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Abstract

Stem cells derived from the infrapatellar fat pad (IPFP) are a
potential source of stem cells for the repair of articular cartilage
defects. Hypoxia has been shown to improve chondrogenesis in
adult stem cells. In this study we investigated the effects of
hypoxia on gene expression changes and chondrogenesis in
stem cells from the IPFP removed from elderly patients with
osteoarthritis at total knee replacement. Adherent colony-
forming cells were isolated and cultured from the IPFP from total
knee replacement. The cells at passage 2 were characterised
for stem cell surface epitopes, and then cultured for 14 days as
cell aggregates in chondrogenic medium under normoxic (20%
oxygen) or hypoxic (5% oxygen) conditions. Gene expression
analysis, DNA and glycosoaminoglycan assays and
immunohistochemical staining were determined to assess
chondrogenesis. IPFP-derived adherent colony-forming cells
stained strongly for markers of adult mesenchymal stem cells,
including CD44, CD90 and CD105, and they were negative for
the haematopoietic cell marker CD34 and for the neural and

myogenic cell marker CD56. Cell aggregates of IPFP cells
showed a chondrogenic response. In hypoxic conditions there
was increased matrix accumulation of proteoglycan but less cell
proliferation, which resulted in 3.5-fold more
glycosoaminoglycan per DNA after 14 days of culture. In
hypoxia there was increased expression of hypoxia-inducible
transcription factor (HIF)2α and not HIF1α, and the expression
of key transcription factors SOX5, SOX6 and SOX9, and that of
aggrecan, versican and collagens II, IX, X and XI, was also
increased. These results show that cells with stem cell
characteristics were isolated from the IPFP of elderly patients
with osteoarthritis and that their response to chondrogenic
culture was enhanced by lowered oxygen tension, which
upregulated HIF2α and increased the synthesis and assembly
of matrix during chondrogenesis. This has important implications
for tissue engineering applications of cells derived from the
IPFP.

Introduction
Cartilage is frequently damaged by trauma and in disease but
shows only a limited capacity for repair. Most focal cartilage
lesions, left untreated, progress to more extensive lesions and
in the long term these require joint arthroplasty. Autologous
chondrocytes harvested from low-weight-bearing areas of
articular cartilage are being used for the repair of focal hyaline
cartilage defects [1]. Although short-term clinical results have
been good, evidence suggests some incidence of progressive
degenerative changes in the joint [2]. This procedure is also

accompanied by donor site morbidity, and the limited amount
of tissue available necessitates prolonged cell expansion.
There is therefore interest in alternative sources of adult stem
cells for cell-based tissue engineering approaches for carti-
lage repair. Cells with stem cell characteristics have been
reported in many tissues and more recently in subcutaneous
adipose tissue and the infrapatellar fat pad (IPFP) [3-6]. Con-
ditions for the differentiation of these cells into chondrocytes,
osteoblasts and adipocytes have been used to show that they
are multipotent [7]. Because of their multipotency and
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practical access, cells from the IPFP are of interest as a poten-
tial source of cells for the repair of focal cartilage defects in the
knee [5]. In previous work we demonstrated the ability of IPFP-
derived cells to undergo chondrogenic [8], osteogenic [9] and
adipogenic differentiation (W.S. Khan and T.E. Hardingham,
unpublished data).

Mammalian cells are normally cultured in air (containing 20%
oxygen) with 5% carbon dioxide added, but some cells, includ-
ing adult stem cells, have been reported to proliferate more
rapidly at lower oxygen concentrations [10-12]. Articular carti-
lage is avascular and exists at a decreased oxygen tension of
(1 to 7%) in vivo [13,14]. In chondrocyte culture systems it
has been shown that under hypoxia there is increased synthe-
sis of extracellular matrix by chondrocytes [15,16], and this
has been extended to stem cells from bone marrow [17] and
liposuction-derived adipose tissue [14] undergoing chondro-
genesis. Thus, oxygen tension seems to be an important regu-
latory factor in the proliferation, differentiation and matrix
production of chondrocytes, but few studies have character-
ised gene expression changes. In our investigation of the
potential of IPFP-derived stem cells from elderly patients
undergoing joint replacement for osteoarthritis, we investi-
gated the gene expression changes that characterised the
response of these stem cells to hypoxic conditions in chondro-
genic cultures.

