
The locus coeruleus and norephinephrine

Th e locus coeruleus (LC) is the major subcortical site for 

the synthesis of norepinephrine (NE) [1]. Th e LC prefer-

entially projects to the thalamus, hippocampus, the 

frontal and entorhinal cortices and, to a minor extent, 

most other brain regions. Due to its extensive innervation 

of multiple forebrain regions and the widespread distri-

bution of noradrenergic receptors, the noradrenergic 

system is involved in many behavioral and physiologic 

processes. Th e role of the LC noradrenergic system in 

cognitive processes, arousal and wakefulness is covered 

in several extensive reviews [2-6]. In addition to declining 

with normal aging, altered NE transmission has been 

reported in major brain disorders in psychiatry (depres-

sion, attention defi cit disorder, Tourette’s, psychosis, 

post-traumatic stress disorder), neurology (epilepsy, 

Parkinson’s, Alzheimer’s disease (AD)) and sleep [7,8].

Locus coeruleus loss in Alzheimer’s disease

Extensive LC degeneration is nearly universal in AD 

[9-13] and is among the earliest pathologies [11,14,15], 

with LC neuropathology detectable as early as 10  years 

before neurocognitive signs [16-18]. Alterations in NE 

have long been known to be linked to cognitive, mood 
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and neuropsychiatric symptoms [6,19-24]. A number of 

studies have also demonstrated signifi cant correlations 

between LC cell death (or decreased cortical NE levels) 

and severity and duration of dementia in AD [25,26]. 

Neurofi brillary changes in the LC occur in prodromal 

stages of AD (that is, mild cognitive impairment (MCI)), 

and even in some young, cognitively normal individuals 

[16-18], preceding amyloid-beta (Aβ) deposition. How-

ever, whether the LC represents the initial site of patho-

logy or refl ects a nonspecifi c response to brain insults is 

still under debate [27].

An additional complication is that compensatory 

changes in the degenerating noradrenergic system appear 

to occur in AD; despite decreases in tissue forebrain NE 

in AD, surviving LC neurons show increased abundance 

of mRNA for tyrosine hydroxylase, the rate-limiting NE 

biosynthetic enzyme, sprouting of dendrites and axonal 

projections [28], and increased cerebrospinal fl uid levels 

of NE are observed in AD patients [29-32]. Th e know-

ledge gaps present in these areas highlight the need for 

additional investigations into the mechanism by which 

LC loss contributes to AD.

Locus coeruleus and norepinephrine in AD 

pathogenesis: preclinical studies

Th e strong correlation between LC degeneration, NE 

depletion and severity of AD in patients has prompted 

multiple studies of the contribution of LC dysfunction to 

AD progression through the use of animal models. Th e 

primary tool for studying the eff ects of LC degeneration 

and NE depletion in vivo is the neurotoxin N-(2-

chloroethyl)-N-ethyl-2-bromobenzylamine (dsp-4), which 

reliably lesions the LC while leaving other aminergic 

systems intact. Transgenic mice that overexpress human 

amyloid precursor protein (APP) with familial Alzheimer 

mutations recapitulate many aspects of AD neuro-

pathology and cognitive defi cits, and have been used 

extensively to study AD. However, most of these mouse 

lines do not show the frank LC degeneration that occurs 

in human AD. To determine the functional consequences 

of LC loss in AD, therefore, several laboratories have 

used dsp-4 to lesion LC neurons in these transgenic mice.

In general, dsp-4 lesions of the LC exacerbate AD-like 

neuropathology and cognitive defi cits, suggesting that LC 

degeneration plays a causal role in AD progression. For 

example, the fi rst study to use this approach showed that 

dsp-4 lesions of the LC in APP23 mice resulted in 

increased Aβ deposition, neurodegeneration, neuronal 

loss, cognitive defi cits and microglial activation, and 

reduced cerebral glucose metabolism [33]. Importantly, 

the eff ects of dsp-4 were confi ned to forebrain areas that 

received projections directly from the LC, while brain 

regions that receive noradrenergic innervation from non-

LC cell groups were unaff ected. APP/presenilin-1 (PS1) 

mice treated with dsp-4 displayed severe loss of 

norepinephrine transporter (NET) in the LC and cortex, 

along with a loss of noradrenergic innervation [34]. 

