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Amyloid β-protein oligomers and Alzheimer’s
disease
Eric Y Hayden1 and David B Teplow1,2*
Abstract

The oligomer cascade hypothesis, which states that oligomers are the initiating pathologic agents in Alzheimer’s
disease, has all but supplanted the amyloid cascade hypothesis, which suggested that fibers were the key etiologic
agents in Alzheimer’s disease. We review here the results of in vivo, in vitro and in silico studies of amyloid β-protein
oligomers, and discuss important caveats that should be considered in the evaluation of these results. This article is
divided into four sections that mirror the main approaches used in the field to better understand oligomers: (1)
attempts to locate and examine oligomers in vivo in situ; that is, without removing these species from their
environment; (2) studies involving oligomers extracted from human or animal tissues and the subsequent
characterization of their properties ex vivo; (3) studies of oligomers that have been produced synthetically and
studied using a reductionist approach in relatively simple in vitro biophysical systems; and (4) computational studies
of oligomers in silico. These multiple orthogonal approaches have revealed much about the molecular and cell
biology of amyloid β-protein. However, as informative as these approaches have been, the amyloid β-protein
oligomer system remains enigmatic.
Introduction
Alzheimer’s disease (AD) is a disease of aging that is
characterized in part by progressive loss of memory and
executive function, as well as aphasia, agnosia and diffi-
culties with the activities of daily living. These losses of
function are attributed to synaptic damage and neuronal
loss in the hippocampus, cerebral cortex and other brain
regions. A crucial unanswered question is, ‘what causes
this damage?’ Genetic studies have revealed a central role
for the amyloid β-protein (Aβ), as well as for the enzymes
responsible for the processing of the amyloid β-protein
precursor (APP) into Aβ. What remains unclear is which
forms of neurotoxic Aβ are most disease relevant and what
the structures and structural dynamics (formation pathways
and equilibria) of these forms are.
Our current understanding of AD is based in large

part on more than a century of study of amyloid plaques,
the extracellular deposits of fibrillar Aβ that are pathogno-
monic for AD. Advances in magnetic resonance imaging
and positron emission tomography imaging, the latter
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using amyloid-specific imaging agents, have revealed the
formation of amyloid deposits decades before clinical signs
of disease [1,2]. Considered together with the concentra-
tions of tau and Aβ in the cerebrospinal fluid (CSF), these
metrics serve as useful biomarkers for AD [3]. However,
the predominant working hypotheses of AD etiology now
focus upon Aβ oligomers. Although plaques and tangles
remain the most trusted identifiers and predictors of AD,
a clear paradigm shift has occurred that emphasizes the
primacy of Aβ oligomers in disease causation [4].
Is this paradigm shift warranted? Some would argue

‘no’, based on failures of recent clinical trials. However,
clinical trial design may be flawed by the selection of co-
horts that are too advanced in their disease state [5]. It also
is possible that metabolites of APP other than Aβ may be
pathogenic [6-8]. Determining the temporal involvement of
Aβ oligomers in human disease is crucial to elucidating the
etiology of AD and the involvement of oligomers in it. As
we shall discuss, this is very challenging.

What implicates Aβ oligomers?
Considerable evidence has accumulated over the last 10
to 15 years that oligomers play a central role in AD
pathogenesis. Experiments have shown that oligomers
are toxic entities in vivo [9] and in vitro [10], and that
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learning and memory deficits caused by oligomers in
transgenic mouse models can be reduced when oligomer
levels are decreased by accelerating fibril formation [11].
Early studies of a mouse model using the FAD APP Indiana
mutation (V717F) found that Aβ-induced neurotoxicity
does not require Aβ deposition in plaques [12]. Deficits in
synaptic transmission between hippocampal CA3 and CA1
cells, as measured by the slope of the excitatory postsyn-
aptic potential, were found prior to and independent of
plaque formation [12,13]. Furthermore, in animal models
of AD, animals that lacked brain amyloid plaques, but did
have oligomers present, displayed disease symptoms
[14]. Interestingly, these studies showed that even with
increased levels of the Aβ-degrading enzyme neprilysin, the
levels of two types of oligomers, Aβ trimers and Aβ*56
(dodecamers [15]), did not change, nor did the severity
of memory impairments [14]. The amount of oligomer
extracted from human AD brain tissue correlated better
with disease symptoms than did the number of amyloid
plaques [16,17]. These early findings in animal models are
consistent with recent findings that human brain contains
Aβ oligomers up to two decades prior to disease onset
[18]. While animal models may be imperfect, these studies
are still informative.
Indeed, preclinical stages of AD have recently been de-

