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Abstract

The idiopathic inflammatory myopathies are chronic autoimmune
disorders sharing the clinical symptom of muscle weakness and, in
typical cases, inflammatory cell infiltrates in muscle tissue. During
the last decade, novel information has accumulated supporting a
role of both the innate and adaptive immune systems in myositis
and suggesting that different molecular pathways predominate in
different subsets of myositis. The type | interferon activity is one
such novel pathway identified in some subsets of myositis. Further-
more, nonimmunological pathways have been identified, suggest-
ing that factors other than direct T cell-mediated muscle fibre
necrosis could have a role in the development of muscle weakness.

Introduction

The idiopathic inflammatory myopathies, collectively called
myositis, constitute a heterogeneous group of chronic dis-
orders sharing the predominating clinical symptom of muscle
weakness and, in classical cases, histopathological signs of
inflammation in muscle tissue. Immunohistochemical analyses
of human muscle biopsies have characterised two major
types of cellular infiltrates defined by localisation and cellular
phenotypes: (a) endomysial inflammatory infiltrates composed
of mononuclear cells with an appreciable number of T cells,
typically surrounding muscle fibres without features indicating
degeneration or necrosis, and with a high prevalence of
CD8* T cells, but also CD4+ T cells, and the presence of
macrophages, and (b) perivascular infiltrates composed of
T cells (mainly of the CD4+ phenotype), macrophages, and to
some extent B cells [1-3]. More recently, it was demonstrated
that some of the CD4+ cells in the perivascular infiltrates are
plasmacytoid dendritic cells (PDCs) [4]. The endomysial
infiltrates suggested an immune reaction directed toward
muscle fibres and were suggested to be typical for poly-
myositis and inclusion body myositis, whereas the peri-
vascular infiltrates indicated an immune reaction against
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blood vessels and were typical for dermatomyositis. However,
these histopathological features may sometimes overlap and,
in some cases, the histopathological changes are scarce and
unspecific and a histopathological distinction between poly-
myositis and dermatomyositis may not be as clear-cut as
previously suggested. ‘Rimmed vacuoles’ and inclusions in
muscle fibres, which constitute a third histopathological
finding, are characteristic of inclusion body myositis, which is
clinically different from polymyositis and dermatomyositis by
slowly progressive weakness of proximal leg and distal arm
muscles with pronounced atrophy and by a general
resistance to immunosuppressive treatment. This information
suggests that nonimmune mechanisms are important in
inclusion body myositis; however, this will not be further
discussed in this review.

The weak correlation between the amount of inflammatory
cell infiltrate in muscle tissue and the degree of clinical overt
muscle impairment has become the focus of scientific
investigations over the past years. The questions of how and
why muscle performance could be affected even without
classical signs of muscle inflammation have developed
several new hypotheses concerning nonimmune mechanisms
in the pathogenesis of myositis. In addition, new data have
become available suggesting that myositis specific auto-
antibodies (MSAs) are clinically useful as a diagnostic tool
and for identifying distinct clinical subsets of myositis with
distinct molecular pathways. In this review, we will discuss
both immunological and nonimmunological perspectives of
how and why polymyositis and dermatomyositis patients
develop muscle weakness and, supported by recent novel
data, how autoantibody profiles could be used for a new sub-
classification of myositis and for identifying novel molecular
pathways that could be relevant for future therapies.

Anti-Jo-1 = antihistidyl-tRNA synthetase antibody; BAFF = B cell-activating factor of the tumour necrosis factor family; DC = dendritic cell; ER =
endoplasmic reticulum; HMGB1 = high-mobility box chromosomal protein 1; ICAM-1 = intercellular adhesion molecule 1; IFN = interferon; IL =
interleukin; ILD = interstitial lung disease; MHC = major histocompatibility complex; MSA = myositis specific autoantibody; NF-kB = nuclear factor-
kappa-B; PDC = plasmacytoid dendritic cell; TCR = T-cell receptor; TNF = tumour necrosis factor; VCAM-1 = vascular cell adhesion molecule 1.
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Immune cells in muscle tissue of myositis
patients

The molecular basis of myositis is heterogeneous and
involves several complexes of cellular compartments. We
have only just started to understand the orchestrated life of
T cells, B cells, and dendritic cells (DCs) in myositis and still
many questions about how this usually effective system can
go awry and result in false immune-mediated reactions remain
unanswered.