Lesioning of the LC induced accelerated amyloid depo-

sition and neuron death with age, and more severe 

defi cits in spatial memory compared with vehicle-treated 

animals [34]. Th e mechanism underlying the increased 

amyloid deposition appears to be related to reduced 

clearance, as occurs in sporadic AD [35], due to the 

inhibition of Aβ
1-42

 (Aβ42) phagocytosis by microglia 

rather than an infl uence on APP production or proces-

sing [36]. NE has several strong infl uences on microglial 

function, and in general suppresses the production of 

proinfl ammatory cytokines and promotes the production 

of anti-infl ammatory molecules. Th us, it is not surprising 

that dsp-4 treatment also exacerbates the neuroinfl am ma-

tory response in multiple brain regions of APP/PS1 mice 

[36,37]. Interestingly, a recent study reported that in 

addition to increased Aβ deposition, dsp-4 lesions of the LC 

in APP/PS1 mice also resulted in olfactory defi cits, another 

common and early pathology seen in AD patients [38].

Among the questions raised by these fi ndings, an 

important issue with therapeutic implications is whether 

the eff ects of LC lesions in AD mouse models are due 

solely to the loss of NE itself, the loss of co-transmitters 

in LC neurons, collateral damage from the neuro de-

genera tive process itself, or some combination thereof. 

To help resolve these issues, we recently crossed APP/

PS1 mice with dopamine β-hydroxylase knockout (DBH–/–) 

mice that lack the ability to synthesize NE but have intact 

LC neurons [39]. While APP/PS1 and DBH–/– single-

mutant mice each displayed moderate hippocampal long-

term potentiation (LTP) and spatial memory impair-

ments, the two mutations had an additive eff ect, resulting 

in double mutants with severely compromised LTP and 

maze per for mance. Somewhat surprisingly, the genetic 

loss of NE had no apparent eff ect on AD-like neuro-

pathology in the double mutant. Nondegenerative loss of 

NE produced by Ear2 knockout, which prevents the 

development of most LC neurons, also exacerbated LTP 

and memory defi cits but had no eff ect on plaque depo-

sition in APP/PS1 mice. However, dsp-4 worsened 

neuropathology in the APP/PS1, DBH–/– double mutant. 

Combined, these results indicate that the LC neuronal 

loss contributes to distinct aspects of AD; loss of NE itself 

impairs synaptic plasticity and cognitive performance, 

while the physical process of LC neuron degeneration 

exacerbates AD-like neuropathology.

In summary, combining expression of familial AD 

mutations with LC lesions or NE defi ciency appears to 

more closely recapitulate the neuropathological and 

cogni tive symptoms of AD compared with mutant APP 

expression alone, and implicates LC loss as a crucial 

component of AD.
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Neuroinfl ammation is a key mechanism linking loss 

of locus coeruleus neurons and norepinephrine 

innervation with AD

Recent studies provide insights into the mechanisms by 

which LC dysfunction and NE loss facilitate AD patho-

genesis. Th ere is growing evidence suggesting that the 

infl ammatory response induced and/or augmented by LC 

degeneration is a key mechanism contributing to the 

initiation and progression of AD pathogenesis. Microglia, 

astrocytes and endothelia are among the major targets of 

NE, and, under normal conditions, these cells control the 

delicate balance of the infl ammatory response. In general, 

NE is an anti-infl ammatory molecule; acting via β-

adrenergic receptors, NE suppresses the expression of 

multiple proinfl ammatory genes, including major histo-

compatibility complex class II, TNFα, inducible nitric 

oxide synthase and IL-1β, while simultaneously promot-

ing the expression of anti-infl ammatory molecules such 

as NF-κB, inhibitory IκB, heat shock protein-70 and 

chemokine monocyte chemotactic protein-1 in astro-

cytes and microglia [7,40]. Th at NE defi ciency results in 

undesirable proinfl ammatory eff ects is therefore not 

surprising.

One of the fi rst pieces of evidence connecting LC 

degeneration and neuroinfl ammation in an AD model 

was reported by Heneka and colleagues [41]. Injections of 

Aβ42 in the cortex of rats induced severe cortical 

infl ammation and the expression of several pro-

infl ammatory genes  – including inducible nitric oxide 

synthase/nitric oxide synthase-2, IL-1β and IL-6 – within 

hours. Th is neuro infl ammation was profoundly exacer-

bated when LC neurons were lesioned with dsp-4 prior 

to the cortical injection of Aβ42
.
 In addition, dsp-4 

pretreatment increased inducible nitric oxide synthase 

expression solely in neurons rather than in microglial 

cells, more accurately replicating the expression pattern 

seen in AD patients [41]. Augmented forebrain microglial 

and astroglial acti va tion and proinfl ammatory gene 

expres sion that coincide with the development of other 

AD-like neuro pathologies such as Aβ plaques were also 

obtained using dsp-4 and the APPV171 and APP/PS1 

transgenic mouse models of AD [36]. LC lesions 

profoundly increased the Aβ plaque load, brain 

infl ammation and spatial memory defi cits concurrently 

in APP23 transgenic mice. In addition, dsp-4 treatment 

was associated with a switch in microglial cytokine ex-

pres sion from a neuroprotective anti-infl ammatory profi le 

to a proinfl ammatory and neurotoxic profi le [33,36,42].