scribed that involve the development of brain pathology
well before the clinical presentation of AD [19]. In CSF
samples from AD and control patients, concentrations of
oligomers of size 40-200 kDa (10 to 50 monomers) distin-
guished controls from AD patients and from patients with
mild cognitive impairment who converted to AD within
3 years [20]. In a study of plasma from AD and control
patients, oligomer levels declined over time [21], sug-
gesting they may have been sequestered in plaques in
the AD brain. Establishing the temporal relation between
oligomer formation and disease state is imperative if disease
mechanism and the involvement of oligomers in it are
to be determined.
Autosomal dominant APP mutations that result in early

onset AD and increased oligomer production support a role
for oligomers in AD in vitro [22]. The English (H6R) and
the Tottori (D7N) substitutions, both located at the peptide
N-terminus, and in both the Aβ40 and Aβ42 systems,
produce oligomer size distributions skewed to higher
order [22,23]. Importantly, the mutant forms of both native
and chemically stabilized oligomers are significantly more
toxic in assays of cell physiology and death [22]. Altering
assembly of Aβ at its earliest stages thus could be im-
portant in disease onset and progression in these familial
forms of AD [22,24].
The in vivo and in vitro studies just discussed support

the involvement of Aβ oligomers in disease pathogenesis.
However, contradictory studies also have been published.
A recent study points out the complex relation between
oligomer levels and cognitive impairment in a mouse
model in which new production of a mutant APP/Aβ
could be suppressed [25]. This study found that even with
significant amyloid pathology, when new APP/Aβ produc-
tion was lowered, there was a rapid improvement in both
long- and short-term memory despite unchanged amounts
of oligomeric Aβ. Another recently examined mouse model
revealed that if APP expression levels remained normal,
and extracellular Aβ40, Aβ42 or both together were highly
expressed, the mice developed amyloid pathology but stable
cognitive performance before and after amyloid plaque
formation [7]. More studies are needed to establish a
consensus (if this is even possible).
Aβ is enzymatically cleaved from the transmembrane

protein APP by β- and γ-secretase and is released ex-
tracellularly in lengths ranging from approximately 37
to 43 amino acids. Aβ40 is the most abundant species
and exists in an approximately 10:1 concentration ratio
with Aβ42 [26]. The structure of Aβ in vivo remains
unknown, though in vitro evidence suggests it exists in
a largely disordered form that occasionally forms partially
folded structures [27-29]. The Aβ sequence is amphipathic,
with the first 28 amino acid residues containing both hydro-
phobic and hydrophilic groups, whereas the remaining resi-
dues all are apolar and uncharged [30]. In AD brains,
as well as in some cognitively normal brains, Aβ is found in
the form of amyloid fibers. These fibers have a characteristic
cross-β sheet core secondary structure.
Aβ is a member of the class of proteins known as in-

trinsically disordered proteins (IDPs) – proteins that lack
a stable tertiary structure in physiological conditions.
IDPs are known to have many binding partners due to their
flexibility of conformation [31]. Importantly, in many of
these cases, and particularly so for amyloidogenic proteins,
monomeric units interact non-covalently to form oligo-
mers [32,33]. Many different oligomeric forms of Aβ
can exist simultaneously in a dynamic equilibrium. This
lack of a native fold results in Aβ occupying a large
conformational space. This space is highly dependent
on environment [34], making the oligomer states very
sensitive to perturbation by the procedures used for
analysis. Figure 1 illustrates different low-order oligomer
states and how the simplest oligomer, the dimer, and
progressively larger and structurally diverse oligomers,
may be formed from smaller subunits.