To date, no relevant animal model for studying the role of
immune cells in myositis exists. Thus, a possible way to
investigate the molecular pathways in inflammatory myo-
pathies is to analyse the molecular expression patterns in the
target organ, the skeletal muscle (for example, from patients
in different phases of disease), and to correlate these
molecular findings with clinical outcome measures (for
example, muscle strength tests). We have prospectively
investigated myositis patients in an early phase of their
disease, in an established disease phase before and after
immunosuppressive therapies, as well as in a late chronic
phase of disease. Such information has provided a novel
understanding of molecular pathways of myositis (Figure 1).

T-cell expression

T cells are frequently present in the muscle tissue in all
subsets of myositis but with large individual variations. The
effector function of the infiltrating T cells in muscle tissue has
not yet been clarified. Electron microscopy studies of
inflamed muscle tissue from polymyositis patients suggested
that CD8* T cells are cytotoxic to muscle fibres [5]. These
CD8* as well as CD4+ muscle-infiltrating T cells have been
shown to be perforin-positive [6], suggesting a possible
T cell-muscle cell interaction. Also, clonal expansions of
T cells by muscle-infiltrating T cells have been found, which
could suggest an antigen-driven process [7]. A cytotoxic
effect of T cells is still a subject of controversy since no
muscle-specific antigens have been identified and since an
expression of the costimulatory molecules CD80/86, normally
required for functional interaction, has not been detected in
inflamed muscle fibres. However, this aspect does not
exclude a T cell-mediated cytotoxic effect on muscle fibres
since not all T cells require CD80/86 costimulation from a
target cell to engage in cytotoxicity; this is mainly relevant for
naive T cells [8].

After conventional immunosuppressive treatment, inflamma-
tory cell infiltrates in muscle tissue often decrease [9]. How-
ever, in some patients, the inflammatory cells may persist,
particularly the T cells, and may be present even after high
doses of glucocorticoids and other immunosuppressive
therapies [9-11]. In this context, the CD28™! T cells, a
phenotype of T cells also found in other autoimmune
diseases, are of interest [12]. These T cells are apoptosis-
resistant and are easily triggered to produce proinflammatory
cytokines like interferon (IFN)-y and tumour necrosis factor
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(TNF)-c.. In our group, we have found that polymyositis and
dermatomyositis patients have a high frequency of CD4+* and
CD8+ CD28™!I' T cells in the circulation and in muscle tissue
[13]. However, the exact role of CD28"! T cells in the
disease mechanisms in myositis still needs to be determined.

Muscle biopsies from myositis patients are very hetero-
geneous and there is substantial variation in the number of
T cells that can be detected in muscle biopsies. In biopsies
with a large number of T cells, still only a limited number of
T cell derived cytokines, such as IFN-y, interleukin (IL)-2, and
IL-4, could be detected and only a minority of T cells
expressed these cytokines in muscle tissue of dermato-
myositis and polymyositis patients [14-17]. However, several
T cell-derived cytokines have been reported at the trans-
cription level but the biological relevance of these in the
absence of corresponding protein expression is less certain
[3,15,18,19]. Recently, a T-cell subtype, Th17, a producer of
IL-17, has been observed in the muscle tissue of polymyositis
and dermatomyositis patients. Double-staining showed that
both IL-17- and IFN-y-producing cells expressed CD4 [20].
Whether these cells are sensitive to immunosuppressive
treatment and how their expression correlates with clinical
outcome measures are not yet known. So far, in cultured
myoblasts, IL-17 has been shown to induce major
histocompatibility complex (MHC) class | expression as well
as IL-6 and cell signalling factors such as nuclear factor-
kappa-B (NF-kB), C-Fos, and C-jun [21]. However, since
myoblasts are mononuclear undifferentiated muscle cells,
their behaviour may likely be quite different from that of
differentiated muscle fibres. Taken together, the data on the
function of T cells in myositis are insufficient and this needs
further investigations.

Dendritic cell expression and the type |
interferon system

Recently, DCs were reported in muscle tissue of polymyositis
and dermatomyositis patients [20,22,23]. DCs function as
professional antigen-presenting cells and are central in the
development of innate and adaptive immune responses. Both
immature (CD1a) and mature (CD83+ and DC-LAMP) DCs
as well as their ligands have been detected in the muscle
tissue of myositis patients. The location differed between
these cell populations, with a predominance of the immature
DCs in the lymphocytic infiltrates and the mature DCs in
perivascular and endomysial areas [20]. Similar numbers of
CD83* cells, levels of positive DC-LAMP cell counts, and DC-
LAMP/CD83* ratios were found in polymyositis and
dermatomyositis [20]. The T cell-derived cytokines IL-17 and
IFN-y may have a role in the homing of DCs through the up-
regulation of chemokine expression like CCL20, which
attracts immature DCs and has been found in the muscle
tissue of both polymyositis and dermatomyositis patients [20].