Because NE promotes microglia-mediated degradation 

and phagocytosis of Aβ in cell culture [43], another 

deleterious eff ect of LC degeneration on the neuro-

infl ammatory response is the dysfunction of cellular 

machinery involved in Aβ metabolism and clearance. For 

example, in V717F APP transgenic mice, dsp-4 lesions of 

the LC produce a fi vefold increase in Aβ plaques that is 

accompanied by microglial and astroglia activation and 

decreased expression of the Aβ plaque-degrading enzyme, 

metallopeptidase neprilysin [42]. Another study showed 

that NE suppressed Aβ-induced cytokine and chemokine 

production and increased microglial migration and 

phago cytosis in cell culture, while dsp-4 lesions pre-

vented the recruitment of microglia to Aβ plaques and 

impaired Aβ phagocytosis in APP/PS1 transgenic mice 

[36].

A few epidemiological studies have investigated inter-

actions between NE and neuroinfl ammation in AD. A 

small pilot study in a Spanish population found that a 

SNP associated with low DBH activity alone had no 

eff ect, but signifi cantly increased AD risk in combination 

with SNPs in the IL-1A or IL-6 genes [44]. Th is result was 

partially confi rmed and extended in an independent 

study with a larger sample population and wider patient 

demographics. Th is follow-up study reported a signifi -

cant association between the low-activity variant of DBH 

alone and AD risk that was mostly attributable to males 

over the age of 75, and also replicated the interaction 

between DBH and IL-1A polymorphisms [45]. Interest-

ingly, SNPs that are thought to increase adrenergic 

signaling have also been linked to a risk for developing 

AD. Individuals homozygous for the C allele of ADRB1 

(the β1-adrenergic receptor) and the the T allele of GNB3 

(the G protein β3 subunit gene), which are associated 

with in creased cAMP levels and mitogen-activated 

protein kinase activation, have an increased risk for AD 

[46]. A Chinese case–control study found that a β
2
-

adrenergic receptor polymorphism which enhances 

responsiveness is also associated with the risk of sporadic 

late-onset AD [47]. Th ese studies highlight the compli-

cated nature of noradrenergic signal ing in AD; activation 

of some receptor subtypes may suppress neuroinfl am-

mation and neuropathology, while other receptors may 

exacerbate aspects of the disease.

Recent biomarker studies in living subjects have also 

confi rmed a proinfl ammatory state in AD [48-51]. Of 

note, increased proinfl ammatory and decreased anti-

infl ammatory markers account for the majority of 

changes detectable in a large panel of cerebrospinal fl uid 

analytes in MCI and AD [49,50]. By promoting pro-

infl am matory responses, suppressing anti-infl amma tory 

responses and impairing Aβ degradation and clearance, 

LC degeneration and NE loss can therefore be considered 

a triple threat to AD pathogenesis.

Treatments that increase norepinephrine in AD 

animal models ameliorate AD-like pathology and 

cognitive decline

In vitro and animal studies have provided the most 

compelling evidence that increasing NE could have 
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benefi cial eff ects on both AD neuropathology and 

cognitive symptoms. In vitro challenge of human acute 

monocytic leukemia cells (THP-1) with Aβ42 induced 

cytotoxicity and provoked a neuroinfl ammatory response 

that was dose-dependently attenuated by NE [52]. Treat-

ment with cAMP or forskolin, a protein kinase A 

activator, had similar eff ects, suggesting that NE’s pro-

tective eff ects were regulated, at least in part, via stimu-

lation of β-adrenergic receptors and the corresponding 

activation of the cAMP/protein kinase A signaling path-

way [52]. Another in vitro study in hNT neuronal and 

primary hippocampal cultures revealed a neuroprotective 

eff ect of NE against both Aβ42- and Aβ
25-35

-induced 

increases in oxidative stress, mitochondrial dysfunction 

and cell death [53]. Th e neuroprotective eff ects were 

mediated by activation of β-adrenoceptor/cAMP signal-

ing and also required the brain-derived neurotrophic 

factor/tropo myosin-related kinase B pathway, although 

some β-receptor-independent eff ects of NE persisted 

[53].

