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Abstract
Progress into the understanding of immunopathology in rheumatoid
arthritis is reviewed in the present article with regard to pro-
inflammatory cytokine production, cell activation and recruitment,
and osteoclastogenesis. Studies highlight the potential importance
of T helper 17 cells and regulatory T cells in driving and suppres-
sing inflammation in rheumatoid arthritis, respectively, and highlight
other potential T-cell therapeutic targets. The genetic associations
of the HLA shared epitope alleles with antibodies to citrullinated
peptides in rheumatoid arthritis patients indicate that T cells are
providing help to B cells to produce autoantibodies, and there is
increasing evidence that these autoantibodies are pathogenic in
rheumatoid arthritis.

Introduction
Rheumatoid arthritis (RA) is an autoimmune disease
characterised by chronic inflammation of the joint. Although the
precise pathogenesis of RA remains unclear, T cells, B cells,
macrophages, neutrophils and synovial fibroblasts are central to
the mechanisms of joint inflammation and disease progression.
The genetic association of HLA-DR1 and HLA-DR4 with RA
suggests that the disease is at least partially driven by T cells.
The role of T cells has not, however, been conclusively
demonstrated in the pathogenesis of RA – although the
success of abatacept (CTLA-4Ig) in clinical trials [1] implies that
rheumatoid T cells are important in driving the inflammatory
process, and thus T cells could be targeted in clinical therapy.

The role of B cells in RA pathology has been highlighted by
the clinical improvements in RA patients receiving B-cell-
depleting therapies such as rituximab, an anti-CD20 antibody
[2], and the increased interest in the role of autoantibodies in
RA. In addition to producing antibodies, proinflammatory
cytokines and chemokines, B cells efficiently act as antigen-
presenting cells themselves and thus influence T-cell activa-
tion and expansion [3,4].

In the present review we look at recent developments in the
immunobiology of RA, with focus on the role of T cells and
B cells, the products they produce, including cytokines and
autoantibodies, and the genetic factors potentially involved in
their regulation and function.

T cells
In contrast to the clearly defined role of macrophage-derived
cytokines such as TNFα in the pathogenesis of RA, the
relevance and contribution of the T cells is not clear and has
been challenged [5]. In particular, the expectation that the
increased T cells in the synovium are a result of clonal
expansion to a given antigen has not been established. An
HLA-restricted T-cell response to antigen is suggested, since
over 80% of Caucasian RA sufferers have a shared epitope
(SE) conserved across the HLA-DR1 and HLA-DR4 haplo-
types (0101, 0401, 0404 and 1402) [6]. No overall
consensus has been reached, however, on the potential auto-
antigens involved. T-cell responses to collagen type II, heat
shock proteins and microbial antigens have been reported in
a small proportion of RA patients (reviewed in [7]), and more
recently autoantibodies to deiminated ‘citrullinated’ peptides
have been described, suggesting that they may be important
autoantigens in this disease. This aside, the concordance for
disease in identical twins is still less than 15%, suggesting
other factors are of major importance.

Rheumatoid T cells have an unusual phenotype. While these
cells maintain a highly activated phenotype indicated by high
expression of CD69, transferrin receptor and HLA-DR, they
are nonetheless hyporesponsive to antigenic stimulation [8-
10]. Brennan and colleagues demonstrated that the spon-
taneous TNFα production in RA synovium was largely T-cell
dependent [11], suggesting that regulation of T-cell function
might be important to control the disease. It is thus not
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surprising that treatment with a nondepleting anti-CD4
antibody (keliximab) has some clinical efficacy in RA patients
[12-14]. Owing to unacceptable side effects, however, anti-
CD4 clinical trials were not pursued [15]. Clinical trials with
abatacept, on the other hand, look more promising [1,16,17].
Abatacept inhibits activation of T cells by blocking the
interaction between CD28 on T cells and B7 on antigen-
presenting cells. In recent phase III clinical trials, abatacept
showed a similar disease-modifying efficacy as infliximab
treatment, the most successful treatment so far, in RA patients
with an inadequate response to methotrexate [18]. Furthermore,
abatacept has less adverse effect than infliximab, suggesting it
is biologically safer and a more tolerised treatment [18,19].

