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instability in electron-ion plasmas
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We have shown that there exist low-frequency growing modes driven by a global temperature gradient in electron
and ion plasmas, by linear perturbation analysis within the frame work of plasma kinetic theory. The driving force
of the instability is the local deviation of the distribution function from the Maxwell-Boltzmann due to a global
temperature gradient. Our results suggest that the realization of the global thermal equilibrium is postponed by the
local instability which is induced for quicker realization of local thermal equilibrium state in plasmas. The instability
provides a new possibility to create and amplify cosmic magnetic fields without the seed for a magnetic field.

1. Introduction
Ramani and Laval (1978) found a new plasma instabil-

ity which may contribute to the reduction of the electron
mean free path, henceforce the reduction of the heat conduc-
tion. They showed that the temperature gradient leads to an
anisotropic electron velocity distribution function and that
the anisotropy of the velocity distribution function drives an
instability like the Weibel instability (Weibel, 1959; Fried,
1959; Melrose, 1986). They proposed that the chaotic mag-
netic and electric fields, induced by the instability, scatter the
electrons, so that the electron mean free path is reduced by
many orders of magnitude. However, the instability found
by Ramani and Laval fails in reducing the electron mean free
path because of the following reasons. Since Ramani and
Laval assumed that only electrons respond to the mode and
ions were treated as fixed back-ground particles, the phase
velocity of the wave must be faster than the ion sound ve-
locity vth,i = √

2kBTi/mi , where Ti , ni , and mi are the ion
temperature, ion number density, and ion mass, respectively.
In the astrophysical plasma, the ion mass can be safely re-
placed by the proton mass. The unstable mode found by
Ramani and Laval (1978) has non zero real part of the wave
frequency with a phase velocity of ∼ εvth,e, ε < 1. There-
fore, the application limit of their analysis sets a relatively
high lower limit on ε as ε >

√
me/mi ∼ 0.025when Ti = Te

(hereafter we refer to this lower limit as the wall of the square
root of the mass ratio). To explain the two-phase nature of
the hot gas in the cluster central region (Ikebe et al., 1999),
the instability found by them is not useful and a mechanism
which can break the wall of the square root of the mass ratio
is required.
In this paper, we extend the Ramani and Laval (1978)

analysis including the response of ions to examine whether
we can break the wall of the square root of themass ratio. We
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limit our attention to pressure equilibrium; in other words,
the scale of the interface is much smaller than the pressure
scale height. Then, the gravitational force can be neglected.
The main results of this paper were reported in Hattori and
Umetsu (2000).

2. Distribution Function
When ε < 1, the discussion given in the previous section

ensures that the solution of the Boltzmann equation of elec-
tron and ion can be expanded in powers of ε (Chapman and
Cowling, 1960)

fe = fm,e + f (1)
e + f (2)

e + · · · , (1)

fi = fm,i + f (1)
i + f (2)

i + · · · , (2)

where fm,e and fm,i areMaxwellian distribution functions for
electrons and ions, respectively; f (k)

e and f (k)
i (k = 1, 2, . . .)

describe the deviation of the distribution functions from the
Maxwellian to order εk . Since we assume that Ti (x) =
Te(x) ≡ T (x) and charge neutrality must be maintained,
the Maxwellian parts for both electrons and ions are written
as fm,e = n0(x)[πvth,e(x)]−3/2 exp{−[v/vth,e(x)]2} and
fm,i = n0(x)[πvth,i (x)]−3/2 exp{−[v/vth,i (x)]2}, respec-
tively. Here n0(x) is the electron number density, vth,e(x) ≡√
2kBT (x)/me, and vth,i (x) ≡ √

2kBT (x)/mi .
The pressure equilibrium assumption gives

∇n0
n0

= −∇T

T
= − 1

L
δT . (3)

Once this condition is satisfied, the pressure is time indepen-
dent everywhere, even if a secular variation of the tempera-
ture due to thermal conduction is taken into account. Then
the time dependence of the density can be related to that of
the temperature as

1

n0

∂n0
∂t

= − 1

T

∂T

∂t
. (4)
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The Boltzmann equation under the pressure equilibrium
condition without background electric and magnetic fields
leads to

∂ fe

∂t
+ vx

∂ fe

∂x
=

(
∂ fe

∂t

)
c
, (5)

where (∂ fe/∂t)c is the collision term and the equilibrium
electric field does not appear because of the pressure equilib-
rium condition. The secular time variation of the distribution
function is ascribed to the secular variation of the tempera-
ture due to thermal conduction. Since the cool region with
temperature T1 is considered to be immersed in a heat bath of
a temperature T2, the temperature of the interface increases
monotonically owing to heat conduction. Hence, the time
evolution of temperature can be described as

∂T

∂t
= εδT

vth,e

L
T . (6)