Th e earliest in vivo animal studies using noradrenergic 

pharmacotherapies focused on the α
2
-adrenergic auto-

receptor. Th e α
2
-antagonists that enhance NE release, 

such as piperoxane, reversed memory defi cits in aged 

mice as assessed by performance in a step-down inhibi-

tory avoidance response task [54]. Another α
2
-antagonist, 

fl uparoxan, prevented age-related decline in the spon-

taneous alternation task (a test of spatial working 

memory) in APP/PS1 mice, although it had no eff ect in 

other memory tasks such as object recognition or the 

Morris water maze, and occurred in the absence of 

obvious concomitant change in pathology [55]. Drugs 

targeting other NE receptors and transporters have also 

been tested in animal models of AD. Desipramine, a 

tricyclic antidepressant that inhibits endogenous NE re-

uptake, induced the production of the anti-infl ammatory 

cytokine monocyte chemotactic protein-1 [56]. CL316243, 

a selective β
3
-adrenergic receptor agonist, rescued per-

for mance in a learning paradigm by chicks given intra-

cranial injections of Aβ42 [57]. Recently, β-adrenoceptor 

activation of cAMP/protein kinase A signaling was found 

to reverse the synaptotoxic eff ects of human Aβ oligo-

mers on LTP and behavior [58].

Compelling evidence in favor of noradrenergic treat-

ments for AD has also been observed using the NE 

precursor, l-threo-3,4-dihydroxyphenylserine (L-DOPS). 

For example, L-DOPS restored the balance of the brain 

infl ammatory system, facilitated microglial migration 

and Aβ phagocytosis, and reversed learning defi cits in 

dsp-4 lesioned APP transgenic mice [36], and also 

partially rescued spatial memory defi cits in the DBH–/–, 

APP/PS1 double-mutant mice [39]. Treatment of 5xFAD 

mice, which have robust and early development of AD-

like neuropathology, with a combination of L-DOPS and 

the NET inhibitor, atomoxetine, elevated brain NE levels, 

increased expression of Aβ clearance enzymes and brain-

derived neurotrophic factor, reduced infl ammatory changes 

and Aβ burden, and improved spatial memory [59].

To generate further proof-of-principle for the effi  cacy 

of NET inhibitors in AD, we took advantage of 

norepinephrine transporter knockout mice (NET KO) 

that lack the NET completely, and have elevated basal 

extracellular NE levels, similar to what might be observed 

with chronic NET inhibitor treatment [60]. We crossed 

the NET KO mice to APP/PS1 transgenic mice that 

overexpress mutant human APP and PS1 and develop 

age-dependent Aβ plaques, and examined AD-like 

neuropathology by western blot assay at 6 months of age 

and by immunocytochemistry at 1 year of age. As shown 

in Figure 1a, APP/PS1 mice that carry wildtype copies of 

NET (NET WT, APP/PS1) contain heavy plaque load in 

the hippocampus and cortex, as detected by immuno-

histochemistry using antiserum 2964 against fi brillar 

Aβ42 [61]. Th e Aβ levels were much higher in female 

NET WT, APP/PS1 mice compared with males (Figure 1b), 

as reported previously for APP/PS1 and other lines of 

APP transgenic mice (for example, [62]). Remarkably, 

plaques were almost completely abolished in littermate 

APP/PS1 mice that lack the NET (NET KO, APP/PS1). 

Similar results were obtained with western blots of brain 

homogenates (Figure 1b).

Th ese results suggest that attenuating NET activity can 

reduce Aβ levels, perhaps by increasing phagocytosis or 

another NE-mediated mechanism described in this 

review. Interestingly, full-length APP and the C-terminal 

fragment of APP were also reduced. Th e reasons for this 

are not clear, but raise the possibility that a change in 

APP production or turnover contributes to the decrease 

in Aβ levels. Consistent with this fi nding, selective lesion 

of the ascending noradrenergic bundle with 6-hydroxy-

dopamine in rats increased cortical APP [63]. Com bined 

with the results that atomoxetine + L-DOPS reduces AD-

like neuropathology and cognitive defi cits in 5xFAD mice 

[59], these data support the use of NET inhibitors in AD 

patient populations.