In addition to blocking the interaction between T cells and
antigen-presenting cells, there are several other targeting
possibilities for T-cell-based intervention including prevention
of T-cell infiltration, inhibition of T effector cell activation and
induction of regulatory T cells.

Cellular trafficking and cross-talk
An extensive array of cytokines, chemokines and adhesion
molecules has been detected in the synovium of patients with
RA and considered of importance in the migration of cells to
the synovium (reviewed in [20]). A recent study by Kop and
colleagues show that neutralisation of CD97, a member of
the epidermal growth factor seven-span transmembrane
family of TM7 adhesion receptors, increases resistance to
collagen-induced arthritis (CIA) in mice, indicating that inter-
action between CD97 and its ligands may be involved in cell
migration in arthritis [21]. CD97 is expressed by inflammatory
cells, mainly leukocytes, in RA synovium [22]; the ligands for
CD97 (CD55, chondroitin sulphate B, and α5β1) are also
expressed in this tissue [22,23].

Although antigen-dependent T-cell responses may be impor-
tant in initiating the inflammatory response during arthritis,
there is evidence that antigen-independent responses also
play a role in RA. The RA synovial T cells can activate human
monocytes/macrophages in a contact-dependent manner to
induce the expression of inflammatory cytokines, including
TNFα [24,25]. A recent study further demonstrated that RA
synovial T cells induce monocyte CC chemokine production
(monocyte chemoattractant protein 1, macrophage inflam-
matory protein 1 alpha, macrophage inflammatory protein 1
beta and RANTES) and CXC chemokine production (IL-8,
growth-related gene product alpha and IP-10) in a contact-
dependent manner. This effector function was also shared by
T cells activated with a cytokine cocktail (IL-2, IL-6 and TNFα)
[26]. Furthermore, Tran and colleagues reported that T cells
activated by IL-2, IL-6 and TNFα also induce fibroblast-like
synoviocytes to produce inflammatory cytokines such as IL-6
and IL-8 in a cell contact-dependent manner [27]. These
studies provide further evidence that T cells can be important
drivers of chronic inflammation through antigen-independent
mechanisms.

Cross-talk between natural killer cells and monocytes also
results in the sustained stimulation of TNFα production.
Natural killer cells activated by IL-15 activate monocytic cells
to synthesise TNFα in a contact-dependent manner; in turn,
monocytic cells induce CD69 expression and IFNγ
production in natural killer cells, an effect mediated by β
integrins and membrane-bound IL-15. IFNγ further increased
production of membrane-bound IL-15 in monocytic cells, and
neutralising membrane-bound IL-15 and β2 integrins inhibited
TNFα production – suggesting that membrane-bound IL-15
and β2 integrins are important in the cross-talk between
natural killer cells and monocytes [28]. The pathogenic role of
IL-15 in RA has been confirmed in a phase I/II trial with anti-
IL-15 therapy in RA patients [29].

T helper 17 cells
There is increasing evidence that IL-17 plays a role in the
immunopathology of RA. This proinflammatory cytokine is
produced by T helper (Th) 17 cells, which represent a
recently discovered CD4+ effector T-cell linage distinct from
Th1 cells, Th2 cells and regulatory T (Treg) cells. IL-17 has
pleiotrophic effects on many cell types including macro-
phages, fibroblasts, epithelial cells, endothelial cells and
mesenchymal cells, where it induces upregulation of nuclear
factor kappa B and HLA class I as well as neutrophil chemo-
kines and cytokines such as TNFα, IL-1β, IL-6 and
granulocyte–macrophage colony-stimulating factor [30-33].
Important in RA pathogenesis are the effects of IL-17 in
driving osteoclastogenesis leading to bone resorption. All of
these effects together lead to joint destructions and chronic
inflammation [33,34]. Human RA cells expressing high levels
of IL-17 are present in the synovium and circulation [34-40],
and IL-17 mRNA levels in synovial membranes are predictive
of joint damage progression in RA [41].