Challenges for oligomer study
A number of reports have pointed out that one of the
most common methods for defining oligomer distributions,
SDS-PAGE, may produce misleading results [24,35].
SDS-PAGE or Western blotting are simple methods
for detecting the apparent molecular weights (Mr) of
proteins, but they cannot reveal what the distribution
of oligomer sizes was prior to electrophoresis [36]. For
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Figure 1 The diverse nature of oligomers. Oligomeric assemblies ranging from two to six monomers. Each sphere represents a monomeric
unit. Monomers (grey), dimers (red, diagonal lines) and trimers (white) can combine in different combinations comprising up to six monomers.
Each small oligomer also could be a building block for larger oligomers. For simplicity and clarity, we only display basic units up to trimer. We
note that the assemblies shown here, and others, are in rapid equilibrium, one that can be perturbed easily during experimental studies.
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example, Watt and colleagues compared the Aβ in
samples from human cortical tissue using SDS-PAGE,
xMAP multiplex immunoassay and surface enhanced laser
desorption/ionization time-of-flight mass spectrometry
(MS) [35]. Oligomers were not detected with MS, though
they were observed using SDS-PAGE, and, surprisingly,
monomer and dimer levels increased with increasing SDS
concentration in the sample buffer. Bitan and colleagues
earlier reported that dimers and trimers could be induced
to form by SDS [24,37]. Determining the presence and size
distribution of oligomeric assemblies in biologic fluids and
tissues using techniques involving SDS thus must be inter-
preted with the understanding that artifactual dissociation
and formation of oligomers can occur.
Similarly, size exclusion chromatography can be used

to fractionate extracts of Aβ, but the distribution and
abundance of peaks that elute may not accurately repre-
sent the species present prior to analysis. When the sam-
ple is injected into the column, retardation of monomers
and low-order oligomers perturbs the equilibrium of the
original sample. Large oligomers dissociate to re-establish
equilibria with smaller species and monomers [38]. Equi-
librium is continuously being re-established, unless and
until a stable oligomer species is produced. The result, as
with techniques involving SDS, is that artifactual oligomer
distributions may be observed.
It is crucial to determine if the oligomerization state

within cell cultures or animal extracts is the same at the
beginning of an experiment and at the end of it. When
extracting oligomers and subsequently testing their ac-
tivity, oligomers may aggregate further or dissociate on
the timescales of many experiments. For example, Aβ
oligomers extracted from the cerebral cortices of AD
subjects have been reported to be dimers. These dimers
were found to inhibit long-term potentiation (LTP), en-
hance long-term depression (LTD) and reduce dendritic
spine density in the normal rodent hippocampus [39].
However, subsequent investigation of the methods used
in these studies revealed that the effects previously at-
tributed to dimers were, in fact, caused by the aggrega-
tion of the ‘dimers’ into protofibrils [40]. A study using
the APP J20 transgenic mouse – bearing the Swedish
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and Indiana mutations and displaying increased β-secretase
cleavage and increased Aβ42/Aβ40 concentration ratios
[13] – revealed the presence of SDS-stable monomers
through tetramers of Aβ throughout the life of the mice
[41]. The simultaneous presence of monomers through
tetramers makes it challenging to attribute synaptotoxicity
in vivo to a single Aβ species.
The isolation of cellular Aβ may include a variety of tis-

sue homogenization, cell lysis and extraction techniques
(some including detergents), many of which change the
environment and concentration of Aβ and its distribution
of oligomers [17]. Even when care is taken to employ
experimental conditions thought least likely to alter the na-
tive oligomerization process of Aβ, one cannot guarantee
that some perturbation of the process does not occur.
Furthermore, recent findings have pointed out that

oligomers can be formed in the fluid phase not only by
monomer accretion, or coalescence of monomers or small
oligomers, but also through secondary nucleation [42] on
fibril surfaces. Secondary nucleation is a rare event, be-
cause its critical concentration of 10 nM is lower than that
for oligomerization in the fluid phase. Nevertheless, an
accurate system description must consider this process.

Oligomer characterization in vivo1

Several groups have developed ‘anti-oligomer’ or ‘anti-
amyloid’ antibodies that are reported to recognize olig-
omers but not fibrils [43-46]. Key questions about these
antibodies are ‘to what epitopes do they bind?’ and
‘with what affinity?’ Detection of ‘Aβ oligomers’ by
immuno-electron microscopy (EM) with an antibody
to an oligomer mimetic, ‘oligomer-specific polyclonal
antibody’, [47] has been reported in both APP trans-
genic mice and AD brain [48]. It remains unclear if
these studies, utilizing a single oligomer-selective anti-
body, are actually detecting Aβ oligomers, another Aβ
assembly, or simply cross-reacting with other proteins.
Antibodies developed thus far have been useful in dis-
tinguishing oligomeric species that exhibit fibril-like
folds versus oligomers that do not [44]. Details of Aβ
oligomer antibodies are summarized in supplementary
Table 1 of Benilova and colleagues [49] and a discussion
of caveats in immunological studies of Aβ oligomers may
be found in [50].
Experimental data unequivocally demonstrate that low