Materials and methods
Cell isolation and culture
The IPFP was obtained with ethical approval and fully informed
consent from patients (aged 67, 69 and 72 years; n = 3)
undergoing total knee replacement for osteoarthritis. The tis-
sue was dissected and cells were isolated by digestion with
0.2% (v/v) collagenase I (Invitrogen, Paisley, Renfrewshire,
UK) for 3 hours at 37°C with constant agitation. The released
cells were sieved (70 μm mesh) and washed in basic medium,
namely DMEM supplemented with 20% (v/v) FCS, 100 U/ml
penicillin and 100 μg/ml streptomycin (all from Cambrex,
Wokingham, UK), with l-glutamine (2 mM). The stromal cells
were separated from the adipocytes (floating) by centrifuga-
tion at 300 g for 5 minutes and were counted and plated at
100,000 cells/cm2 in monolayer culture in basic medium. Cul-
tures were maintained at 37°C with 5% CO2 and normal oxy-
gen (20%). Cultured cells from passage 2 were used for cell
surface epitope characterisation and cell aggregate culture.

Cell surface epitope characterisation and flow cytometry
Confluent passage 2 cells were stained with a panel of anti-
bodies for cell surface epitopes. This included antibodies
against the following: CD13 (aminopeptidase N), CD44
(hyaluronan receptor), CD90 (Thy-1), LNGFR (low-affinity
nerve growth factor receptor), STRO-1 (marker for bone mar-
row-derived stem cells) and CD56 (neural cell adhesion mole-
cule; NCAM) from BD Biosciences (Oxford, UK); CD29 (β1
integrin), CD105 (SH2 or endoglin) and CD34 (marker for

haematopoetic cells) from Dako (Ely, UK); and 3G5 (marker
for vascular pericytes) courtesy of Dr Ann Canfield (University
of Manchester, UK). The cells were incubated for 1 hour with
the primary mouse antibodies (undiluted 3G5 and 1:100 dilu-
tion for others) followed by fluorescein isothiocyanate (FITC)-
conjugated anti-mouse IgM secondary antibody (1:40 dilution;
Dako). For controls, nonspecific monoclonal mouse IgG anti-
body (Santa Cruz Biotechnology, Santa Cruz, CA, USA) was
substituted for the primary antibody. The cells were incubated
with 4',6-diamidino-2-phenylindole stain (1:100 dilution) for 5
minutes, and images were captured with an Axioplan 2 micro-
scope using an Axiocam HRc camera and AxioVision 4.3 soft-
ware (all from Carl Zeiss Ltd, Welwyn Garden City, UK). Cells
from passage 2 were also analysed by flow cytometry. Cells in
monolayer were detached with trypsin (0.05%, with 5 mM
EDTA), washed and incubated with primary mouse antibodies
(undiluted 3G5 and 1:100 dilution for others) followed by
FITC-conjugated anti-mouse IgM secondary antibody (1:40
dilution). The cells were washed again, suspended at 106

cells/ml and assayed in a flow cytometer (Dako cytomation
cyan, Ely, UK).

Cell aggregate culture
Three-dimensional cell aggregates (500,000 cells [18]) were
cultured at 37°C in 1 ml of chondrogenic media for 14 days
(medium changed every 2 days) in either normal oxygen (95%
air containing 20% oxygen, and 5% carbon dioxide) or low
oxygen (90% nitrogen, 5% carbon dioxide and 5% oxygen).
The chondrogenic culture medium contained basic medium
(as above, but without serum) with 1 × insulin–transferrin–
selenium supplement (ITS+1; final concentrations 10 μg/ml
bovine insulin, 5.5 μg/ml transferrin, 5 ng/ml sodium selenite,
4.7 μg/ml linoleic acid and 0.5 mg/ml BSA), 37.5 μg/ml ascor-
bate 2-phosphate, 100 nM dexamethasone, 10 ng/ml trans-
forming growth factor (TGF)-β3 and 100 ng/ml insulin-like
growth factor-1 (all from Sigma, Poole, UK).