Recent work by Fasth and colleagues suggests that
CD4+CD28null cells, if activated within the synovial membrane,
may potentially act as a negative regulator for the differen-
tiation of Th17 cells in RA. An increased frequency of CD4+

T cells lacking expression of CD28 has been reported in
peripheral blood of RA patients (reviewed in [42]). Fasth and
colleagues more recently reported that CD4+CD28null T cells
were infrequent in synovial membrane and synovial fluid,
despite significant frequencies in the circulation of RA
patients [43]. It is interesting to note that CD4+CD28null cells
in synovial fluid were able to produce high levels of IFNγ upon
antigenic stimulation. This T-cell-derived cytokine is rarely
found in synovial membranes [44], and has been reported to
block the differentiation of Th17 cells [45]. Nevertheless, the
ability of CD4+CD28null cells to regulate the differentiation of
Th17 within rheumatoid synovium remains to be demonstrated.

A role for IL-17 in experimental arthritis has been demon-
strated. CIA is suppressed in IL-17-deficient mice, and
administration of neutralising anti-IL17 antibodies significantly
reduces the severity of CIA (reviewed in [46]). Autoimmune
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arthritis in SKG mice also appears to be highly dependent on
the CD4+ T cells secreting IL-17 [47]. The SKG mouse strain
spontaneously develops T-cell-mediated autoimmune arthritis,
which clinically and immunologically resembles RA due to a
mutation of the gene encoding ZAP-70, a key signal
transduction molecule in T cells [48]. SKG mice develop
thymus-produced self-reactive T cells that are constantly
activated in the periphery, and that proliferate and differen-
tiate to Th17 cells. In vivo development and expansion of
Th17 cells, and consequently arthritis, were dependent on IL-
6 produced by either T cells or non-T cells. IL-17 or IL-6
deficiency completely inhibited arthritis, whereas IFNγ defici-
ency exacerbated the disease [47]. A genetic polymorphism
might therefore contribute to thymic generation of potentially
arthritogenic self-reactive T cells, which form a cytokine milieu
that facilitates differentiation into self-reactive Th17 cells.

Recent data, however, suggest that IL-17 production is
regulated differently and has a somewhat different effect in
humans compared with mice. While development of mouse
Th17 cells require transforming growth factor beta (TGFβ)
plus IL-6, human Th17 cell development appears to be
independent of these cytokines but requires IL-23 and IL-1β
[49-53].

T cells and osteoclastogenesis
T cells are important contributors to the pathogenesis of
bone erosion in RA through induction of osteoclastogenesis.
Miranda-Carus and colleagues recently showed that autolo-
gous T-cell monocyte cocultures derived from peripheral
blood of patients with early RA, but not from healthy control
individuals, resulted in osteoclast differentiation dependent
on RANKL – which is expressed by activated T cells and RA
synovial fibroblasts [54,55] – and augmented by IL-15, IL-17,
TNFα and IL-1β [56]. Other studies have identified Th17
cells as the exclusive osteoclastogenic T-cell subset among
the CD4+ T-cell lineages [34,57].

Yago and colleagues further reported that recombinant
human IL-23 was able to induce osteoclastogenesis in
macrophage-colony-stimulating factor-differentiated human
peripheral blood mononuclear cells, and the process was
independent of RANKL but dependent on osteoprogestin,
IL-17 and TNFα. Furthermore, anti IL-23 treatment signifi-
cantly improved inflammation and bone erosion in a CIA
model in rat [58]. This further demonstrated a direct
involvement of T cells in pathogenesis of RA.

T-cell activation and apoptosis
Regulation of T-cell apoptosis is critical for lymphocyte
homeostasis and immune function. Inhibition of T-cell
apoptosis in the synovium of patients with established RA
was first described in 1995 [59]. Raza and colleagues
recently showed that inhibition of synovial fluid leukocyte
apoptosis in the earliest clinically apparent phase of RA
distinguishes this from other early arthritides [60]. Patients

with early RA had significantly lower levels of neutrophil
apoptosis than patients who developed non-RA persistent
arthritis and those with resolving disease course. Similarly,
lymphocyte apoptosis was absent in patients with early RA
whereas it was seen in patients with other early arthritides.
The mechanism for this inhibition of apoptosis may relate to
the high levels of antiapoptotic cytokines (IL-2, IL-4, IL-15,
granulocyte–macrophage colony-stimulating factor, granulo-
cyte colony-stimulating factor) found in the early rheumatoid
joint [60].

