix degradation and inflammation, thus perpetuating the
cycle of reactions involved in RA development (Figure 1).

Are there distinct roles for HIF isoforms?

The past decade has yielded striking evidence that HIF may
become a key target in RA therapy. Hypoxia is known to
influence cellular responses relevant to RA pathogenesis, and
thus by specific HIF inhibition it should be possible to
modulate the activity of cells. The question that should be
answered first is, what are the individual roles of HIF-1o and
HIF-20, and which isoform should be blocked or activated?
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A considerable amount of research has been carried out on
HIF-1o. and HIF-20. since the mid-1990s, showing their
fundamental roles as mediators of transcriptional responses
to hypoxia. A number of similarities have been shown, such as
structure, regulation of activation and degradation via the vHL
ubiquitin E3 ligase [17], as well as the mechanism of action,
namely dimerization with HIF-18, recognition and binding to
HRE in the promoters of target genes [15]. Moreover, both
isoforms are modified at the post-translational level by
oxygen-dependent PHD and FIH-1 enzymes [18].

However, although there are many similarities between
HIF-1o and HIF-2¢, there is growing evidence revealing
differences, implying that they play distinct biological roles in
different cell types. The differences include presence in
animals, with HIF-1a being older evolutionally, existing from
C. elegans to humans, whereas HIF-20. is present only in
complicated vertebrates, namely chickens, quails, and
mammals. HIF-1oo appears to be ubiquitously expressed,
whereas HIF-20. is more tissue restricted, being primarily
expressed in the embryo vasculature and subsequently in the
lung, kidney and liver. This is mirrored in the number of
regulated genes. It was reported using short interfering RNA
and Affymetrix gene chip analysis of hepatoma cells that 3%
of all genes were regulated by hypoxia, with HIF-2a
regulating approximately 13% (36/271) of upregulated genes
and 17% of downregulated genes (37/217) [66]. The vast
majority of genes were HIF-10. dependent (75% of
upregulated genes and 62% of downregulated genes), with
the remainder apparently requiring both HIF-1a and HIF-20.
However, this study used human hepatoma Hep3B cell line,
and it is not yet clear whether this might be true for cells in
RA synovium.

Because of their structural similarities, it was believed that
HIF-1oo and HIF-200 were responsible for analogous
responses to hypoxia. However, differences in RNA and
protein stability (with HIF-10. being transiently expressed and
HIF-20. expression being sustained in prolonged hypoxia)
coupled with differences in co-factors engaged in regulation
(such as NEMO, CITED-2 and ELK-1, which selectively
cooperate with HIF-20. [67]) suggested that the two isoforms
differ not only in terms of the number of HIF-regulated genes
but also, and most importantly, in the pattern of gene
expression. This is supported by evidence for a HIF-1a
specific feedback loop mechanism that involves natural anti-
sense HIF [68], PHD-2 and HIF-3a [69], and differences in
expression upon cytokine stimulation. For example, IL-1 and
TNF-o induce HIF-1a, but not HIF-20, in RA synovial fibro-
blasts [70]. HIF-10o regulates genes involved in metabolism,
regulating glycolysis and glucose uptake by glucose
transporter-1 and glyceraldehyde 3-phosphate dehydroge-
nase [67,71]. In addition HIF-10. activates angiogenesis,
survival and invasion, most importantly in normal development
and in response to stress. Conversely, HIF-20. regulates a
small group of genes, and is involved specifically in renal
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Figure 1

HIF1-e expression in
RA synovium
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Role of hypoxia-regulated HIF transcription factors in RA. In the context of RA pathogenesis, hypoxia-induced stabilization of HIF-o. protein can
potentially modulate genes that are involved in angiogenesis (for example, VEGF), matrix degradation, apoptosis (for instance, BNIP-3), cellular
metabolism (GLUT-1) and inflammation (cytokines and chemokines), thus perpetuating the destructive cascade of reactions. Furthermore,
cytokines relevant to RA (IL-1 and TNF) can themselves modulate HIF levels. A schematic representation of a normal and RA joint is shown.
Representative sections (x100 magnification, with bars indicating 20 um) of RA tissue stained for HIF-10 and HIF-20. are shown, taken from two
different RA patients. HIF-10. expression appears to be predominantly vascular associated, in areas of diffuse cellular infiltration, unlike HIF-2a,
which was frequently associated with infiltrating cells distant form visible blood vessels. BNIP, BCL2/adenovirus E1B 19 kDa-interacting protein;
COX, cyclo-oxygenase; GLUT, glucose transporter; HIF, hypoxia-inducible factor; IL, interleukin; MMP, matrix metalloprotease; RA, rheumatoid
arthritis; TNF, tumour necrosis factor; VEGF, vascular endothelial growth factor.

tumourigenesis and regulation of genes with special
functions. These biological functions ascribe to HIF-2a a
unique role, in comparison with the broader and more general
role played by HIF-1o.