femtomolar levels of Aβ and other protein oligomers can
affect neuronal synapses in culture and in hippocampal
brain slices (for example, by attenuation of LTP, induction
of LTD, or dendritic spine loss) [9,51-53]. Similarly, acute
effects of exogenous oligomeric assemblies on memory
and hippocampal LTP in rodents have been reported
in vivo (reviewed in [54]). The apparent potency of ex-
ogenously applied oligomers supports a role for oligo-
mers in AD. An Arctic kindred that develops a familial
form of AD has a mutation within Aβ (E22G) that leads to
increased amounts of protofibrils [55]. The Arctic mutation
has been studied in a mouse model [56,57], and recent
studies have reported that reducing levels of the enzyme
responsible for APP cleavage into Aβ (β-site APP cleaving
enzyme) can prevent cognitive decline and reduce tau
accumulation and phosphorylation in the model [58].
Photochemical cross-linking and SDS-PAGE showed that
the Arctic form of Aβ produces greater numbers of Aβ40
heptamers through nonamers, and more Aβ42 heptamers
[59]. More recent studies examined the ΔGlu22 mutant
of Aβ, found in an AD kindred in Osaka, Japan [60]. This
Osaka mutation increased oligomer formation in vivo.
In vitro studies of the Osaka forms of Aβ40 and Aβ42
revealed that the Glu22 deletion resulted in increased
dodecamer and octadecamer formation [61].
A very interesting animal model of AD is that of the

rodent Octodon degus, which naturally produces oligomers,
develops Aβ plaques and shows tau phosphorylation.
O. degus has a sequence that differs from human Aβ by only
a single amino acid, H13R, whereasMus musculus has three
differences relative to human Aβ (R5G, Y10F and H13R).
Interestingly, in the O. degus model, age-related increases in
both Aβ oligomers and tau phosphorylation are observed.
These increases occur concomitantly with decreases in
spatial and object recognition, postsynaptic function
and synaptic plasticity [62].
The neurotoxic effects of synthetic Aβ oligomers have

been reported to be greater than those of fibrils, with
toxicity in vitro typically observed at low micromolar
concentrations [63-65]. In addition, Aβ42 has been ob-
served to reduce neuronal viability to a greater extent
than Aβ40 [63]. Aβ42 thus seems to be most toxic, but
both Aβ40 and Aβ42 form oligomers, and through distinct
mechanisms [37]. Cell-derived oligomers are found to
be toxic at low nanomolar concentrations [66,67]. We
also know that fibrils accumulate in large amounts in
the AD brain and that oligomers are likely present at
low concentrations. This suggests that if acute neurotoxic
effects of oligomers contribute to the disease process, they
must do so potently. It is important to consider whether
the oligomers formed in vivo are the same as oligomers
formed by synthetic Aβ in vitro. Interestingly, there are
reports that brain- or cell-derived Aβ oligomers are
more potent than synthetic oligomers [68]. While it is
possible that the dynamic nature of oligomers is different
when comparing physiologically produced versus synthetic
material, it is also possible that post-translational modifi-
cations could cause different behaviors. Factors present in
biological systems could increase the toxicity of physiolo-
gically produced material. It is conceivable that factors
also exist that could do the opposite. Ikeda and colleagues
tested the ability of CSF to inhibit Aβ oligomerization [69].
They found that CSF from cognitively normal subjects
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inhibited oligomerization to a greater extent than did
CSF from AD patients. However, the study did not
examine oligomerization of Aβ in CSF per se, nor did it
address oligomerization in the brain parenchyma or
intracellularly in neurons.

Ex vivo studies of oligomers extracted from
human and animal tissue
Oligomers have been detected in brain samples at con-
centrations as low as 40 pg/ml, though these studies
did not detect oligomers in the CSF, potentially due to
the very low concentration present [70,71]. In the ELISA
system employed, the same antibody used to capture the
assembly was used to detect it. In theory, any oligomer
of order 2 or greater thus could be quantified. Such
ELISAs have been shown to detect oligomers. However,
competition by monomer could skew the results, yielding
artifactually low oligomer concentrations, depending on the
oligomer/monomer number concentration ratio. Further,
this ELISA design cannot discriminate among oligomers
of different sizes, and thus determination of the oligomer
size distribution is difficult to accomplish. Oligomers
composed of different numbers of subunits will present
different numbers of epitopes, resulting in differences in
the avidity of different oligomers for the same solid-phase
immunoglobulin.
Using the Tg2576 mouse model containing the Swedish