Apoptosis proceeds through two major pathways: the
intrinsic pathway is triggered by cellular stress, specifically
mitochondrial stress caused by factors such as DNA damage
and heat shock; and the extrinsic pathway is triggered by
molecules released by other cells binding to transmembrane
death receptors on the target cell to induce apoptosis
(reviewed in [61]). A study in the K/BxN serum transfer model
of inflammatory arthritis indicates that the proapoptotic
protein Bid, an intermediary for the extrinsic and intrinsic
apoptotic pathways, is important in the development of
inflammatory arthritis. Mice lacking Bid display increased
arthritis associated with more inflammation, pannus formation,
bone destruction and infiltrating leukocytes. Furthermore
there are fewer apoptotic cells in the joints of Bid–/–

compared with wildtype mice, suggesting that the failure to
resolve arthritis in Bid–/– mice may be due to an inability to
delete autoreactive cells in the joint [62].

Most recently, the transcriptional activity in synoviocytes was
investigated with a focus on the transcription factor Forkhead
box class O isoforms, which are targets of the PI3
kinase/PKB signalling pathways and play emerging roles in
the regulation of inflammatory responses. The Forkhead box
class O isoforms are expressed in RA synovial tissue, and a
strong negative correlation between inactivation
(phosphorylation) of Forkhead box class O 4 in RA synovial
tissue and increased serum C-reactive protein levels and
raised erythrocyte sedimentation rate in RA patients has been
demonstrated [63,64]. The Forkhead box class O isoforms
may thus be involved in regulating homeostasis and
inflammation in autoimmune diseases.

Regulatory T cells
Treg cells inhibit proliferation and cytokine production of
conventional T cells, including self-reactive T cells, thereby
controlling inflammatory responses and contributing to the
maintenance of self-tolerance (reviewed in [65]). Although
the frequency of CD4+CD25+ Treg cells is higher in the
synovium fluid than in peripheral blood of RA patients, there
is still persistent inflammation in the joint [66-70], suggesting
that the Treg cells are ineffective in controlling inflammatory
responses. There is increasing evidence that the suppressive
function of these Treg cells is defective. CD4+CD25high Treg
cells isolated from patients with active RA express reduced
levels of transcription factor forkhead box P3 (FoxP3) – which
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plays a major role in the function of Treg cells [71,72] – that
poorly suppress cytokine secretion from T cells and
monocytes, and that do not convey a suppressive phenotype
to effector CD4+CD25– T cells [73,74]. A recent study by
Valencia and colleagues suggests that TNFα, which is
produced in RA synovium, inhibits the suppressive activity
CD4+CD25+ Treg cells via signalling through TNF receptor II
[73]. Interestingly, treatment with anti-TNF antibody
(infliximab) increases FoxP3 expression in CD4+CD25high

Treg cells and restores their suppressive function [73,74].
Eliminating TNFα by antibody therapy might therefore be
beneficial not only by directly suppressing proinflammtory
processes but also by restoring the suppressive function of
Treg cells.

Nadkarni and colleagues’ work further suggests that anti-TNF
therapy in RA patients generates a newly differentiated
population of Treg cells, which compensates for the defective
natural Treg cells [75]. The authors showed that infliximab
treatment induced differentiation of a Treg cell population
expressing FoxP3 and low levels of CD62L through
conversion of CD4+CD25– T cells. The natural CD62L+ Treg
cells remained defective in infliximab-treated patients, where-
as the infliximab-induced CD62L– Treg cells mediated
suppression via TGFβ and IL-10 [75].