Also, PDCs, the major producers of type | IFN-o, have been
identified in the muscle tissue of adults with polymyositis,
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A schematic figure of muscle tissue from myositis patients with or without inflammatory infiltrates. (1) Early in the disease, before any signs of
mononuclear cell infiltrates in the muscle tissue, patients have been found to express autoantibodies (even before the development of myositis),
capillaries often having the appearance of high endothelial venules (HEVs) and an expression of adhesion molecules, interleukin-1-alpha (IL-10t)
and/or chemokines, major histocompatibility complex (MHC) class | on muscle fibres, and a decreased number of capillaries together with an
increased expression of vascular endothelium growth factor (VEGF) on muscle fibres and in sera, suggestive of tissue hypoxia. Additionally, an
increased number of fibres expressing high-mobility box chromosomal protein 1 (HMGB1) has been demonstrated early in the disease, and
HMGB1 can induce MHC class | on muscle fibres. (2) All of these findings can also be found when inflammatory cell infiltrates are present.
However, in these tissues, an increased production of a range of proinflammatory cytokines from mononuclear cells is also found. Moreover, non-
necrotic fibres can be surrounded and sometimes invaded by cytotoxic T cells. These different pathogenic expressions from both immune and
nonimmune reactions may all lead to muscle impairment. ER, endoplasmic reticulum; ICAM, intercellular adhesion molecule; IFN-o., interferon-alpha;
PDC, plasmacytoid dendritic cell; VCAM, vascular cell adhesion molecule. Partly adapted from Servier Medical Art.

dermatomyositis, or inclusion body myositis as well as in
patients with juvenile dermatomyositis [22,24,25]. PDCs had
a scattered distribution and endomysial and/or perivascular
localisation but were also detected as scattered cells within
large cellular infiltrates. Moreover, PDCs were significantly
increased in patients with autoantibodies against anti-Jo-1
(antihistidyl-tRNA synthetase antibody) or anti-SSA/SSB
compared with healthy individuals [24]. In many cases, PDCs
were localised adjacent to MHC class I-positive fibres. The
expression of BDCA-2-positve PDCs and the IFN-o/B-
inducible MxA protein correlated with the MHC class |
expression on muscle fibres. PDCs were also found in skin
biopsies of dermatomyositis patients [26]. Although the role
of PDCs has not been clarified, an increased expression of
type | IFN-o/B-inducible genes or proteins both in muscle
tissue and in peripheral blood has been reported for poly-
myositis and dermatomyositis patients [24,25,27,28].
Furthermore, the type | IFN-inducible gene expression and the
expression of IFN-regulated proteins in sera correlated with
disease activity [27,28]. An increased type | IFN activity,
associated with clinical disease activity, in refractory myositis

patients treated with TNF blockade was also described [29].
This is similar to what has been observed in patients with
Sjégren syndrome treated with anti-TNF therapy [30].
Together, these observations support the notion that the type
I IFN system plays an important role in the pathogenesis in
subsets of patients with polymyositis or dermatomyositis,
which makes IFN-o. a potential specific target for therapy in
these patients.

Cytokines, chemokines, and prostaglandins

Proinflammatory cytokines, chemokines, and prostaglandins
and some anti-inflammatory cytokines such as transforming
growth factor-beta have been found in myositis muscle tissue.
Major cellular sources of these molecules are cells of the
innate immune system. Other cellular sources are endothelial
cells and muscle fibres. On a molecular level in muscle tissue,
both differences and similarities have been reported in pro-
inflammatory  cytokine transcript profiles and protein
expression pattern between inclusion body myositis and
polymyositis patients, on one hand, and dermatomyositis
patients on the other hand. The shared molecular data might
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indicate that the effector phase of the immune reaction in the
different subsets of myositis is shared although the initiating
trigger and inflammatory cell phenotype may differ. Moreover,
these molecular data emphasise the importance of molecular
studies for learning more about molecular disease mecha-
nisms in different subsets of disease.