Then, ∣∣∣∣∂ fe

∂t

∣∣∣∣ ∼ 1

T

∣∣∣∣∂T

∂t

∣∣∣∣ fe ∼ εδT
vth,e

L
fe. (7)

The simplest choice of the collision term is the Krook oper-
ator, such that (

∂ fe

∂t

)
c
= −νe( fe − fm,e), (8)

where νe = vth,e/λe is the collision frequency assumed to be
constant. Substituting the collision term by the Krook oper-
ator, ordering the Boltzmann equation in ε1 and ε2 provides

f (1)
e = − 1

νe
vx

∂ fm,e

∂x
, (9)

f (2)
e = − 1

νe

(
∂ fm,e

∂t
+ vx

∂ f (1)
e

∂x

)
. (10)

It shows that the system can be treated as steady state in the
first order of ε but the secular variation cannot be neglected
in second order of ε. The time derivative of the Maxwell-
Boltzmann distribution function can be described as

∂ fm,e

∂t
= −1

2

(
5 − 2v2

v2
th,e

)
1

T

∂T

∂t
fm,e

= −εδT

2

vth,e

L

(
5 − 2v2

v2
th,e

)
fm,e. (11)

The first- and the second-order solutions for the electron
distribution function are thus obtained as follows:

f (1)
e = εδT

2

vx

vth,e

(
5 − mev

2

kBT

)
fm,e, (12)

f (2)
e = ε2δT

2

[(
5 − 2v2

v2
th,e

)
+ v2

x

v2
th,e

(
5 − 4v2

v2
th,e

)

+ v2
x

2v2
th,e

(
5 − 2v2

v2
th,e

)2
⎤
⎦ fm,e, (13)

where we have neglected the second derivative of T (x) with
respect to x in deriving the second-order solution.

These equations show that the anisotropy in the velocity
distribution functions is induced by the temperature gradient.
The first-order solution is an odd function of the velocity. On
the other hand, the second-order solution is even in the veloc-
ity. It is straightforward to as sure that the zero background
electric field assumption is consistent with the zero electric
current condition under the pressure equilibrium plasma con-
dition, by checking 〈 fe �v〉 = �0, where 〈 〉 denotes the average
over the velocity.

Substituting me for mi and νe to νi = vi/λi in Eqs. (12)
and (13), the first and the second order distribution functions
f (1)
i and f (2)

i for ions are obtained.

3. Dispersion Relation
In this paper, perturbations with a short-wavelength wave

are treated, such that

λ � λe. (14)

Therefore, the collision term in the Boltzmann equation for
the perturbed variables can be neglected. In the short-wave-
length limit, the collisionless Boltzmann equation is a good
representative for the evolution of the perturbed distribution
functions, and the plain wave exp[i(�k · �r − ωt)] is a good
representative for the perturbed quantities (e.g., electron dis-
tribution function as δ fe = f�k,e exp[i(�k · �r − ωt)], electric

field as �E = �E�k exp[i(�k · �r − ωt)], and magnetic field as
�B = �B�k exp[i(�k · �r − ωt)]). From the linearized Boltzmann
equation in terms of the perturbed quantities of both elec-
trons and ions, the equations for the perturbed distribution
functions of electrons and ions are obtained as

−i(ω − �k · �v) f�k,e

= + e

me

(
�E�k + �v ×

�B�k
c

)
·
(

∂ fe

∂ �v
)

(15)

−i(ω − �k · �v) f�k,i

= − e

mi

(
�E�k + �v ×

�B�k
c

)
·
(

∂ fi

∂ �v
)

. (16)

As shown below, the low-frequency condition requires that
the charge density be small, implying that the electric current
has to be almost transverse for purely electronic oscillations.
Therefore, only two modes are expected. Without loss of
generality, the wave vector �k can be taken in the x-y plane as
kx = k cos θ , ky = k sin θ , and kz = 0. We expect one mode
with the magneticfield along the z-direction (mode (1): Bx =
By = 0 and Bz �= 0), and the other one with the magnetic
field in the x-y plane (mode (2): Bx , By �= 0 and Bz = 0).
We thus denote the component of a vector along the direction
of the wave vector by a k-subscript and the component along
the perpendicular direction of the wave vector in the x-y plain
by a ⊥-subscript. The x-component of velocity, for example,
can be expressed as vx = vk cos θ − v⊥ sin θ in terms of vk

and v⊥.
Faraday’s law leads to Ez = 0 (i.e., �E�k = (Ek, E⊥, 0))

and k E⊥ = (ω/c)Bz for mode (1). For mode (2), div �B = 0
yields Bk = 0 (i.e., �B�k = (0, B⊥, 0)), and Faraday’s law and
Bz = 0 lead to E⊥ = 0 and k Ez = −(ω/c)B⊥. Then we