APP K670N/M671L mutation [72,73], a correlation was
found between memory deficits and the amounts of Aβ
nonamers and dodecamers (Aβ*56) extracted from the
forebrain [15]. Interestingly, these extracted oligomer
preparations could be injected into the lateral ventricles of
the brains of young rats, causing memory impairments,
as determined using a Morris water maze. These data
support the hypothesis that oligomers are sufficient to
cause memory deficits.
There also is evidence that monomers through tri-

mers derived from the Chinese hamster ovary cell line
7PA2 (which is stably transfected with the 751 amino
acid isoform of APP containing the V717F mutation)
decreased hippocampal synapse density in the mouse
brain at a critical time during memory consolidation
[74]. A study that extracted oligomers from the frontal
cortex of human postmortem brain tissue into three
fractions, soluble (in Tris buffered saline), detergent sol-
uble (in Tris buffered saline with Tween 20), and insoluble
(in guanidine-HCl), reported the predominant oligomeric
Aβ assemblies were pentamers, decamers, and dodecamers,
as detected by the ‘NU’ antibody cocktail developed against
Aβ-derived diffusible ligands (ADDLs). Oligomer concen-
tration distinguished between early onset AD patients and
late onset AD patients [75].
Recently, an intriguing discovery was made that linked

Aβ to the mammalian prion protein (PrP). Synthetic Aβ
oligomers were found to bind with membrane-associated
PrPC, the normal cellular form of PrP, and this interaction
blocked long-term potentiation in mouse hippocampal
slices [52]. This finding was supported using oligomers
extracted from the human AD frontal or temporal cortex
[76]. Larson and colleagues used coimmunoprecipitation
to find that human- and mouse-extracted SDS-stable Aβ
dimers and trimers interact with PrPC at neuronal dendritic
spines in vivo and in vitro [77]. This interaction involves
complex formation between PrPC and Fyn (a membrane-
associated tyrosine kinase important in signaling), resulting
in the activation of the kinase [77]. Furthermore, oligomers
extracted from the AD brain caused dendritic spine loss
in hippocampal neurons, and lactate dehydrogenase re-
lease from primary cortical cultures. Both of these effects
depended on the presence of PrPC and Fyn [78].

Studies of oligomers in vitro
Oligomers are formed in the laboratory using chemically or
recombinantly produced Aβ and any of a number of recipes
that specify particular solvent conditions, incubation times,
temperatures and agitation conditions. Physiologic condi-
tions cannot be duplicated in the laboratory because no
one knows formally what the milieu of Aβ is in its different
locations (for example, intracellularly in the cytosol or in a
specific organelle, or extracellularly in CSF, plasma, saliva,
and so on). PBS is used as a proxy for the Aβ milieu,
and a poor one at that, but at least the use of PBS allows
comparison of experimental results among many different
laboratories. Temperature (37°C) is easily mirrored in vitro.
Aβ can be found at low nanomolar or high picomolar
concentrations in vivo, but in vitro studies often are per-
formed at micromolar concentrations to enable monitoring
of assembly and accelerate the process [79]. Physiologic pH
is generally considered to be close to neutral (7 to 7.4), but
many experiments are done at different pHs. Acidic pH
favors fibril formation [43] or rapid aggregation, especially
if the pH is near the pI of Aβ (approximately 5.4) [80]. It is
important to emphasize that physiologic Aβ concentration
and pH vary, depending on which compartment in the
body Aβ is found. In late endosomes and lysosomes,
acidic pH and higher peptide concentration may exist
[81]. At synapses, different conditions may exist [82],
including those involving high metal concentrations [83].
Ionic strength also has strong effects on fibril assembly
rates [43].
Each recipe for producing oligomers can yield different

oligomer types, including ADDLs [10], globulomers [84],
oligomers <4 nm [47], oligomers 4 nm to 10 nm in diam-
eter [85], β-amyballs [86], amylospheroids [87], or annular
protofibrils [45] (for a review, see [88]). The oligomers pro-
duced using these procedures can continue aggregating
during experiments. Importantly, these techniques do
not produce a homogeneous preparation of one oligomer
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species, but rather a mixture of oligomers in equilibrium.
To address this problem, some have taken the approach
of ‘trapping’ oligomers in specific states through chemical
cross-linking.
A benefit of studying synthetic oligomers is that they are