Some cytokines have been consistently recorded in muscle
tissue from myositis patients with different clinical subsets
and in different phases of disease but with clinically impaired
muscle performance. This might indicate that they have a role
in causing muscle weakness. These cytokines, IL-10. and
IL-1B [9,31,32], are expressed even after immunosuppressive
treatment, IL-1o. mainly in endothelial cells and IL-1f in
scattered inflammatory cells [32]. Not only the IL-1 ligands
are expressed in the muscle tissue of myositis patients but
also their receptors, both the active (IL-1RI) and the decoy
receptor (IL-1RII) form [33]. Both receptors are expressed on
endothelial cells and proinflammatory mononuclear cells.
Recently, they were also demonstrated to be expressed on
muscle fibre membranes and in muscle fibre nuclei [33],
indicating that IL-1 could have effects directly on the muscle
fibre performance and contractility, similarly to what has been
demonstrated for TNF [34]. The role of IL-1 in the patho-
genesis in myositis is still uncertain. In one case with an anti-
synthetase syndrome, treatment with anakinra was success-
ful, supporting a role of IL-1 in some cases with myositis but
this still needs to be tested in larger studies [35].
Interestingly, the combination of IL-1f and IL-17 has been
shown to induce IL-6 and CCL20 production by myoblasts in
an in vitro system, but whether this is also true in an in vivo
situation in humans is not known. IL-18, another cytokine in
the IL-1 family, was found to be upregulated in muscle tissue
in myositis patients compared with healthy controls [36] but
its role in disease mechanism is not fully elucidated.

Although TNF has been detected in the muscle tissue of
myositis patients and there are associations with TNF gene
polymorphism, the effects of TNF-blocking agents have been
conflicting. No effect on muscle performance or on the
inflammatory infiltrates was found after treatment of refractory
myositis cases with infliximab [29]. On the contrary, some
patients worsened and, as discussed above, the type | IFN
system was activated in some patients [29]. In contrast to
this study, the use of etanercept in refractory polymyositis
and dermatomyositis patients has resulted in improved motor
strength and decreased fatigue [37].

The DNA-binding protein high-mobility box chromosomal
protein 1 (HMGBH1) is ubiquitously expressed in all eukaryotic
nuclei and, when actively released from macrophages/
monocytes, has potent proinflammatory effects and induces
TNF and IL-1 [38]. When HMGBT1 is released from cells
undergoing necrosis, it functions as an alarmin that induces a
proinflammatory response cascade. We have earlier demon-
strated that HMGB1 is expressed with an extranuclear and
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extracellular expression in the muscle tissue of patients with
polymyositis and dermatomyositis [39]. The expression of
HMGB1 decreased after 3 to 6 months with conventional
immunosuppressive treatment but it remained with a high
expression in muscle fibres and endothelial cells, even when
inflammatory cell infiltrates had diminished [39]. This could
indicate that HMGB1 has a distinct role in the chronicity of
myositis. Recently, we found that HMGB1 is also present
early in the disease course in patients with a low degree of
inflammation. HMGB1 induced MHC class | in in vitro experi-
ments, suggesting that HMGB1 may be an early inducer of
MHC class | and muscle weakness (C. Grundtman, J. Bruton,
T. (")stberg, D.S. Pisetsky, H. Erlandsson Harris, U.
Andersson, H. Westerblad, I.E. Lundberg, unpublished data).
The role of HMGB1 in the disease mechanisms of myositis
still needs to be determined, but therapies specifically
targeting anti-HMGB1 might be promising candidates for
future therapies in myositis.

Taken together, the data in regard to muscle tissue of
myositis patients demonstrate a complex involvement of the
immune system in which both the innate and adaptive
immune systems are involved. Some features are common to
all myositis patients, suggesting that some mechanisms are
shared by the subsets, whereas other features seem to be
specific for certain subsets, suggesting that some molecular
mechanisms may be more subset-specific. Furthermore, one
might speculate that molecular investigations of muscle
tissue are important future tools for characterising subsets of
patients for selection of different targeted therapies.

B cells and autoantibodies

It appears that the disease is driven, at least partly, by a loss
of self-tolerance with the production of autoantibodies. Up to
80% of patients with polymyositis or dermatomyositis, but
less commonly in patients with inclusion body myositis, have
autoantibodies. The most common autoantibodies are anti-
nuclear autoantibodies. Some of the autoantibodies are often
found in other inflammatory connective tissue diseases (for
example, anti-PMScl, anti-SSA [anti-Ro 52 and anti-Ro 60],
and anti-SSB [anti-La], which are called ‘myositis-associated
autoantibodies’). Other autoantibodies, so-called MSAs, are
more specific for myositis, although they may not be found
exclusively in myositis but occasionally in other patients (for
example, patients with interstitial lung disease [ILD]).