DNA and glycosaminoglycan assays
The wet mass of cell aggregates was recorded at 14 days and
the aggregates were digested overnight at 60°C in 20 μl of 10
U/ml papain (Sigma), 0.1 M sodium acetate, 2.4 mM EDTA, 5
mM l-cysteine pH 5.8. DNA in the papain digest was meas-
ured with PicoGreen (Invitrogen) with standard double-
stranded DNA (Invitrogen), and sulphated glycosoaminogly-
can (GAG) was assayed with 1,9-dimethylmethylene blue
(Aldrich, Poole, UK) with shark chondroitin sulphate (Sigma)
as standard [18,19].

Gene expression analysis
Quantitative real-time gene expression analysis was per-
formed for the following: hypoxia-inducible transcription factor
(HIF)1α, HIF2α, aggrecan, versican, perlecan, collagen type I
(COL1A2), collagen type II (COL2A1), collagen type IX
(COL9A1), collagen type X (COL10A1), collagen type XI
(COL11A2), L-SOX5, SOX6 and SOX9. Total RNA was
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extracted with Tri Reagent (Sigma) from passage 2 cells in
monolayer and from cell aggregates at 14 days that had been
ground with Molecular Grinding Resin (Geno Technology Inc.,
St Louis, MO, USA). cDNA was generated from 10 to 100 ng
of total RNA by using reverse transcription followed by poly(A)
PCR global amplification [20]. Globally amplified cDNAs were
diluted 1:1,000 and a 1 μl aliquot of the diluted cDNA was
amplified by quantitative real-time PCR in a final reaction vol-
ume of 25 μl by using an MJ Research Opticon with an SYBR
Green Core Kit (Eugentec, Seraing, Belgium). Gene-specific
primers were designed within 300 base pairs of the 3' region
of the relevant gene with the use of ABI Primer Express soft-
ware (Applied Biosystems, Foster City, CA, USA). Gene
expression analyses were performed relative to β-actin and
calculated by using the 2-ΔΔCt method [21]. All primers (Invitro-
gen) were based on human sequences: aggrecan, 5'-
AGGGCGAGTGGAATGATGTT-3' (forward) and 5'-GGT-
GGCTGTGCCCTTTTTAC-3' (reverse); β-actin, 5'-
AAGCCACCCCACTTCTCTCTAA-3' (forward) and 5'-AAT-
GCTATCACCTCCCCTGTGT-3' (reverse); COL1A2, 5'-
TTGCCCAAAGTTGTCCTCTTCT-3' (forward) and 5'-AGCT-
TCTGTGGAACCATGGAA-3' (reverse); COL2A1, 5'-
CTGCAAAATAAAATCTCGGTGTTCT-3' (forward) and 5'-
GGGCATTTGACTCACACCAGT-3' (reverse); COL9A1, 5'-
CGGTTTGCCAGGAGCTATAGG-3' (forward) and 5'-
TCTCGGCCATTTTTCCCATA-3' (reverse); COL10A1, 5'-
TACCTTGTGCCTCCCATTCAA-3' (forward) and 5'-TACAG-
TACAGTGCATAAATAAATAATATATCTCCA-3' (reverse);
COL11A2, 5'-CCTGAGCCACTGAGTATGTTCATT-3' (for-
ward) and 5'-TTGCAGGATCAGGGAAAGTGA-3' (reverse);
HIF1α, 5'-GTAGTTGTGGAAGTTTATGCTAATATTGTGT-3'
(forward) and 5'-TCTTGTTTACAGTCTGCTCAAAATATCTT-
3' (reverse); HIF2α, 5'-GGTGGCAGAACTTGAAGGGTTA-3'
(forward) and 5'-GGGCAACACACACAGGAAATC-3'
(reverse); L-SOX5, 5'-GAATGTGATGGGACTGCTTATG-
TAGA-3' (forward) and 5'-GCATTTATTTGTACAGGCCCTA-
CAA-3' (reverse); SOX6, 5'-
CACCAGATATCGACAGAGTGGTCTT-3' (forward) and 5'-
CAGGGTTAAAGGCAAAGGGATAA-3' (reverse); SOX9, 5'-
CTTTGGTTTGTGTTCGTGTTTTG-3' (forward) and 5'-AGA-
GAAAGAAAAAGGGAAAGGTAAGTTT-3' (reverse); versi-
can, 5'-TGCTAAAGGCTGCGAATGG-3' (forward) and 5'-
AAAAAGGAATGCAGCAAAGAAGA-3' (reverse).