pure in the sense that no contaminating factors are present,
a situation that may not exist using oligomers extracted
from cells, tissues or biological fluids. Such factors can
affect the behavior of the oligomers in significant ways. Of
course, establishing the similarity of the synthetically pro-
duced material to that obtained in vivo is crucial, but may
or may not be possible [50]. The ability to rigorously define
the oligomer under study, in terms of the number of
monomers, the relative abundances of the different
oligomers in the preparation, as well as the biophysical,
structural and biological properties of each of the oligomers
present, is arguably just as important.
A successful approach to enable rigorous examination

of oligomer structure and toxicity has been photo-induced
cross-linking of unmodified proteins (PICUP) (for a review,
see [89]). This technique circumvents the complication of
metastability by using rapid, zero-length, in situ chemical
cross-linking to ‘freeze’ the oligomer population, allowing
quantitative determination of the oligomer size frequency
distribution using SDS-PAGE. This technique has been
used to produce stable Aβ40 oligomers of defined order.
This enabled determination of the secondary structure,
morphology and toxicity of monomers through tetramers
[64]. Circular dichroism spectroscopy showed a direct cor-
relation between oligomer order and β-sheet content [64].
Aβ assembly morphology, determined using electron
microscopy and atomic force microscopy (AFM), revealed
a direct, but non-linear, relation between oligomer order
and size. Dimers were approximately twice as large as
monomers, but trimers and tetramers were larger than
would have been predicted for three or four monomers,
respectively. Oligomer toxicity in vitro followed a rank
order of tetramer > trimer > dimer >monomer. Importantly,
consistent with the non-linear relation between oligomer
order and size, dimers were approximately three-fold more
toxic than monomers, whereas trimers and tetramers were
approximately eight-fold and approximately 13-fold more
toxic, respectively [64].
Oligomers have been studied using ion mobility

spectrometry coupled with MS (IMS-MS). Aβ40 formed
dimers and tetramers, whereas Aβ42 formed dimers,
tetramers, hexamers, and dodecamers [90]. This study
revealed that the primary oligomer observed for Aβ40
was a tetramer, whereas Aβ42 formed hexamers and
dodecamers that could convert to a structure capable
of rapid monomer addition.
IMS-MS also revealed that the Tottori (D7N), Flemish

(A21G) and Arctic (E22G) forms of Aβ displayed different
oligomer distributions [23]. Wild-type Aβ40 only formed
monomers through tetramers. However, the Tottori Aβ40
mutant also formed hexamers. Dodecamers were the
predominant species formed by [D7N]Aβ42. [A21G]Aβ42
predominantly formed hexamers or smaller oligomers,
whereas [E22G]Aβ40 formed decamers and dodecamers,
which were not observed in the [D7N]Aβ42 sample. While
there appears to be some correlation between oligomer
distribution and disease pathology, the data extant do not
make clear a definitive mechanistic connection [23].
Aβ has been shown to interact directly with phospho-

lipid bilayers. In addition, membrane insertion, ion chan-
nel formation, dysregulation of intracellular calcium levels
and mitochondrial depolarization all have been observed
(for a review see [91]). Studies in model membrane systems
comprising planar lipid membranes and liposomes have
shown that anionic phospholipids are essential for Aβ
membrane binding and insertion [92,93]. Further, voltage-
dependent and -independent single channel ion conduc-
tances have been measured for annular Aβ oligomers.
These conductances are hypothesized to correlate with
the number of monomers per oligomer [94,95]. Evidence
suggests a heterodisperse population of Aβ oligomers can
insert into membranes [96]. An annulus geometry has been
determined for the AD-linked Aβ40 Arctic mutant (E22G).
This was done by Superose-6 fractionation of the pep-
tide assemblies that form normally. The lowest molecu-
lar weight fraction was examined by transmission EM
and contained many annular species. Their outer diameters
were 7 nm to 10 nm and their inner diameters were 1.5 nm
to 2.0 nm. The relative molecular mass was 150,000 to
250,000 (40 to 60 Aβ molecules) [97,98].
Data produced using chemically synthesized or glutar-