The anti-Jo-1 autoantibody

The most common MSAs are the anti-tRNA synthetases of
which the anti-histidyl-tRNA antibody (or anti-Jo-1), found in
approximately 20% to 30% of polymyositis and dermatomyo-
sitis patients, is the most frequent. Anti-Jo-1 autoantibodies
are usually present at the time of diagnosis and may even
precede the development of myositis symptoms [40].
Moderate correlations between anti-Jo-1 autoantibody titres
and clinical indicators of disease activity in myositis, including
elevated serum levels of creatine kinase, muscle dysfunction,



and articular involvement, have been found [41]. Furthermore,
levels of IgG, anti-Jo-1 have been found to vary in relation to
disease activity [40,42]. Taken together, these observations
suggest that anti-Jo-1 antibodies might have a role in disease
mechanisms of myositis. Moreover, anti-Jo-1 autoantibodies
could be useful measures of disease activity. The anti-Jo-1 auto-
antibody is associated with a distinct clinical entity known as the
antisynthetase syndrome, which will be described below.

An association between anti-Jo-1-positive myositis patients
and high serum levels of B cell-activating factor of the TNF
family (BAFF) has also been found, supporting a role of B
cells in this subset of myositis [43]. However, high BAFF
levels were not associated exclusively with anti-Jo-1 anti-
bodies but were also seen in dermatomyositis patients
without these autoantibodies, suggesting that different
mechanisms may lead to BAFF induction. Since the first
observations of B cells in the inflammatory infiltrates in the
muscle tissue of dermatomyositis patients, B cells have been
suggested to have a role in this subset of myositis [1]. More
recently, plasma cell infiltrates have been identified in
infiltrates of both polymyositis and inclusion body myositis
patients [4]. In addition, immunoglobulin transcripts are
among the most abundant of all immune transcripts in all
subsets of myositis and these transcripts are produced by the
adaptive immune system [4,44]. Furthermore, analyses of the
variable-region gene sequences revealed clear evidence of
significant somatic mutation, isotype switching, receptor
revision, codon insertion/deletion, and oligoclonal expansion,
suggesting that affinity maturation had occurred within the B
cell and plasma cell populations [44]. Thus, antigens
localised to the muscle could drive a B cell antigen-specific
response in all three subsets of myositis. These antigens
could be autoantigens or exogenous antigens derived from
viruses or other infectious agents; this, however, has not
been fully elucidated.

Autoantibodies and lung/muscle involvement
Based on a range of immunologic and immunogenetic data, it
appears likely that tRNA synthetases play a direct role in the
induction and maintenance of autoimmunity in the antisynthe-
tase syndrome. For example, the antibody response to histidyl-
tRNA synthetase undergoes class switching, spectrotype
broadening, and affinity maturation, all of which are indicators
of a T cell-dependent antigen-driven process [40,42,45,46].
This indicates that a T-cell response directed against histidyl-
tRNA synthetase might drive autoantibody formation and
tissue damage. The association between autoantibodies
directed against RNA-binding antigens and type | IFN activity,
as discussed above, further strengthens this hypothesis and
suggests a possible mechanism for induction of type | IFN
activity in myositis resembling what has been shown in
systemic lupus erythematosus patients [47] (Figure 2).

