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Abstract

The anti-inflammatory effect of adenosine was previously found
to be mediated via activation of the Aj adenosine receptor
(AzAR). The aim of the present study was to decipher the
molecular mechanism involved with the inhibitory effect of IB-
MECA, an A;AR agonist, on adjuvant-induced arthritis.

The adjuvant-induced arthritis rats responded to IB-MECA
treatment with a decrease in the clinical score and the
pathological score of the disease. The response to IB-MECA
was neutralized by the antagonist MRS 1220, confirming that
the efficacy of the synthetic agonist was A;AR mediated.

The A;AR protein expression level was highly expressed in the
synovia, in the peripheral blood mononuclear cells and in the
drain lymph node (DLN) tissues of adjuvant-induced arthritis rats
in comparison with naive animals. Downregulation of AjAR
expression was noted upon treatment with IB-MECA. Analysis
of synovia and DLN protein extracts revealed a decreased
expression level of PISK, PKB/Akt, IKK, NF-xB and tumor

necrosis factor alpha, known to affect survival and apoptosis of
inflammatory cells, whereas the caspase-3 level was
upregulated.

Taken together, high A;AR expression is found in the synovia, in
the immune cells in the DLN and in peripheral blood
mononuclear cells. IB-MECA, an orally bioavailable molecule,
activates the A;AR, inducing receptor downregulation and the
initiation of a molecular mechanism that involves de-regulation of
the PIBK-NF-xB signaling pathway. As a result, a potent anti-
inflammatory effect manifested in the improvement of the
disease clinical score and pathological score occurs. The
finding that the A;AR expression level in the peripheral blood
mononuclear cells and in the DLN reflects the receptor status in
the remote inflammatory site suggests use of the A;AR as a
follow-up biomarker.

Introduction

Considerable evidence has accumulated indicating that ade-
nosine, through its receptors, plays an important role in limiting
inflammation. Adenosine's anti-inflammatory effects are mani-
fested by inhibition of tumor necrosis factor alpha (TNF-a), IL-
1 and IL-6 production [1-3]. These responses have been

shown in vitro in neutrophil and macrophage cell lines as well
as in synoviocytes [4-7]. It is quite impossible to assess the
effect of adenosine in vivo due to its rapid metabolization by
adenosine deaminase. The involvement of adenosine in medi-
ating the effect of several anti-inflammatory drugs such as
aspirin, methotrexate and sulfasalazin has been described,

A3AR = Ag adenosine receptor; AIA = adjuvant-induced arthritis; BSA = bovine serum albumin; DLN = drain lymph node; GSK-3f = glycogen syn-
thase kinase-3f; H & E = hematoxylin and eosin; IB-MECA = 1-deoxy-1-(6-{[(3-iodophenyl)methyllamino}-9H-purine-9-yl)-N-methyl-B-D-ribofura-
nuronamide; IKK = | Kappa Kinase; IL = interleukin; NF = nuclear factor; PBMNC = peripheral blood mononuclear cells; PBS = phosphate-buffered
saline; PI3K = phospahtidylinositol-3 kinase; PKA = Protein Kinase A; PKB/Akt = Protein Kinase B; TNF-o. = tumor necrosis factor alpha; WB =

western blot.
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supporting the role of adenosine in the regulation of the inflam-
matory process [8,9]. The dichotomy between the high adeno-
sine levels in the inflamed tissues and the inability of adenosine
to hamper the inflammatory process is explained by the
increased adenosine deaminase level in this environment [10].

Recent studies suggested that the A; adenosine receptor
(AsAR) plays a major role in mediating the anti-inflammatory
effect of adenosine. The highly selective A;AR agonist 1-
deoxy-1-(6-{[(3-iodophenyl)methyl]lamino}-9H-purine-9-yl)-N-

methyl-B-d-ribofuranuronamide (IB-MECA) inhibited the pro-
duction of TNF-a. and MIP-1a. in vitro, and prevented the
development of collagen and adjuvant-induced arthritis (AlA)
in experimental animal models [11,12]. Moreover, methotrex-
ate was not efficacious in A;AR knockout mice in which inflam-
mation was induced, thus confirming the role of adenosine and
of the AzAR in the regulation of the anti-inflammatory response
[13].