aldehyde cross-linked oligomers of Aβ40 or Aβ42 generally
agree with observations from experiments using PICUP
cross-linked oligomers [99]. Although the oligomers were
not isolated in this study, oligomer size and β-sheet content
were directly proportional [99]. Pore formation was max-
imal after 2 to 3 days of incubation, and it correlated with
toxicity as measured by human neuroblastoma SH-SY5Y
cell death. Prangkio and colleagues performed multivariate
analyses of the oligomer populations and showed oligomers
from tetramers to tridecamers formed pore structures in an
artificial membrane bilayer and contributed to cytotoxicity
[99]. On the other hand, this analysis suggested that mono-
mers, dimers, trimers, and oligomers >210 kDa, did not
contribute substantially to either pore formation or toxicity
of SH-SY5Y cells [99].
Recent work using total internal reflection fluorescence

microscopy has allowed visualization of individual Aβ
species on the surface of murine hippocampal neurons,
allowing the determination of the oligomerization state
of Aβ on the membrane [100]. Oligomers preferentially
interacted (relative to monomers) with these membranes,
even at physiologically relevant nanomolar concentrations,
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and these oligomers become immobilized on the cell sur-
face [100]. Membrane disruption has been suggested as a
mechanism by which Aβ might inflict damage to neuronal
cells. This study supports possible toxic membrane dis-
ruption by demonstrating membrane binding, an obligate
first step in such a process.
Without atomic level resolution of oligomer structure,

designing therapeutic drugs specifically targeting one or
more oligomers remains a challenge. Using an 11-residue
segment of αB crystallin, a peptide that forms amyloid
fibers, albeit more slowly than Aβ, Laganowsky and
colleagues recently solved a crystal structure that revealed a
hexameric cylinder with a β-barrel-like structure [101]. This
structure was termed ‘cylindrin’ and was postulated to be a
structure that could be formed by many different amyloid
proteins, including Aβ [101]. Because αB crystallin forms
amyloid fibers more slowly than do Aβ or islet amyloid
polypeptide, it was hypothesized that its oligomeric state
may be trapped before the onset of fibril formation, allow-
ing cylindrin formation. Indeed, αB crystallin formed
an oligomer with many amyloid properties, including a
β-sheet-rich structure, cytotoxicity and recognition by the
oligomer-specific antibody A11. Importantly, Goldschmidt
and colleagues used the Rosetta–Profile method to deter-
mine if other amyloid protein segments could be threaded
onto the cylindrin structure [102]. This cylindrin comprises
three units. In the Aβ case, each unit is an anti-parallel β
sheet formed by two peptide segments, 26–40 and 28–42.
This observation does not mean that the structure of
an Aβ toxic species is a cylindrin-like fold. However, it
is intriguing that Aβ42 readily forms oligomers of
order 6 [37,90]. While the cylindrin model may or may
not be relevant to AD, its determination is progress toward
solving an oligomer crystal structure. The relation of cylin-
drin structures to previously observed annular oligomers
[95] remains unclear.

Oligomers characterized in silico
In silico (computational) studies can provide insights into
the structure, conformational dynamics, thermodynamics
and kinetics of amyloid protein assembly, including those
of Aβ oligomers. Early discrete molecular dynamics (DMD)
studies of Aβ40 aggregation were done by Peng and
colleagues using a two-bead peptide model with Gō in-
teractions (Gō interactions favor native-like contacts)
[103]. They based these simulations on the Aβ40 structure
in a membrane-like environment. Peng and colleagues
showed that molecules assemble into fibril-like aggregates
with parallel, in-register organization.
Folding and dimer formation of Aβ40 and Aβ42 were

studied by Urbanc and colleagues using a combination of
DMD and all-atom molecular dynamics (MD) simulations
[104]. The explicit solvent MD method was applied to es-
timate the free energies of different dimer conformations
of both Aβ40 and Aβ42. Previous simulations suggested a
planar β-sheet dimer conformation [105], but Urbanc and
colleagues showed that all planar β-sheet dimers had higher
free energies than did the corresponding monomeric states,
and that there was no significant free energy difference
between Aβ40 and Aβ42 dimers. This finding corroborated
the experimental observation of assembly differences
between Aβ40 and of Aβ42 [37] and suggested that dimer
conformations other than planar β-sheets are responsible
for experimentally observed differences in oligomerization.
At the molecular level, the data of Urbanc and colleagues
emphasize the importance of addressing hydrogen bond
interactions and other enthalpic properties in the study of
Aβ oligomer formation and stability.
Oligomer formation by Aβ40 and Aβ42 was further