While studies using NE pharmacotherapy in AD 

models show promise for disease treatment, these studies 

must be interpreted with caution because the eff ects of 

noradrenergic drugs are complicated by multiple adre-

ner gic receptor subtypes with diff erent distributions and 

signaling capabilities. Th ere are a number of studies that 

suggest noradrenergic stimulation actually increases 

certain proinfl ammatory markers, and that some adre-

nergic receptor blockade can be therapeutic. Pharma-

cological activation of β-adrenergic receptors (especially 

β
2
-adrenergic) increases mRNA and protein levels for 

IL-1B and 1L-6 in macrophages, microglia and brain 

parenchyma [64-66]. Administration of adrenergic 
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receptor antagonists in vivo can protect against the in-

fl am matory response induced by a foot shock [67], 

peripheral bacterial challenge [68] or ischemia [69,70]. 

Nevibolol, a β
1
-blocker, can also reduce amyloid produc-

tion in TG2576 mice that have established amyloid and 

cognitive impairment, although it does not improve 

cognition [71]. One potential explanation for the dual 

benefi cial and harmful eff ects of adrenergic receptor 

stimulation is that the loss of LC neurons coupled with 

the compensatory sprouting by surviving cells probably 

creates a situation where NE transmission is compro-

mised in some brain regions, and overactive in others 

[6,19-24,28].

Clinical studies of pharmacotherapies that 

modulate norepinephrine in AD

Most clinical studies using noradrenergic pharmaco-

therapy to date have been primarily focused on treating 

the aggression and other behavioral disturbances that 

occur in many late-stage AD patients. β-adrenergic 

receptor antagonists (that is, propranolol) are somewhat 

eff ective in the treatment of aggression and agitation, 

which may be caused by NE overstimulation [72,73], 

while antidepressants inhibiting NE reuptake, such as the 

tricyclic imipramine, have been used to treat depression, 

which may be caused by NE defi ciency [74]. Tantalizing 

pieces of evidence continue to support the idea of 

increasing NE to treat cognitive impairment in AD. For 

example, clonidine  – which suppresses NE release by 

activat ing the α
2
-adrenergic autoreceptor  – impairs 

short-term recognition memory in patients [75], suggest-

ing that facilitating NE release may be benefi cial. Th e 

same group determined that clonidine could also 

enhance spatial working memory in AD patients [76], 

however, highlighting the complexity of these processes. 

Several clinical studies examining hypertension suggest 

that β-blockers may have therapeutic eff ects on infl am-

ma tion and dementia. Dementia incidence and annual 

rate of cognitive decline tend to be lower in older patients 

that take β-blockers for hypertension [77-79]. Th e β
1
-

antagonists nevibolol and metoprolol have been shown 

to attenuate the release of atherosclerotic infl ammatory 

markers such as soluble intercellular adhesion molecule-1 

in humans after 1  year of treatment [80]. Since hyper-

tension itself is a risk factor for AD, however, it is diffi  cult 

to know whether the benefi ts of β-blockade are mediated 

by direct eff ects on neuro infl ammation or are indirect 

eff ects mediated by control of hypertension.

Overall, the strong links between LC/NE loss in AD 

and disease progression in AD animal models combined 

with human clinical and preclinical data demonstrate the 

exciting disease-modifying potential of drugs that modu-

late NE levels. Th e urgent and essential next step is to 

translate these discoveries to humans. Although NE 

pharmacotherapies are widely used in medicine, drugs 

that regulate NE transmission in the brain could have 

com plicated eff ects in AD. Th e integrity of the LC and 

pharmacological responsiveness in prodromal stages of 

AD are poorly understood. While preclinical studies 

suggest potential for NE-enhancing therapies to reduce 

neuroinfl ammation and amyloid burden and to ameliorate 

cognitive impairment, clinical observations in AD patients 

also suggest the potential to impact noncognitive symp-

toms of AD including mood, apathy, disinhibition, sleep, 

agitation and aggression [81,82].