The aforementioned studies indicate that HIF-1o. and HIF-2a
play different roles. However, some findings imply that they
play completely opposing roles. In their 2005 study, Raval,
Lau and their coworkers [72] observed that HIF-20. steers the
anti-apoptotic response, because BCL2/adenovirus E1B
19 kDa-interacting protein (BNIP)3 (a pro-apoptotic factor)
was downregulated by HIF-20. In contrast, HIF-10. has pro-
apoptotic properties because of upregulation of BNIP3.
Indeed, BNIP3 has been reported to be upregulated by
hypoxia in RA fibroblasts [73]. This is somewhat counter-
intuitive, because RA fibroblasts exhibit, if anything, reduced
apoptosis. Additional striking evidence has been discovered
in tumour development, showing that HIF-10. and HIF-20
display disparate effects on tumour growth [67]. It has
become evident that o subunits can act in completely
opposite ways in endothelial and breast cancer cells, in which
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hypoxia-responsive genes were HIF-10. dependent, and in
renal carcinoma cells, which seem to be critically dependent
on HIF-2¢. [67]. Raval and coworkers [72] have shown that in
some cases over-expression of HIF-20. promotes tumour
growth, whereas HIF-10o inhibits tumour growth, in contrast to
breast cancer cells, in which proliferation was retarded by
HIF-2a. over-expression [74]. It has thus become clear that,
by having contrasting effects on regulation of HIF-target
genes, HIF-1a and HIF-200 may contribute to progression or
regression of disease.

In RA synovium, HIF-1oo and HIF-20. are expressed in the
synovial lining and stromal cells [75]. In adjuvant-induced
arthritis, HIF-10. has been localized to synovium of inflamed
joints [12]. Conversely, targeted deletion of HIF-1o. in cells of
the myeloid lineage resulted in reduced arthritis in mice [76].
In RA synovium, we have also demonstrated that VEGF
expression appears to closely resemble those of HIF-10. and
HIF-2a. [5]. VEGF was previously demonstrated to be
regulated by HIF-1o. in many cells. However, in cells with
defective VHL and expressing only HIF-2o. [67,72] and in
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chondrocytes [77], VEGF was reduced by HIF-2a
knockdown and not by HIF-1o. In summary, although both
HIF-1o. and HIF-200 have been shown to be expressed in RA
synovium, it could be hypothesized that a switch might occur
from a HIF-1o. dependent pro-apoptotic phenotype to a more
HIF-20. dependent ‘tumour-like’ proliferative phenotype,
leading to synovial hyperplasia.

Conclusions

There is an emerging link between altered oxygen tension,
angiogenesis, synovial invasion and disease progression in
RA. The relative contributions of HIF-1oo and HIF-2a in
hypoxia-triggered cellular responses are subject to ongoing
investigation. There are number of genes altered by hypoxia,
among which some are HIF-10. dependent, some HIF-2a
dependent and some respond equally to both isoforms. Many
of these genes, such as VEGF, are critically involved in RA
progression. Interestingly, HIF-2o. is gaining more interest
because studies have revealed that in some cell lines this
isoform may be as important as HIF-10. Based on the
assumption that there are genes that are regulated by HIF-
10, HIF-20 or both, an understanding of the biology of the
HIF transcription family may eventually lead to the
development of therapies aimed at interfering with this key
signalling pathway, and hence to modulation of hypoxia-
dependent pathologies such as RA. Of relevance, the
inhibitor 2-methoxyestradiol has been suggested to suppress
HIF-10. and its downstream target genes such as VEGF and
glucose transporter-1, and has also been shown to suppress
arthritis in vivo in animal models. A clinical trial of 2-
methoxyestradiol is planned in RA, and this may yield further
insight into the links between hypoxia, angiogenesis,
inflammatory cell trafficking and matrix breakdown in RA.
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