studied using DMD and a four-bead protein model incorp-
orating hydrogen bond and amino acid-specific interactions
[106]. Initially, the separated Aβ peptides folded into col-
lapsed coil structures and then assembled into oligomers of
different sizes. Interestingly, the respective Aβ40 and Aβ42
size distributions differed substantially. Aβ42 formed more
pentamers than did Aβ40, and Aβ40 formed significantly
more dimers than did Aβ42. These results showed that the
effective hydrophobic interactions of I41 have a significant
impact on Aβ42 oligomer formation [107]. Figure 2 shows
the structure of one of the Aβ40 hexamers determined in
these studies.
Simulations with fully atomistic MD using explicit water

also have been performed [108]. Prior studies had revealed
a turn at Gly37–Gly38 in Aβ42 and suggested its import-
ance in pentamer formation [106]. In the new studies, a
large ensemble of DMD-derived Aβ40 and Aβ42 mono-
mers and dimers were the starting conformers used in
subsequent all-atom analyses. These analyses showed
that the conformers were slightly larger and had a lower
β-strand propensity, but similar turn propensity, com-
pared to predictions by DMD [108].
Ma and colleagues studied four models of Aβ dodecamers

using MD and a TIP3P water box with sodium ions
[109]. Orthogonal β-sheets appeared to be the most stable
conformation for Aβ dodecamers, and the exposure or
shielding of Met-35 was critical in controlling fibril
formation [109]. The validity of these in silico findings
was supported by prior experimental studies showing
that Met35 oxidation, to its sulfoxide or sulfone form,
strongly inhibited Aβ assembly [110,111]. Informed by
experiments that showed a Phe19Pro substitution elimi-
nated ion conductance in a planar lipid bilayer, Connelly
and colleagues performed MD simulations that pre-
dicted a channel-like octadecamer with a collapsed pore
[112]. AFM measurements did indeed reveal a collapsed
pore. Further studies of planar lipid bilayers confirmed
that a Phe19Pro substituted Aβ42 inhibited channel
conductance [113].

http://alzres.com/content/5/6/60


Figure 2 Simulation of amyloid β-protein hexamer formation. Formation of an amyloid β-protein (Aβ)40 hexamer from a tetramer (lower left)
and a dimer (upper right). β-strands are depicted as yellow ribbons, turns as light blue ribbons and random coils as white ribbons. The N-termini
are represented by red spheres. The C-terminal V39 and V40 are represented by orange spheres. Adapted with permission from [107], copyright
2010 American Chemical Society.
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Summary
We have briefly described here the use of antibodies to
detect Aβ oligomers in transgenic animal and human
brains, animal models with increased oligomer formation,
and AD mutations within the Aβ coding region of APP
that may result in changes to oligomer distributions
and concentrations. Ex vivo studies have examined
oligomers produced physiologically and determined their
abundance, toxicity, and location in tissues. In vitro studies
have revealed a wide variety of oligomer structures and
have determined the toxic properties of a number of
these species. Computational studies have simulated the
conformational dynamics of many of the structures
observed experimentally and have provided atomistic
structural details enabling the experimental testing of hy-
potheses regarding oligomer formation mechanism(s).
This combination of methods, and new methods to be
developed in the future, must be integrated into a
coordinated, multi-disciplinary approach if the molecular
biology of Aβ and its metastable oligomers is to be
elucidated.
We have emphasized that oligomers are extremely

dynamic (see [50]), thus finding them in vivo or studying
them in vitro requires careful control of experimental
conditions so that the native state characteristics of the
oligomer populations are preserved. A caveat is that the
native state characteristics may be impossible to determine.
Studies of α-synuclein, another IDP, illustrate the diffi-
culty in preserving the native (physiological) state of
non-covalently linked protein oligomers. Substantial
prior work has supported the widely held notion that
α-synuclein normally exists as a statistical coil in vitro
and in vivo [114-116]. However, Bartels and colleagues
recently argued that α-synuclein derived from neuronal
and non-neuronal cell lines, brain tissue or human cells, if
extracted under non-denaturing conditions, is an α-helical
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tetramer [117]. This has been a controversial idea
[118,119]. In fact, the Aβ oligomer field continues to
produce ever greater numbers of controversies. The
resolution of these controversies depends on the field
moving away from descriptive science and much closer
to mechanistic science. In doing so, one can be hopeful
that the information thus obtained will guide future
development of effective therapeutic agents.

Endnote
1 In vivo is used here to describe experiments carried

out in a live animal, whereas ex vivo is used to describe
experiments that use tissues collected after death.
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