Using experimental animal models, it has been demonstrated
that depletion of CD25+ T cells before or after the induction
of arthritis leads to exacerbation of arthritis with increased
cellular and humoral responses, and that transfer of
CD4+CD25+ Treg cells at the time of induction of arthritis
decreases the severity of disease. Transfer of Treg cells,
however, appears unable to cure established chronic arthritis
in animal models, suggesting that therapies increasing the
number of Treg cells may not be sufficient to suppress
ongoing inflammation in RA (reviewed in [76]). A novel
immunoregulatory T-cell population was recently discovered
in mice. Charbonnier and colleagues demonstrated that
vaccination with immature dendritic cells suppresses CIA in
mice and induces tolerance by expansion of an immuno-
regulatory TCRβ+CD49b+ T-cell population [77].

IL-6 and TGFβ together induce differentiation of pathogenic
Th17 cells from naïve T cells in mice [49]. TGFβ is also a
critical differentiation factor for generation of Treg cells [78],
whereas IL-6, which is expressed in the RA synovium, was
shown to inhibit TGFβ-induced generation of FoxP3+ Treg
cells [49]. The authors suggest not only that there is a
functional antagonism between Th17 and Treg cells, but that
these cells arise in a mutually exclusive fashion depending on
whether they are activated in the presence of TGFβ or TGFβ
plus IL-6.

B cells
B-cell depletion therapy with rituximab, an anti-CD20 mono-
clonal antibody, provides evidence that the proinflammatory

response in RA is dependent on the presence of B cells.
CD20 is a B-cell surface antigen expressed only on pre-B
cells and mature B cells that is lost before differentiation of
B cells into plasma cells. A single course of two infusions of
rituximab, alone or in combination with either cyclophospha-
mide or continued methotrexate, provided significant improve-
ment in disease symptoms in RA patients [2]. Depletion of
B cells may inhibit many different immunological responses
as B cells are able to internalise, to process and to present
antigens via MHC class II molecules to T cells, leading to T-
cell activation and subsequent macrophage activation and
further TNFα production.

In some RA patients, synovial B cells undergo differentiation
and proliferation within extrafollicular germinal centres consis-
ting of T-cell and B-cell aggregates [79]. A study using
human synovium–SCID mouse chimeras showed that B cells
are important to the formation of these germinal centres and
follicular CD4+ T cells [4]. Moreover, activated B cells can
produce proinflammatory cytokines and chemokines, and
experiments in animal models of arthritis have demonstrated
that activation of B cells via Toll-like receptors play a
significant role in the development of arthritis (reviewed in
[3]). Hence, there are many possible mechanisms and
strategies of B-cell-directed therapies in autoimmune
diseases. In the present review we shall focus on the role of
B cells as plasma cells and on the increased interest in the
role of autoantibodies in RA.

Autoantibodies
Several autoantibodies have been described in RA, but only
rheumatoid factor (RF), antibodies to citrullinated antigens,
and antibodies to immunoglobulin binding protein have
shown sufficient sensitivity and specificity to be considered
clinically useful (reviewed in [80]). RF is detectable in 70% to
80% of RA patients, but is also detectable in up to 10% of
normal individuals and in other systemic diseases [80].
Antibodies to autoantigens modified by citrullination through
deimination of arginine to citrulline are present in about two-
thirds of all RA patients, but are rare (<2%) in healthy
individuals and are relatively rare in other inflammatory
conditions [81,82].

Although antibodies against citrullinated proteins are specific
and predictive markers for rheumatoid arthritis, the pathologic
relevance of these antibodies remains unclear. A recent study
of the mouse CIA model demonstrated that antibodies
against citrullinated proteins are involved in the pathogenesis
of autoimmune arthritis. Kuhn and colleagues found that anti-
bodies against both type II collagen and cyclic citrullinated
peptide (CCP) appeared early after immunisation with type II
collagen, before joint swelling was observed. When mice
were tolerised with a citrulline-containing peptide prior to
type II collagen challenge, a significantly reduced disease
severity and incidence compared with control mice was
demonstrated [83].
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The controversy of whether autoantibodies contribute to, or
are secondary to, the pathogenesis of RA was also recently
addressed in a passive transfer model with mice deficient in
the low-affinity inhibitory Fc receptor FcγRIIB. Petkova and
colleagues showed that plasma or serum from patients with
active RA induces inflammation and histological lesions in
FCγRIIB–/– mice consistent with arthritis, and it was caused
by the IgG-rich fraction. In contrast, serum from normal blood
donors did not induce arthritis. This suggests that humoral
immunity can contribute directly to autoimmune arthritis [84].
Autoantibodies will be discussed further in the context of
genetics, since studies suggest that the SE alleles of the
HLA-DR gene are strongly associated with anti-CCP-positive
RA but not with anti-CCP-negative RA.