M. HATTORI AND K. UMETSU: REDUCED HEAT CONDUCTIVITY IN ELECTRON-ION PLASMAS 691

obtain

(�k · �v − ω) f�k,e = − ie

me

[(
Ek + v⊥

c
Bz

) ∂ fe

∂vk

+
(

E⊥ − vk

c
Bz

) ∂ fe

∂v⊥

]
, (17)

(�k · �v − ω) f�k,i = + ie

mi

[(
Ek + v⊥

c
Bz

) ∂ fi

∂vk

+
(

E⊥ − vk

c
Bz

) ∂ fi

∂v⊥

]
(18)

for mode (1), and

(�k · �v − ω) f�k,e = − ie

me

[(
Ek − vz

c
B⊥

) ∂ fe

∂vk

+
(

Ez + vk

c
B⊥

) ∂ fe

∂vz

]
, (19)

(�k · �v − ω) f�k,i = + ie

mi

[(
Ek − vz

c
B⊥

) ∂ fi

∂vk

+
(

Ez + vk

c
B⊥

) ∂ fi

∂vz

]
(20)

for mode (2).
To first order in ω/(kvth,e) and ω/(kvth,i ), (�k · �v −ω)−1 =

(1/k)P(1/vk) + (ω/k2)P(1/v2
k ) + i(π/k)δ(vk) − i(π/k) ·

(ω/k)(dδ(vk)/dvk), where P denotes the principal value and
the signs in front of the delta functions reflect the causality
condition. Then, with the help of Faraday’s law, Eqs. (17)
and (18) yield

f�k,e = − ie

me

{[
1

k
P

1

vk
+ ω

k2
P

1

v2
k

+ iπ

k
δ(vk)

− iπω

k2

dδ(vk)

dvk

] (
Ek + v⊥

c
Bz

)

×
(

− 2vk

v2
th,e

+ εδT

2vth,e

[
cos θ

(
5 − 2v2

v2
th,e

)

− 2vk

v2
th,e

(vk cos θ − v⊥ sin θ)

(
7 − 2v2

v2
th,e

)])

− Bz

ck

(
− 2v⊥

v2
th,e

+ εδT

2vth,e

[
− sin θ

(
5 − 2v2

v2
th,e

)

− 2v⊥
v2

th,e

(vk cos θ − v⊥ sin θ)

(
7 − 2v2

v2
th,e

)])}
fm,e,

(21)

f�k,i = + ie

me

{[
1

k
P

1

vk
+ ω

k2
P

1

v2
k

+ iπ

k
δ(vk)

− iπω

k2

dδ(vk)

dvk

] (
Ek + v⊥

c
Bz

)

×
(

− 2vk

v2
th,i

+ εδT

2vth,i

[
cos θ

(
5 − 2v2

v2
th,i

)

− 2vk

v2
th,i

(vk cos θ − v⊥ sin θ)

(
7 − 2v2

v2
th,i

)])

− Bz

ck

(
−2v⊥

v2
th,i

+ εδT

2vth,i

[
− sin θ

(
5 − 2v2

v2
th,i

)

−2v⊥
v2

th,i

(vk cos θ − v⊥ sin θ)

(
7 − 2v2

v2
th,i

)])}
fm,i

(22)

for mode (1). Similarly, from Eqs. (19) and (20), we obtain

f�k,e = − ie

me

{[
1

k
P

1

vk
+ ω

k2
P

1

v2
k

+ iπ

k
δ(vk)

− iπω

k2

dδ(vk)

dvk

] (
−vz

c
B⊥

)

×
(

− 2vk

v2
th,e

+ εδT

2vth,e

[
cos θ

(
5 − 2v2

v2
th,e

)

− 2vk

v2
th,e

(vk cos θ − v⊥ sin θ)

(
7 − 2v2

v2
th,e

)])

+ B⊥
ck

[
− 2vz

v2
th,e

− εδT

2vth,e
(vk cos θ − v⊥ sin θ)

×
(

7 − 2v2

v2
th,e

)]}
fm,e, (23)

f�k,i = + ie

mi

{[
1

k
P

1

vk
+ ω

k2
P

1

v2
k

+ iπ

k
δ(vk)

− iπω

k2

dδ(vk)

dvk

] (
−vz

c
B⊥

)

×
(

− 2vk

v2
th,i

+ εδT

2vth,i

[
cos θ

(
5 − 2v2

v2
th,i

)

− 2vk

v2
th,i

(vk cos θ − v⊥ sin θ)

(
7 − 2v2

v2
th,i

)])

+ B⊥
ck

[
− 2vz

v2
th,i

− εδT

2vth,e
(vk cos θ − v⊥ sin θ)

×
(

7 − 2v2

v2
th,i

)]}
fm,i (24)

for mode (2).
Poisson’s equation is written as

ik Ek = 4πe
(〈

f�k,i

〉 − 〈
f�k,e

〉)
. (25)