The A3AR belongs to the family of the Gi-protein-associated
cell membrane receptors. Receptor activation leads to inhibi-
tion of adenylyl cyclase activity, inhibition of cAMP formation
and inhibition of PKA expression, resulting in the initiation of
various signaling pathways [14]. Our earlier studies showed
that the AgAR is highly expressed in tumor cells. Receptor acti-
vation by IB-MECA inhibited the growth of melanoma, prostate
carcinoma and colon carcinoma in vitro as well as in syngeneic
and xenograft models in vivo [15-17]. The mechanistic path-
way involved AjAR downregulation shortly after treatment,
which subsequently induced a decrease in the expression of
PKAc and PKB/Akt. The latter is known to control the NF-xB
level by phosphorylating downstream proteins such as IKK
and IxB, which in turn release NF-xB from its complex [15].
NF-xB then translocates to the nucleus where it induces the
transcription of TNF-o. and additional inflammatory proteins
[18]. Apoptotic pathways are also known to be controlled
downstream to PKB/Akt. Caspase-9 and caspase 3, which
are downregulated upon PKB/Akt activation, fail to activate
pathways leading to apoptosis [19].

One of the major mechanisms responsible for the develop-
ment of arthritis is the upregulation of NF-xB that results in
increased TNF-a. levels. Moreover, the incapability of inflam-
matory cells to undergo apoptosis leads to their accumulation
in the joints, thus maintaining the inflammatory process [19-
21].

In the present study we show that the AjAR in AlA rats is
highly expressed in the synovia, in peripheral blood mononu-
clear cells (PBMNC) and in lymph node cells. Upon IB-MECA
treatment, the receptor is downregulated and modulation of
the PKB/Akt—NF-xB signal transduction pathway takes place,
resulting in amelioration of the inflammatory process.
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Materials and methods

Reagents

The AzAR agonist IB-MECA was synthesized for Can-Fite
BioPharma by Albany Molecular Research Inc. (Albany, NY,
USA). MRS 1220, a highly selective A;AR antagonist, was
purchased from RBI/Sigma (Natick, MA, USA). For both rea-
gents, a stock solution of 10 mM was prepared in dimethyl sul-
foxide and was further diluted in PBS.

Rabbit polyclonal antibodies against the rat A;AR and the sig-
naling proteins PI3K, IKKa/B, were purchased from Santa
Cruz Biotechnology Inc. (Santa Cruz, CA, USA). NF-«xB, TNF-
o and caspase-3 were purchased from CHEMICON Interna-
tional, Inc (Temecula, CA, USA). total and phosphospecific
PKB/Akt (S473) were purchased from Cell Signaling Technol-
ogy, Inc. Danvers, MA, USA)

Experimental adjuvant-induced arthritis model

Female Lewis rats, aged 8—12 weeks were obtained from Har-
lan Laboratories (Jerusalem, Israel). Rats were maintained on
a standardized pelleted diet and were supplied with tap water.
Experiments were performed in accordance with the guide-
lines established by the Institutional Animal Care and Use
Committee at Can-Fite BioPharma (Petach Tikva, Israel). The
rats were injected subcutaneously at the tail base with 100 pl
suspension composed of incomplete Freund's adjuvant with
10 mg/ml heat-killed Mycobacterium tuberculosis (Mt H37Ra;
Difco, Detroit, MI, USA).

Each experimental group contained 10 animals. Treatment
was initiated on day 14 after vaccination, when the clinical
arthritis is apparent. IB-MECA (10 ug/kg) and the antagonist
MRS 1220 (10 pg/kg) were orally administered by gavage,
twice daily. MRS 1220 was administered 30 minutes before
IB-MECA. The control group received vehicle only (dimethyl
sulfoxide in a dilution corresponding to that of the drugs).
Treatment was given for 14 days and animals were sacrificed
on day 28, 2 hours after the last treatment.