Several NE pharmacotherapies are already used in 

clinical practice for a variety of neurological and psy-

chiatric disorders, including attention-defi cit disorder, 

Figure 1. Enhancing norepinephrine may be a promising 

strategy to treat Alzheimer’s disease. (a) Plaque deposition in 

the hippocampus (HP) and cortex (CTX) of 1-year-old APP/PS1 mice 

(NET WT,APP/PS1) and norepinephrine transporter knockout APP/

PS1 mice (NET KO,APP/PS1) as detected by immunohistochemistry 

using antiserum 2964 against fi brillar Aβ42. (b) Abundance of full-

length amyloid precursor protein (APP), the APP C-terminal fragment 

(CTF), and Aβ in male and female NET WT,APP/PS1 and NET KO,APP/

PS1 mice at 6 months of age as detected by western blot using 

mAb 6E10 against amino acid residues 1 to 16 of Aβ. Tubulin was 

used as a loading control. Aβ, amyloid-beta; NET WT, norepinephrine 

transporter wildtype; PS1, presenilin-1.
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depression and orthostatic hypotension. NET inhibitors 

such as atomoxetine, a US Food and Drug Adminis tra-

tion-approved drug that is a widely prescribed treatment 

for children and adults with attention-defi cit hyperactive 

disorder, and reboxetine, approved in many countries 

around the world for depression, have been used safely in 

older subjects. Th e NE prodrug L-DOPS crosses the 

blood–brain barrier and has been used safely in Asia for 

several decades to treat hypotension. As mentioned 

above, treatment of 5xFAD transgenic mice (which 

accumulate amyloid burden at early ages) with a 

combination of L-DOPS and atomoxetine elevated brain 

NE levels, increased expression of Aβ clearance enzymes 

and brain-derived neurotrophic factor, reduced 

infl ammatory changes and Aβ burden, and improved 

spatial memory [59].

In clinical studies, atomoxetine has also been shown to 

improve working memory, response inhibition and other 

executive functions in patients with attention-defi cit 

hyperactivity disorder [83-86]. Several small studies have 

examined atomoxetine treatment in older patients with 

neurodegenerative disease to assess safety, tolerability 

and symptomatic eff ects. Marsh and colleagues studied 

12 patients with Parkinson’s disease with doses up to 

100  mg daily (mean tolerated dose 89.6  mg), with 

excellent safety, tolerability and improved executive 

function [82]. Weintraub and colleagues found that 

80  mg once daily was well tolerated by Parkinson’s 

disease subjects as a treatment for depression; only four 

of 29 patients withdrew because of adverse eff ects [87]. 

Although atomoxetine was ineff ective for the treatment 

of depression in the study, atomoxetine was associated 

with improvement of global cognition. A 6-month 

phase II trial in mild to moderate AD tested up to 80 mg 

atomoxetine once daily in 47 subjects [88]. Although 

atomoxetine was well tolerated (only fi ve subjects 

withdrew because of adverse eff ects), there were no 

signifi cant improvements in cognitive function, global 

clinical impression or neuropsychiatric symptoms. 

However, this study was not powered for clinical effi  cacy 

and, more importantly, did not investigate the potential 

anti-infl ammatory neuroprotective role of NE pharmaco-

therapy. Moreover, since patients with mild to moderate 

AD already have extensive neurodegeneration, most 

investigators now realize the best chance for neuro-

protection will come from earlier intervention.

Logical next steps would therefore be to test NE 

pharmacotherapies for their potential anti-infl ammatory 

and other neuroprotective mechanisms in phase II trials 

with individuals with preclinical or early clinical (that is, 

MCI) stages of AD. For example, it would be important 

to evaluate the eff ect of NE-based treatments such as 

atomoxetine and L-DOPS on biomarkers of AD patho-

logy and infl ammation [49,50,89,90]. A potential target 

would be cerebrospinal fl uid infl ammatory markers, 

which have been used successfully as surrogate markers 

of drug response in multiple sclerosis [91,92] and are 

among novel biomarkers that distinguish MCI and AD 

from other neurodegenerative diseases and correlate with 

both baseline cognitive impairment and subsequent 

cognitive decline [50].

In sum, there is a growing body of evidence linking LC 

neurodegeneration and altered NE neurotransmission to 

the pathogenesis of AD, in addition to the long-

established links with cognitive and behavioral symp-

toms. Preclinical studies demonstrate that restoration of 

NE function has great potential to slow neurodegenera-

tion by enhancing anti-infl ammatory and suppressing 

proinfl ammatory responses, facilitating amyloid clear-

ance and via other protective mechanisms. However, the 

complexities of NE signaling and multiplicity of eff ects of 

adrenergic receptor subtypes, together with the limita-

tions of animal studies, underscore the importance of 

translating these studies to humans. Th e availability of 

clinically approved drugs that enhance central nor adre-

nergic function provides a timely opportunity to 

repurpose their use to determine their potential as a 

novel disease-modifying therapeutic strategy.
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