The anti-histidyl-tRNA antibodies (anti-Jo-1) are the most
common of the antisynthetase autoantibodies and also the
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most investigated. These autoantibodies are associated with
a distinct clinical entity, the antisynthetase syndrome, which is
clinically characterised by myositis, ILD, nonerosive arthritis,
Raynaud’'s phenomenon, and skin changes on the hands
(‘mechanic’s hands') [48,49]. Around 75% of antisynthetase
syndrome patients with ILD have anti-Jo-1 autoantibodies
compared with 30% of myositis patients without anti-
synthetase antibodies. In fact, lung involvement seems to be
even more strongly associated with these autoantibodies
than muscles, and ILD often precedes myositis symptoms,
which raises the possibility of an immune reaction starting in
the lungs, possibly after exposure to some environmental
factors like viral infections or smoking. A proteolytically
sensitive conformation of the histidyl-tRNA synthetase has
been demonstrated in lung, which suggests that auto-
immunity to histidyl-tRNA synthetase is initiated and
propagated in the lung [50]. Moreover, mice immunised with
murine Jo-1 develop a striking combination of muscle and
lung inflammation that replicates features of the human
antisynthetase syndrome [51]. An increased autoantigen
expression in muscle tissue has been found to correlate with
the differentiation state and myositis autoantigen expression
is increased in cells that have features of regenerating muscle
cells [52]. Furthermore, we have found a restricted accumu-
lation of T lymphocytes expressing selected T-cell receptor
(TCR) V gene segments in the target organ compartments in
patients with anti-Jo-1 antibodies (that is, lung and muscle).
The occurrence of shared TCR gene segment usage in
muscle and lungs could suggest common target antigens in
these organs [2].

Taken together, these findings suggest that anti-Jo-1
autoantibodies might function as a bridge between the innate
and adaptive immune responses, leading to the breakdown of
tolerance and an autoimmune destruction of muscle.

Other autoantibodies in myositis

High levels of anti-Mi-2 autoantigen have been found in
polymyositis and dermatomyositis muscle lysates and have
also been connected with malignancy in dermatomyositis
[62]. Anti-Mi-2 autoantibodies are particularly detectable in
dermatomyositis patients [563], of whom almost 20% are
positive. Anti-Mi-2 autoantibodies are associated with the
acute onset of prominent skin changes in patients who
respond well to therapy [48,54]. The newly discovered
autoantibody anti-p155 was more often associated with
dermatomyositis and paraneoplastic dermatomyositis and its
frequency is similarly high in children (29%) and adults (21%)
(with a neoplasm 75%) [65]. Whether these autoantibodies
have a role in disease mechanisms or are an epiphenomenon
needs to be investigated.

Nonimmune mechanisms

The low correlation between the severity of clinical muscle
symptoms and inflammation and structural muscle fibre
changes indicates that mechanisms other than direct cyto-
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toxic effects on muscle fibres might impair muscle function.
Other suggested mechanisms that could play a role in
muscle weakness are MHC class | expression on muscle
fibres, microvessel involvement leading to tissue hypoxia, and
metabolic disturbances. These mechanisms could be
induced in several ways and are not solely dependent on
immune-mediated pathways, and thus they have been
referred to as nonimmune mechanisms [56].

Microvessel involvement

One possible mechanism leading to the impaired muscle
function could be a loss of capillaries, which has been
reported in dermatomyositis, even in early cases without
detectable inflammatory infiltrates [57,58]. Another obser-
vation that supports a disturbed microcirculation in muscle
tissue is the morphologically changed endothelial cells
resembling high endothelim venules [59]. This phenotype
indicates that the endothelial cells are activated. Notably,
such phenotypically changed endothelial cells were observed
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in muscle tissue in newly diagnosed cases, even without
detectable inflammatory cell infiltrates.

Capillaries are important for the microenvironment in muscle
tissue, for the recirculation of nutrients, as well as for the
homing of lymphocytes via an interaction with endothelial
cells. Phenotypically altered microvessels might affect the
local circulation of the muscle and hence lead to the
development of tissue hypoxia and metabolic alterations
reported in patients as reduced levels of ATP and phospho-
creatine. Myositis patients have an increased endothelial
expression of intercellular and vascular cell adhesion
molecules (ICAM-1 and VCAM-1) [9]. Binding to these
molecules enables effector cells to migrate through blood
vessel walls. Both ICAM-1 and VCAM-1 are known to be
upregulated by hypoxia, which is also the case for many
cytokines that can be found in myositis muscle. Recently, we
found that polymyositis and dermatomyositis patients with a
short duration of symptoms without inflammation in muscle



tissue have a lower number of capillaries, independent of
disease subclass, indicating that a loss of capillaries is an
early event in both subsets of myositis. The low number of
capillaries was associated with increased vascular endo-
thelium growth factor expression in muscle fibres together
with increased serum levels. This might indicate a hypoxic
state in muscle early in disease before inflammation is
detectable in muscle tissue, in both polymyositis and
dermatomyositis patients [60].