The clinical disease activity score was assessed by inspecting
the animals every second day for clinical arthritis. The scoring
system ranged from O to 4 for each limb (0 = no arthritis; 1 =
redness or swelling of one toe/finger joint; 2 = redness and
swelling of more than one toe/finger joints; 3 = involvement of
the ankle and tarsal-metatarsal joints; 4 = entire paw redness
or swelling). The clinical score was calculated by adding the
four individual legs' score. The inflammatory intensity was also
determined in accordance with the increase in the rat hind
paw's diameter, measured by caliper (Mitotoyo, Tokyo, Japan).

The histology score was assessed as follows. Animals were
sacrificed on day 28. The legs were then removed up to knee
level, fixed in 10% formaldehyde, were decalcified, dehydrated
and paraffin-embedded, were cut into 4 um sections and were
stained with H & E.
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Effect of IB-MECA in the presence and absence of MRS 1220 on the
clinical and pathological manifestations of adjuvant-induced arthritis.
Rats were injected with an emulsion composed of incomplete Freund's
adjuvant with 10 mg/ml heat-killed Mycobacterium tuberculosis. Treat-
ment with IB-MECA (10 ug/kg) or the Az adenosine receptor antago-
nist MRS 1220 (10 ug/kg), or a combination of both, was initiated on
day 14. (a) Effect of IB-MECA on disease clinical score. (b) Effect of
IB-MECA on paw thickness.

The assessment of all pathologic findings were performed
using semiquantitative grading scales of O to 4 for the follow-
ing parameters: the extent of inflammatory cells' infiltration to
the joint tissues; synovial lining cell hyperplasia; pannus forma-
tion; joint cartilage layers destruction. The bone damage and
erosion score was graded from 0 to 5 (0 = normal; 1 = minimal
loss of cortical bone at a few sites; 2 = mild loss of cortical
trabecular bone; 3 = moderate loss of bone at many sites; 4 =
marked loss of bone at many sites; 5 = marked loss of bone at
many sites with fragmenting and full thickness penetration of
inflammatory process or pannus into the cortical bone). The
mean of all the histological parameter scores were designated
the 'histology score'.
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Separation of synovial cells, PBMNC and lymph node
cells

Synovial tissue was excised and cells were separated by incu-
bating the synovial tissue in RPMI containing 1 mg/ml colla-
genase IV and 0.1 mg/ml DNase with a vigorous shaking at
37°C for 30 min. The supernatant containing the synovial cells
was collected and the undigested tissue was re-extracted. The
supernatants from all extractions were combined and cells
were washed with PBS.

Regional lymph nodes were removed and cells were sepa-
rated by mincing the tissue and disaggregating it through a
needle of 22 G.

PBMNC from naive rats, AlA rats and IB-MECA-treated rats
were fractionated from heparinized blood using the Ficoll-
Hypaque gradient.

Western blot analysis

Western blot (WB) analyses of synovial cells, PBMNC and
lymph node cells were carried out according to the following
protocol. Samples were rinsed with ice-cold PBS and were
transferred to ice-cold lysis buffer (TNN buffer, 50 mM Tris
buffer [pH 7.5], 150 mM NaCl, NP 40). Cell debris was
removed by centrifugation for 10 min at 7500 X g. Protein con-
centrations were determined using the Bio-Rad protein assay
dye reagent. Equal amounts of protein (50 pg) were separated
by SDS-PAGE, using 12% polyacrylamide gels. The resolved
proteins were then electroblotted onto nitrocellulose mem-
branes (Schleicher & Schuell, Keene, NH, USA). Membranes
were blocked with 5% BSA and were incubated with the
desired primary antibody (dilution 1:1000) for 24 hours at 4°C.
Blots were then washed and incubated with a secondary anti-
body for 1 hour at room temperature. Bands were recorded
using a BCIP/NBT color development kit (Promega, Madison,
WI, USA). WBs were normalized against the housekeeping
protein actin. Data presented in the different figures are repre-
sentative of at least four different experiments.