Immunohistochemical staining of cell aggregate 
sections
The cell aggregates were fixed for 2 hours in 4% formaldehyde
(BDH Ltd, Poole, UK)/Dulbecco's phosphate-buffered solu-
tion (DPBS; Cambrex). The samples were then washed in
70% industrial methylated spirit (BDH) and placed in a Shan-
don Citadel 2000 tissue processor (Thermo Electron Corpo-
ration, Runcorn, UK). Paraffin-embedded sections (5 μm)
were taken and mounted on slides precoated with Superfrost
Plus (Menzel Glaser GmbH, Braunschweig, Germany), dried
in air and left at 37°C overnight. Sections were preincubated

at 37°C with 0.1 U/ml chondroitinase ABC (Sigma) for 1 hour
and then immunostained for 16 hours at 4°C with goat anti-
human collagen type I (C-18 polyclonal), or collagen type II (N-
19 polyclonal) (both from Santa Cruz Biotechnology) or with
rabbit anti-human aggrecan (BR1) (all at 1:100 dilution) fol-
lowed by washing and incubation for 30 minutes at room tem-
perature in donkey anti-goat IgG for collagen type I and
collagen type II and donkey anti-rabbit IgG for aggrecan (all at
1:250 dilution) biotin-conjugated secondary antibodies (both
from Santa Cruz Biotechnology). Goat IgG antibody was used
as a control for collagen, and rabbit IgG was used as a control
for aggrecan (both from Santa Cruz Biotechnology). Endog-
enous peroxidase activity was quenched for 5 minutes with
3% hydrogen peroxide (Sigma) in methanol (BDH). Non-spe-
cific binding was blocked for 1 hour with 10% normal donkey
serum diluted in 1% BSA (both from Sigma) in DPBS at room
temperature. For visualisation, sections were incubated for 30
minutes at room temperature in streptavidin–peroxidase com-
plex (1:500 in DPBS; Dako), rinsed in distilled water and incu-
bated in fast-DAB (3,3'-diaminobenzidine) peroxidase
substrate (Sigma) for 5 minutes and counterstained in diluted
filtered haematoxylin (Sigma) for 15 seconds. Images were
then taken with an Axioplan 2 microscope with the use of an
Axiocam HRc camera and AxioVision 4.3 software.

Statistical analysis
Experiments were performed separately with cells from three
patients, and all experiments were in triplicate. Gene expres-
sion data, wet masses, and DNA and GAG assay results are
presented as means and SEM. Student's paired t-test and a
one-way analysis of variance followed by Bonferroni's correc-
tion were used to analyse the results from two and three cul-
ture conditions, respectively, and to determine the level of
significance. Statistical analyses were conducted with SPSS
Statistical Software (version 11.5). Significance was set at p
< 0.05.

Results
Isolation, culture and cell surface epitope 
characterisation of IPFP cells
The cells isolated from the IPFP proliferated in culture and
reached confluence by day 14. The yield of cells by the end of
passage 2 was typically 107 cells at confluence from 5 g of
IPFP tissue (proliferation rate 0.14 ± 0.01 doublings per day
(mean ± SEM) [8]). Cells at passage 2 stained strongly for
CD13, CD44, CD90 and CD105 (markers for mesenchymal
stem cells), and for CD29 (β1 integrin). The cells stained
poorly for LNGFR and STRO-1 (markers on freshly isolated
bone marrow stem cells) and sparsely for 3G5 (marker for vas-
cular pericytes). Staining for CD34 (marker for haematopoetic
cells) and CD56 (NCAM) was negative. Flow cytometry con-
firmed the staining pattern and showed the IPFP cell popula-
tion to be fairly homogeneous for mesenchymal stem cell
markers (Figure 1).
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Chondrogenic culture of IPFP cells and the effect of low 
oxygen tension
The cultured cell aggregates of IPFP cells with chondrogenic
medium showed evidence of induction of chondrogenesis
under normal culture conditions (20% oxygen), and this was
greatly enhanced at a lower oxygen tension (5%) (Figure 2).
Cell aggregates cultured under hypoxic conditions at 14 days
had 1.8-fold higher wet mass than those cultured under nor-
moxic conditions. The hypoxic conditions resulted in less cell
proliferation because the aggregates contained 54% less total
DNA. There was, however, a large increase (1.9-fold) in the
GAG accumulation (Figure 3) such that the proteoglycan con-

tent per cell at 14 days was much higher under hypoxic condi-
tions (3.5-fold, p < 0.001; Figure 2).