Major histocompatibility complex class | and
endoplasmic reticulum stress

Under physiological conditions, differentiated skeletal muscle
fibres do not display MHC class | molecules. However, this is
a characteristic finding in myositis [61] and is such a
common early finding that its detection has been considered
as a diagnostic tool [62]. MHC class | expression in muscle
can be induced by several proinflammatory cytokines [63],
including HMGB1 (S. Salomonsson, C. Grundtman, S-J.
Zhang, J.T. Lanner, C. Li, A. Katz, L.R. Wedderburn, K.
Nagaraju, |.E. Lundberg, H. Westerblad, unpublished data).
Interestingly, MHC class | itself can mediate muscle
weakness in both clinical and experimental settings. For
instance, gene transfer of MHC class | plasmids can
attenuate muscle regeneration and differentiation [64].

One suggested mechanism for a nonimmune-mediated
dysfunction of muscle fibres is the so-called ‘endoplasmic
reticulum (ER) stress response’. The folding, exporting, and
processing of newly synthesised proteins, including the
processing of MHC class | molecules, occur in the ER. ER
stress response could be induced as a protective mechanism
when newly formed proteins overload the ER (for example,
during an infection, hypoxia, or other causes). Two major
components of the ER stress response pathway, the
unfolded protein response (glucose-regulated protein 78
pathway) and the ER overload response (NF-xB pathway),
are highly activated in muscle tissue in both human
dermatomyositis and a transgenic MHC class | mouse model
[56]. This indicates that MHC class | expression could affect
protein synthesis and turnover and thereby hamper muscle
contractility. The latter was recently tested on isolated
muscles from a transgenic MHC class | mouse model [65],
and a reduction in force production in myopathic mice
compared to controls was found [66]. This reduction was
associated with a decrease in cross-sectional area in extensor
digitorum longus muscles (fast-twitch, type Il fibres) but due to
a decrease in the intrinsic force-generating capacity in soleus
muscles (slow-twitch, type | fibres) [66]. The differential effect
on fast- and slow-twitch muscle fibres seen in experimental
animal myositis resembles the human situation in polymyositis
and dermatomyositis, in which patients typically experience
more problems with low-force repetitive movements, which
mainly depend on oxidative type | muscle fibres, than with
single high-force movements in which the contribution of
glycogenic fast-twitch fibres is larger.

Available online http://arthritis-research.com/content/10/5/220

In regard to this problem, we recently found that chronic
patients with a persisting low muscle endurance after
immunosuppressive treatment had a low percentage of type |
fibres and a corresponding high ratio of type Il fibres without
any fibre atrophy [67]. Importantly, after 12 weeks of physical
exercise, the type | fibre ratio had increased to more normal
values [67], albeit muscle performance was still low
compared with healthy individuals, which could further
indicate some intrinsic effects in type | fibres. The observed
low frequency of type | fibres may be seen as an adaptation
to a hypoxic environment, as discussed above, and the
increased ratio of type | fibres may be a result of a training
effect on the microcirculation. The same training program led
to further improvement when combined with oral creatine
supplement in a placebo-controlled trial [68].

Conclusion

Although the exact pathogenesis of idiopathic inflammatory
myopathies remains obscure, some scientific endeavors
during the past decade have brought us closer to
understanding the pathophysiology of these diseases. There
are several different molecular pathways that might play a
pathogenic role in myositis. The type | IFN activity has been
recognised in certain subsets (namely dermatomyositis and
anti-Jo-1-positive myositis), and the IL-1 family and HMGB1
are other molecules that are promising potential targets for
new therapies as are B cell-blocking agents. But there are
also nonimmune pathways that are of importance (that is, a
possible acquired metabolic myopathy due to tissue hypoxia
or the induction of MHC class | and ER stress). In this
context, the safety and benefits of physical training are
interesting and there are sufficient scientific data to advocate
exercise training as a component of modern treatment of
polymyositis and dermatomyositis. Another finding charac-
teristic for these diseases is the presence of specific auto-
antibodies and T cells in muscle tissue, both suggesting that
myositis is an autoimmune disorder, although the exact
antigen(s) and specificity of the immune reactions are
unknown. Moreover, autoantibodies, in particular the MSAs,
could be helpful during the diagnostic procedures of myositis
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and for distinguishing different subsets of myositis with
distinct clinical phenotypes and with different molecular path-
ways. Such differentiation might be useful for future thera-
peutic decisions and might affect treatment outcome. Thus, it
is likely that both immune- and nonimmune-mediated path-
ways contribute to the impaired muscle function in myositis
and this needs to be recognised in the development of new
therapeutic modalities.
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