PKB/Akt activity assay

After protein isolation, 100 pg from each sample was removed
for the PKB/Akt activity assay. This was carried out utilizing an
Akt kinase assay kit (Cell Signaling Technology, Inc. Danvers,
MA, USA), utilizing the GSK-3 fusion protein as a substrate.
The activity was detected by WB analysis and the bands were
recorded using the BCIP/NBT color development kit
(Promega).

Statistical analysis

Repeated-measurements general linear models analysis of
variance (ANOVA) was performed for testing differences in
the changes between baseline assessment (day 14) and post-
baseline assessment (day 28) between the four study groups
for the clinical score and for the paw thickness. All tests
applied were two-tailed, and a P value of 5% or less was con-
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Effect of IB-MECA in the presence and absence of MRS 1220 on the
clinical and pathological manifestations of adjuvant-induced arthritis. (a)
Effect of IB-MECA on the pathological features of joint destruction in
adjuvant arthritis. Shown are representative histology sections obtained
after the rats were sacrificed on day 28. (b) Mean histology score.

sidered statistically significant. The data were analyzed using
the SAS software (SAS Institute, Cary, NC, USA).

Repeated-measurements analysis using the Dunkan method
was applied following the ANOVA analysis. Additional exclu-
sive analysis was performed only for the two main time points
(days 7 and 28) because this period is the most interesting for
the study, as it reflects the changes at study termination. The
student's t test for the WB analysis samples and the statistical
significance were set at P < 0.05.

Results

IB-MECA inhibits the clinical and pathological
manifestations of AIA

Approximately 21 days after immunization most of the vehicle-
treated animals progressively developed arthritis. IB-MECA
treatment (10 pg/kg orally twice daily, starting on day 14 after
immunization) caused a significant decrease in disease sever-
ity as evaluated by the arthritis clinical score. Disease peaked
on days 21-28 and the maximal effect of IB-MECA was seen
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Western blot analysis of the A; adenosine receptor (A;AR) in synovial
cells, drain lymph node (DLN) cells and peripheral blood mononuclear
cell (PBMNC) protein extracts. (a) A;AR expression in synovial tissue
derived from untreated and IB-MECA-treated adjuvant-induced arthritis
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treated, and IB-MECA-treated AlA rats.
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Effect of IB-MECA treatment on the expression level of key signaling proteins downstream to Az adenosine receptor (A;AR) activation in synovia
cells. The level of PI3K, pPKB/Akt, IKKo/B, NF-kB, TNF-o. and caspase-3 was examined by western blot analysis. AlA, adjuvant-induced arthritis.

on these days (Figure 1a). A similar pattern of disease activity
was observed when paw thickness was measured (Figure 1b).
ANOVA with repeated measurements was performed for test-
ing differences in the parameters of clinical score and paw
thickness between the four study groups: IB-MECA group, I1B-
MECA + MRS 1220 group, control group, and MRS 1220
group. The analysis was performed at two time points: day 7
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(first measurement) and day 28 (last measurement). Statisti-
cally significant differences were found in the change between
the two time points in the clinical score (P = 0.049) as well as
in paw thickness (P = 0.001).

Histological evaluation of the paws in the vehicle-treated
arthritic animals revealed signs of severe arthritis with massive



inflammatory cell infiltration, hyperplasia of the synovia, pannus
formation, and bone and cartilage damage. IB-MECA sup-
pressed these pathological and histological changes. No
inflammatory infiltration or pannus formation were noted. The
synovial membrane, bone and cartilage were preserved in the
IB-MECA-treated rats (Figure 2a). The histological score was
reduced from 9.1 £ 0.85 in the vehicle group to 2.5 £ 0.3 (P
< 0.01) in the IB-MECA-treated group (Figure 2b). ANOVA for
differences between the four study groups showed that the
values measured in the IB-MECA group were statistically sig-
nificantly lower than values measured in the other three groups
(P<0.001).