Gene expression analysis of chondrogenic IPFP cell 
aggregates
In the chondrogenic cultures in normal oxygen the gene
expression of collagen types II, IX, X and XI and the transcrip-
tion factors SOX6 and SOX9 was greatly increased (p < 0.05
or p < 0.001) in comparison with monolayer culture. In con-
trast, the expression of the proteoglycans, aggrecan and ver-
sican did not change (Figure 3). In the presence of lowered
oxygen tension there was a more enhanced chondrogenic

Figure 1

Cell surface epitope characterisation of infrapatellar fat pad cellsCell surface epitope characterisation of infrapatellar fat pad cells. Cell surface staining on passage 2 infrapatellar fat pad cells was performed with a 
panel of antibodies and fluorescein isothiocyanate-conjugated secondary antibody (green), and 4',6-diamidino-2-phenylindole (blue). Results 
showed strong staining for CD13, CD29, CD44, CD90 and CD105, weak staining for 3G5, and negative staining for low-affinity nerve growth factor 
receptor (LNGFR), STRO-1, CD34 and CD56. No staining was observed for the IgG control. The staining pattern was confirmed by flow cytometry 
characterisation and showed the increase in fluorescence (green) compared with the autofluorescence (black).
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response with additional changes in gene expression (Figure
3). In low oxygen the expression of HIF2α was increased 11-
fold over monolayer culture (Figure 3); interestingly, there was
no change in HIF1α, which was expressed at a lower level
than HIF2α in monolayer. The expression of collagen types II,

IX, X and XI at lowered oxygen tension was increased 30,000-
fold, 4,000-fold, 14,000-fold and 7,000-fold, respectively,
over monolayer culture (p < 0.05 or p < 0.001), and SOX5,
SOX6 and SOX9 were increased 500-fold, 17,000-fold and
50-fold, respectively (p < 0.05 or p < 0.001; Figure 3). In addi-
tion, aggrecan was greatly increased (140-fold) and versican
was increased slightly less (9-fold); both were unchanged in
normoxia. Collagen type I (COL1A2) was highly expressed in
monolayer-cultured IPFP cells; this remained high in the chon-
drogenic cultures and there was no downregulation of its
expression under hypoxic conditions. The chondrogenic
response of IPFP cells in cell aggregate culture was thus
greatly enhanced over 14 days at lowered oxygen tension, and
this was correlated with the selective upregulation of HIF2α
and increased expression of the key chondrogenic transcrip-
tion factors SOX9, SOX5 and SOX6.

Immunohistochemistry of chondrogenic IPFP cell 
aggregates
The cell aggregates cultured under both normoxic and hypoxic
conditions showed evidence of chondrogenesis with immu-
nolocalisation of cartilage-associated matrix, including colla-
gen type II and aggrecan (Figure 4). Cell aggregates cultured
under hypoxic conditions were larger and less cellular than
aggregates cultured under normoxia. All cells had a rounded
appearance and were surrounded by extracellular matrix. Cell
aggregates under normoxic and hypoxic conditions both
stained, albeit weakly, for collagen type I, although the hypoxic
cultures lacked the collagen I peripheral rim seen in normoxia,
suggesting a lower level of collagen I production.

Discussion
The cell surface epitope characterisation and flow cytometry
of the IPFP cell population showed a similar staining pattern to
that of bone marrow-derived stem cells, and although they
stained poorly for STRO-1 and for LNGFR, the expression of
these markers on bone marrow-derived stem cells is reported
to decline with culture [22-25]. In preliminary work the cells
have shown osteogenic [9] and adipogenic (W.S. Khan and
T.E. Hardingham, unpublished data) differentiation. It has also
previously been noted that other adipose tissue-derived stem
cells did not express STRO-1 [26]. In IPFP tissue sections we
have identified perivascular cells, which stained with the anti-
body 3G5 [27]. The antigen recognised by 3G5 is a cell sur-
face ganglioside, characterised originally on vascular
pericytes from bovine retina, which have been shown to have
multidifferentiation potential [28-32]. In the cultured IPFP cells
only 3 to 7% stained positively for 3G5, and the fraction that
stained did not change with further passage; we have also
observed that with clonally expanded IPFP cells only a small
proportion of the progeny of each stained with 3G5 (W.S.
Khan and T.E. Hardingham, unpublished data), suggesting this
was not a separate subpopulation. These results suggested
that the culture conditions did not favour 3G5 expression, and
previously it has been reported to vary in culture [33]. It may