Genetic risk factors
RA is a complex autoimmune disease that appears to be
caused by small individual effects of many common genes
rather than rare mutations of single genes, and a number of
gene variations have been associated with autoimmunity and
RA. The SE alleles of the HLA-DR gene comprise the major
genetic risk factor for RA, whereas smoking is the major
known environmental risk factor (reviewed in [85]). Other
polymorphic genes thought to be involved in RA include
protein tyrosine phosphatase N22 (PTPN22), CTLA4, peptidyl
arginine deiminase type IV and macrophage migration
inhibitory factor (reviewed in [86]). More recently, single-
nucleotide polymorphisms (SNPs) within signal transducer
and activator of transcription 4 (STAT4) [87,88] and TNF
receptor-associated factor 1 (TRAF1)-C5 regions [89,90]
were found to be associated with seropositive RA and other
autoimmune diseases.

Protein tyrosine phosphatase N22
A polymorphism that results in a substitution of arginine with
tryptophan (R620W) in the PTPN22 gene has been associa-
ted with RA in European and North American populations
[91-93]. The amino acid substitution in PTPN22 (R620W)
affects the gene’s interaction with Src tyrosine kinases
involved in regulation of T-cell receptor signalling in lympho-
cytes [94]. A recent study found that the PTPN22 variant
R620W is associated with increased titres of IgG
autoantibodies to an immunodominant conformational
epitope (C1III) of type II collagen in early RA [91]. The study
also found that anti-C1III titres were higher in RA patients
harbouring alleles of the RA-associated HLA-DRB1 SE than
in those lacking this SE. The allelic variants encoding the
binding pocket for peptide presentation (SE) to T cells and a
functional domain of a negative regulator of T-cell receptor
signalling (PTPN22*620W), respectively, synergise in early
RA to break the self-tolerance towards C1III, an evolutionary
conserved cartilage determinant.

The PTPN22 1858 SNP is also associated with future
development of RA and has been shown to be a better
predictor of RA than the HLA-SE [95]. Moreover, Johansson

and colleagues found that there was an association between
PTPN22 1858 and anti-CCP antibodies and that the
combination gives a specificity of 100% for diagnosing RA
[95]. In a German cohort, the frequency of the PTPN22 1858
polymorphism was higher in male RA patients compared with
female RA patients, indicating that this genetic contribution to
pathogenesis might be more prominent in men [96].
Moreover, an association between PTPN22 and RA has been
found in South Asians in the United Kingdom [97] but not in a
Japanese population [98], suggesting that the PTPN22 gene
is associated with RA only in specific genetic groups.

Signal transducer and activator of transcription 4
A genome-wide screen for RA-susceptible genes identified a
region of 52 Mb genomic DNA on chromosome 2q that was
associated with a risk of RA [99]. Fine mapping of this region
in North American and Swedish populations recently revealed
that four SNPs within the third intron of STAT4 were associa-
ted with risk of RA, rs7574865 being the most significant
[88]. An association of rs7574865 and susceptibility of RA has
subsequently also been found in a Korean population [87].

STAT4 is an intracellular molecule transducing signals
triggered by IL-12, type I interferons and IL-23 (reviewed in
[100]), and regulates the differentiation of Th1 and Th17 cells
[101], the two lymphocyte subsets thought to be involved in
the pathogenesis of many inflammatory diseases (reviewed in
[102,103]). Perhaps it is not surprising that the same
rs7574865 SNP was also associated with susceptibility of
lupus (systemic lupus erythematosus), suggesting a common
pathway of pathogenesis of autoimmune diseases [88].