To test the specificity of the response to IB-MECA, rats were
treated with the A;AR antagonist MRS 1220 alone or in com-
bination with IB-MECA. MRS 1220 alone did not affect the
clinical, pathological or histology score. When administered in
combination with IB-MECA, it counteracted the IB-MECA's
beneficial effect, resulting in a clinical score similar to that of
the vehicle-treated group (Figure 1a,b). In addition, pathologi-
cal manifestations and histology scores did not differ from the
control group (Figure 2ab). These findings support the
assumption that the MRS 1220, an A;AR-specific antagonist,
abrogated the therapeutic effect of IB-MECA.

IB-MECA modulates the expression level of the A;AR
and downstream key signaling proteins in the synovia,
PBMNC and drain lymph node cells

The A3;AR was found to be highly expressed in the synovia,
PBMNC and DL) cells derived from AIA rats in comparison
with the corresponding naive tissues (P < 0.01). Normal syn-
ovial tissue could not be evaluated for receptor expression
since it is too thin to be excised. In IB-MECA-treated AlA rats,
downregulation of the AjAR protein expression level was
noted in all these cells (P < 0.01) (Figure 3a—c).

We then analyzed the effect of IB-MECA on the expression
level of key signaling proteins downstream to the A;AR activa-
tion in synovial cells and DLN cell protein extracts.

Induction of AIA induced upregulation in the expression level
of various key signaling proteins such as PI3K, PKB/Akt (total
and phosphorylated) and TNF-o,, as measured in DLN protein
extracts (Figure 4a). Upon IB-MECA treatment, the expression
levels of PISK, phosphorylated PKB/Akt, IKKo/3, NF-xB and
TNF-o protein were downregulated (P < 0.05) (Figure 4b).
We further confirmed the involvement of PKB/Akt in mediating
the mechanism of action in DLN cell extracts. The PKB/Akt
kinase activity was downregulated in the IB-MECA-treated
group in comparison with the vehicle-treated IB-MECA + MRS
1220 group (Figure 4c). PI3K, PKB/Akt, IKKa/B, NF-kB and
TNFa protein expression levels were also downregulated in
synovia protein extracts (P < 0.01) (Figure 5). In both the syn-
ovia and DLN cells, an increase in the expression level of cas-
pase-3 apoptotic proteins, known to be upregulated

Available online http://arthritis-research.com/content/8/1/R33

downstream to PKB/Akt inhibition, occurred (Figures 4b and
5) (P<0.01).

Discussion

In the present study we show that IB-MECA, a synthetic A;AR
agonist, acts as an anti-inflammatory agent and ameliorates
the development of AlA. IB-MECA inhibited the disease clini-
cal score and the pathological manifestations of arthritis when
given as a therapeutic agent. IB-MECA is considered one of
the most highly selective A;AR agonists, with an affinity of 1.1
+ 0.3 nM to the rat A;AR [22].

In the present study we utilized two experimental approaches
to show that the response to IB-MECA is specific toward the
AsAR. The affinity value of IB-MECA to the Az;AR is 50 times
more than to the other adenosine receptors [23]. Thus, by
treating the animals with a low dose (10 pg/kg) of IB-MECA,
we are most probably targeting the A;AR and not other ade-
nosine receptors. This assumption is based on human phase |
studies in which we treated healthy subjects with 1 mg IB-
MECA, resulting in a Cmax of 40 nM/ml [24]. Moreover, the
selective antagonist MRS 1220 that was administered prior to
IB-MECA treatment counteracted IB-MECA's effect, resulting
in clinical and pathological scores similar to those of the con-
trol group.

An interesting finding of the present study was the high A;AR
expression in the synovial cells, in PBMNC and in DLN cells
derived from the AIA rats in comparison with naive animals.
The downregulation of A;AR protein expression, shortly after
IB-MECA treatment, is typical of the G-protein coupled recep-
tor phenomenon observed earlier by our group [17]. Similarly
to the results of the present study, in tumor lesions derived
from prostate or colon carcinoma-bearing mice, the A;AR was
found to be highly expressed while downregulation was noted
upon IB-MECA treatment receptor [16,25]. Further analysis of
tumor cell growth regulatory proteins indicated that receptor
downregulation was associated with a decrease in the level of
PKB/Akt, B-catenin, NF-xB, cyclin D, and c-Myc [15,26]. It
was thus concluded that receptor downregulation represents
receptor functionality and is accompanied by modulation of
downstream cell growth regulatory proteins resulting in tumor
growth inhibition.