Figure 2

Chondrogenic cultures of infrapatellar fat pad cells and the effects of hypoxiaChondrogenic cultures of infrapatellar fat pad cells and the effects of 
hypoxia. Wet weight (a), glycosoaminoglycan (GAG) analysis (b) and 
GAG per DNA measurement (c) of cell aggregates after chondrogenic 
differentiation for 14 days under normoxic and hypoxic conditions. 
Results are means ± SEM (n = 3). **p < 0.001; *p < 0.05 (Student's 
paired t-test).
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Figure 3

Gene expression in chondrogenic cultures of infrapatellar fat pad cellsGene expression in chondrogenic cultures of infrapatellar fat pad cells. Relative gene expression for hypoxia-inducible transcription factors (HIF) and 
SOX genes (a), collagens (b) and proteoglycans (c) in monolayer culture and after chondrogenic differentiation for 14 days under normoxic and 
hypoxic conditions. Results are means ± SEM (n = 3). **p < 0.001; *p < 0.05 (analysis of variance with Bonferroni's correction).
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therefore be possible that the IPFP cells isolated were derived
from those staining with 3G5 in the tissue, but that in culture
3G5 was expressed on only few cells at any one time.

The IPFP cells responded to chondrogenic culture in cell
aggregates, and this was much enhanced under hypoxic con-
ditions. The wet mass of cell aggregate provides a simple
measure of in vitro chondrogenesis in mesenchymal stem cells
[34,35]; cell aggregates cultured under hypoxic conditions
had a 1.8-fold higher wet mass than those cultured under nor-
moxia. The GAG content reflected proteoglycan biosynthesis
and accumulation in the matrix, and under hypoxic conditions
there was a 1.9-fold increase in the total GAG per aggregate.
In spite of the increased mass there was a lower DNA content
than under normoxia, reflecting a lower cell proliferation rate,
and this was balanced by a much greater production of GAG
per cell. These results with IPFP cells are comparable to those
from a previous study on stem cells derived from other human
liposuction-derived adipose tissue, in which 5% oxygen was
reported to increase collagen and GAG synthesis and reduce
cell proliferation [14]. However, with mouse inguinal fat-

derived cells, decreased chondrogenesis and osteogenesis
was reported in 2% oxygen [36]. The effects of hypoxia on the
propagation of human bone marrow-derived stem cells sug-
gested that 2% oxygen favoured more primitive stem cells with
higher colony-forming unit capability and stronger expression
of stem cell genes, and that when switched to normoxic con-
ditions they showed stronger osteoblastic and adipocytic dif-
ferentiation [37].

The gene expression analysis provided an assessment of the
changes induced by hypoxia in the chondrogenic cultures, and
the gene expression in monolayer culture provided a measure
of expression before the cell aggregates were formed. The
transcription factor SOX9 has been shown to be essential for
chondrocyte differentiation and cartilage formation [38]. One
of its actions is to activate specific enhancer elements in car-
tilage matrix genes such as collagen type II and aggrecan
[39,40]. This action of SOX9 is further enhanced by SOX5
and SOX6. In the chondrogenic cultures of IPFP cells there
was an increase in the expression of SOX9, which was already
expressed at a significant level and this was increased more
strongly in hypoxia. SOX5 and SOX6 showed different pro-
portionate responses, as SOX5 was not increased under nor-
moxia but was increased by hypoxia, whereas SOX6 was
upregulated in normoxia and this was further enhanced by
hypoxia. The net effect was that under hypoxia there was
higher expression of SOX5, 6 and 9 than under normoxic
conditions.

The expression of key cartilage collagens II, IX and XI were all
correspondingly increased under hypoxia, showing that
hypoxia enhanced the potential for the assembly of a complete
cartilage fibrillar template. Although TGF-β inhibits the terminal
differentiation of chondrocytes in vivo [41] there was also a
higher level of collagen type X expression in IPFP chondro-
genic cultures. However, TGF-β has previously been associ-
ated with increased expression of collagen type X in
chondrogenesis in bone marrow stem cells [42]. Aggrecan,
and to a smaller extent versican, were also increased in
hypoxia.