TNF receptor-associated factor 1-C5
The SNPs in the region of the TRAF1-C5 locus on
chromosome 9 have been associated with susceptibility and
severity of RA in Dutch, Swedish and North American
populations [89,90]. This genetic risk factor, however, was
not identified in a genome-wide association study performed
by the Welcome Trust Case Control Consortium [104].
Association of SNPs within the TRAF1-C5 region with
disease susceptibility and severity, however, is predominant
in an autoantibody-positive subset of RA patients, suggesting
this genetic risk factor is confined to a specific RA phenotype
[89,90].

Shared epitope alleles
The SE alleles have been shown to increase cellular suscepti-
bility to oxidative stress, which has been implicated in RA
[105]. Ling and colleagues showed that the SE acts as an
allele-specific ligand that activates nitric oxide-mediated pro-
oxidative signalling in nearby cells, thereby increasing cell
vulnerability to oxidative damage [106]. This activation may
contribute to disease susceptibility and to severity of disease.

Recent studies suggest that SE alleles are strongly associa-
ted with anti-CCP-positive RA but not with anti-CCP-negative
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RA, and are indeed more strongly associated with anti-CCP
than with RA itself [107,108]. van der Helm-van Mil and
colleagues further showed that the presence/absence of SE
alleles correlates with the levels of anti-CCP antibodies,
suggesting that the SE alleles act as classic immune response
genes for the development of anti-CCP antibodies [107].

There are also data suggesting that anti-CCP and the RF
status are independent severity factors for RA, with SE alleles
playing a secondary role at most. RF and anti-CCP were
strongly associated with radiographic severity of disease, and
patients with both RF and anti-CCP expressed the most
severe disease, suggesting both these factors may have
important influence and pathways that lead to joint damage.
The anti-CCP status was also strongly associated with the
SE alleles and a clear gene dose–effect was observed. The
magnitude of this effect was most striking in RF-negative
patients, which supports the view that the association of SE
with radiographic severity may be indirect and due to an
association with anti-CCP [109].

There is increasing evidence that smoking is an environ-
mental risk factor that, in the context of HLA-DR SE genes,
may trigger RA-specific immune reactions to citrullinated
proteins. A recent study by Klareskog and colleagues found
that previous smoking is dose-dependently associated with
occurrence of anticitrulline antibodies in RA patients and that
the presence of SE genes was a risk factor only for anti-
citrulline-positive RA, and not for anticitrulline-negative RA.
The combination of smoking history and the presence of
double copies of HLA-DR SE genes increased the risk for RA
21-fold compared with the risk among nonsmokers carrying
no SE genes. Moreover, positive immunostaining for citrullin-
ated proteins was recorded in bronchoalveolar lavage cells
from smokers but not in those from nonsmokers [108]. The
gene–environment interaction between smoking and SE
leading to autoantibodies has subsequently been reproduced
in the Leiden case–control study [110] and in the Danish
case–control study [111]. Unlike these studies, a recent
study from North America could not, however, confirm an
interaction between smoking, SE genes and anti-CCP,
indicating that environmental factors other than smoking may
also be associated with citrullination and RA [112].

Conclusions
Over the past couple of years advances have been made in
the understanding of the involvement of T cells in the
immunopathology of autoimmune diseases, with a focus on
proinflammatory cytokine production, cell recruitment and
osteoclastogenesis. In vitro investigations of Th17 cells have
resulted in a better understanding of the T-cell inflammatory
response and/or T-cell cytokine-driven inflammatory response
in RA and their role in promoting osteoclastogenesis. In vivo
studies with anti-TNF treatment indicated that Treg cells may
be important in controlling inflammation. These investigations
have identified new mechanisms of pathogenesis of RA and

have opened new possibilities for future therapeutic
interventions. In addition, the genetic associations of the
HLA-SE alleles with antibodies to citrullinated peptides in RA
patients support a role of B cells in the pathogenesis of RA,
although the precise mechanisms still remain unclear.
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