In the present study, key signaling proteins in the synovial cells
and DLN cells were also examined downstream to receptor
activation. The expression levels of PI3K, PKB/Akt, IKKa/j,
NF-xB and TNF-o. were downregulated upon IB-MECA treat-
ment. Earlier in-vitro studies also showed that A;AR activation
in macrophages decreased the intracellular level of NF-xB,
leading to a decrease in the transcription of TNF-o. [27].

It has been documented that activated PKB/Akt is highly
expressed in the synovial tissue of rheumatoid arthritis patients
compared with its level in osteoarthritis patients [21]. PKB/Akt
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controls apoptotis via the modulation of downstream key sign-
aling proteins that include NF-xB and caspases [28]. Indeed,
IB-MECA treatment diminished the IKKo/f and NF-xB protein
expression levels.

The extended lifespan of rheumatoid inflammatory cells such
as neutrophils, lymphocytes, macrophages, fibroblasts and
synoviocytes in the joints, and other inflammatory sites, is one
of the hallmarks of rheumatoid arthritis [29,30]. One of the
mechanisms that can contribute to this phenomenon is inhibi-
tion of apoptosis due to stimulation of the PI3K pathway,
which leads to activation of PKB/Akt. The latter event phos-
phorylates several proteins such as GSK-3f3, FKHR and BAD,
which then fail to induce apoptosis. It may also prevent the
expression of caspase-9 and caspase-3, proteins pivotal in the
apoptotic cascade. Overexpression and activation of PKB/Akt
have been defined as the main barrier of apoptosis in the
inflamed rheumatoid arthritis tissues [31,32]. Interestingly,
downregulation of phosphorylated PKB/Akt levels by wart-
mannin resulted in apoptosis of synoviocytes and macro-
phages in rheumatoid arthritis [33]. Similarly, our findings
demonstrating PKB/Akt inhibition followed by an increase in
caspase-3 level in the IB-MECA-treated animals supports the
role of PKB/Akt in ameliorating the inflammatory process.

To the best of our knowledge, the present study is the first to
show an in-vivo link between activation of the AzAR, inhibition
of PKB/Akt and downstream signaling pathways leading to
apoptosis in AlA.

The high receptor expression found in the immune system
cells (PBMNC and DLN) reflects/mirrors the receptor status in
the inflamed tissue. It was reported earlier that peripheral
blood lymphocytes highly express the A;AR and reflect the
high receptor expression in the tumor tissue in patients with
colon carcinoma [34]. Other studies have shown that the
expression and function of adenosine receptors may be regu-
lated by proinflammatory cytokines that regulate receptor
expression via a negative feedback loop [35,36]. It may thus
be suggested that in the present study circulating levels of
TNF-o induced AAR upregulation in the synovia and in the
PBMNC and DLN cells. Upon IB-MECA treatment and the
downregulation of TNF-a levels, the receptor was also down-
regulated.

IB-MECA has been shown earlier to possess a potent anti-
cancer effect against melanoma colon and prostate carci-
noma. The treatment of autoimmune diseases with anti-cancer
agents is a well-established concept and includes chemother-
apy, cyclooxygenase-2 inhibitors, cytokines, antibodies
against cytokines, and so on [37-39]. IB-MECA can thus be
classified into the type of therapies that target mechanisms
common to both diseases.
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Conclusion

It may be concluded that IB-MECA — a small, highly bioavaila-
ble molecule, found to be safe and well behaved in phase |
human clinical trials [39] — may be a good drug candidate to
combat the manifestations of rheumatoid arthritis. In addition,
A3AR expression in the immune system cells may be sug-
gested as a biomarker that reflects the receptor status in
remote inflammatory sites.
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