The response by cells to hypoxia is complex and is mediated
by several genes [43]. HIF1α is one of the major regulators of
hypoxic response in most cells and tissues [44], where it is fre-
quently associated with angiogenesis and the formation of
new blood vessels. Targets of its molecular signalling are
reported to include a cluster of hydroxylases that are crucial for
collagen fibre formation such as prolyl 4-hydroxylase and pro-
collagen lysyl-hydroxylase [45-47]. Through these actions,
HIF1α affects the rate of synthesis of procollagen chains in
vivo and in vitro [48]. HIF2α is closely related to HIF1α, with
similarities in DNA binding and dimerisation, but with differ-
ences in transactivation domains [49]. The genes downstream
of HIF2α have been less well characterised, but it seems to
act through some of the pathways common to HIF1α. Both

Figure 4

Immunohistochemistry of chondrogenic cultures of infrapatellar fat pad cellsImmunohistochemistry of chondrogenic cultures of infrapatellar fat pad 
cells. Immunohistochemical staining for collagen type I and II, aggrecan 
and control IgG in cell aggregates after chondrogenic differentiation for 
14 days under normoxic and hypoxic culture conditions.
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genes are upregulated together in some cells, but many exam-
ples of selective activation of one or the other are known, and
an increasing number of cell-type-specific gene targets have
been identified [49,50]. It was therefore an important finding
here that HIF2α and not HIF1α was upregulated in the IPFP
cells in response to 5% oxygen. It suggests that in chondro-
genic IPFP cells the response to hypoxia is mediated by HIF2α
and that this helps to drive the increased matrix production,
assisted by increased expression of the hydroxylases
necessary for collagen fibril formation. It may be an important
factor that this was the response in 5% oxygen, which is a low
oxygen tension but within the physiological range for chondro-
cytes [13]. In other chondrogenic systems we have noted
reduced matrix production with cell aggregates in 1% oxygen
(A.B. Adesida and T.E. Hardingham, unpublished data). It has
also been noted that only HIF2α, and not HIF1α, was upregu-
lated in neuroblastoma cells cultured in 5% oxygen, whereas
HIF1α and HIF2α were both upregulated when the oxygen
tension was decreased to 1% [51]. In the context of these cul-
tures the oxygen concentration is 5% at the surface but is
likely to be below 5% towards the centre of the aggregate. It
has also been noted that in prolonged hypoxia in lung epithelial
cells, the upregulation of HIF1α was transient, whereas
increases in HIF2α were sustained [52]. A transient upregula-
tion of HIF1α cannot be ruled out in these cultures, but the
expression of HIF1α was much lower than HIF2α under all
conditions (Figure 3) and it is clear that at 14 days under
hypoxic conditions HIF2α was expressed about 40-fold more
than HIF1α. The present results suggest that HIF2α expres-
sion in chondrogenic cells may act to selectively enhance the
expression of the cartilage matrix genes. However, this may be
an indirect action through the increased expression of the tran-
scription factors SOX9, SOX5 and SOX6. The differential
effect of hypoxia on the expression of the cartilage matrix
genes suggests that the cartilage collagens may become
actively expressed at lower levels of SOX9, SOX5 and SOX6
transcription factors, whereas aggrecan may require higher
levels of SOX9, SOX5 and SOX6 to achieve full expression.

Conclusion
Our results show that cells with stem cell or progenitor cell
characteristics can be isolated from the IPFP derived from eld-
erly patients with osteoarthritis. Cells from each patient tested
(n = 3) showed the ability to undergo chondrogenic differenti-
ation, and this was enhanced in 5% oxygen. This is the first
study that has characterised chondrogenic gene expression in
IPFP-derived cells. Our results extend previous observations
and identify here most importantly that HIF2α, and not HIF1α,
was upregulated in response to lowered oxygen tension in the
chondrogenic cultures. The results showed that chondrogen-
esis was enhanced in an atmosphere of decreased oxygen
tension and that this is mediated by a significantly increased
expression of key genes expressed by chondrocytes, notably
the transcription factors SOX5, SOX6 and SOX9. These find-
ings show that oxygen tension has an important role in regulat-

ing the synthesis and assembly of matrix by IPFP-derived stem
cells as they undergo chondrogenesis and that this has impor-
tant implications for the use of the IPFP in cartilage tissue
engineering.
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