Keeping only the first non-vanishing order in ε for mode (1),
each term on the right-hand side provides

− 4πe
〈
f�k,e

〉 = − i

k

[
2

λ2
D

Ek − εδT

ω2
pe

cvth,e
Bz sin θ

]
, (26)

+4πe
〈
f�k,i

〉 = − i

k

[
2

λ2
D

Ek − εδT

ω2
pi

cvth,i
Bz sin θ

]
, (27)

where ωpe and ωpi are the electron and ion plasma frequen-
cies, defined by ωpe ≡

√
(4πn0e2/me) and ωpi ≡√

(4πn0e2/mi ), respectively; λD ≡
√

kBT/(4πn0e2) is the
Debye length. It is trivial why those equations do not contain
E⊥ since the transverse component is not constrained from
the Poisson equation. Note that the first term on the right
hand side for ions is exactly the same as that for electrons.
Therefore, the contribution of ions to the charge density is
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non-negligible. On the other hand, the second term for ions is
smaller by a factor of

√
me/mi than that for electrons. This is

the essential point to make possible in-phase acoustic oscil-
lations between electrons and ions. The space charge carried
by ion acoustic oscillations can be canceled by electrons to
maintain charge neutrality. In the case of a pure electron
plasma examined by Ramani and Laval (1978), electrons
have to keep charge neutrality by themselves. Therefore, the
amplitude of the acoustic oscillation for an electron plasma
has to be almost zero. The Poisson equation provides the
relation between electric and magnetic fields as

Ek = εδT

4

sin θ

1 + (kλD)2

vth,e

c
Bz . (28)

The term (kλD)2 in the denominator comes from the left-
hand side of the Poisson equation and is always a very small
number since the wavelength of the mode which we are inter-
ested in is much larger than the Debye length. We therefore
neglect this term. This corresponds to the so-called plasma
approximation (Chen, 1974; Tanaka and Nishikawa, 1996)
and ensures that charge neutrality is kept to high accuracy
even though the longitudinal oscillation exists. When the
wave vector is parallel to the temperature gradient (θ = 0),
this equation implies Ek = 0. The mode (1) becomes purely
transverse. Compared with the case of pure electron oscil-
lations as in Ramani and Laval (1978), the right-hand side
of Eq. (28) is a factor of two smaller, which makes mode
(1) more unstable as shown in below. No constraint comes
from the Poisson equation for mode (2) since it is a purely
transverse mode.

We are now in a position to derive the dispersion relation.
Ampère’s law is written as

− ik Bz = 4πe

c

(〈
v⊥ f�k,i

〉 − 〈
v⊥ f�k,e

〉) + ∂ E⊥
c∂t

(29)

for mode (1), and

ik B⊥ = 4πe

c

(〈
vz f�k,i

〉 − 〈
vz f�k,e

〉) + ∂ Ez

c∂t
(30)

for mode (2). Under the low-frequency condition, the last
terms on the right-hand side of Eqs. (29) and (30), which
are the displacement current, are negligibly small. We thus
neglect these terms. Further, the contribution of ions to the
current density is the order of

√
me/mi smaller than that of

electrons since the current density carried by each particle is
proportional to the thermal velocity of each particle. There-
fore, the current density carried by ions introduces only a
negligible contribution to the dispersion relation. The dis-
persion relation for the real parts ωr and the imaginary parts
ωi in leading order of ε is then obtained as follows:

ωr = εδT

4
kvth,e cos θ, (31)

ωi = ε2δ2
T

4
√

π
kvth,e(2 cos2 θ − sin2 θ)

− 1√
π

(
c

ωpe

)2

k3vth,e (32)

for mode (1), and

ωr = εδT

4
vth,ek cos θ, (33)

ωi = ε2δ2
T

2
√

π
vth,ek cos2 θ − 1√

π

(
c

ωpe

)2

vth,ek3, (34)

for mode (2).
Since the imaginary part ωi is of order ε2, we have checked

whether the leading order of the dispersion relation is
changed when the second-order distribution functions f (2)

e

and f (2)
i are taken into consideration. We have confirmed

that these second-order distribution functions only introduce
one order higher terms both in real and imaginary parts, and
thus the main results shown above are not changed.

4. Instability and Mode Characteristics
The dispersion relations (31), (32), (33), and (34) show that

the low-frequency mode, for which the phase velocity of the
wave is slower than the ion thermal velocity, can exist as long
as ε <

√
me/mi ∼ 0.025 is satisfied. This is the first confir-

mation that the Ramani and Laval (1978) type instability can
exist beyond the wall of square root of the mass ratio. The
dispersion relations are almost the same as those obtained for
the electron plasma by Ramani and Laval (1978). However,
there is a slight difference in the imaginary part of mode (1).
The difference comes from the difference in the charge neu-
trality condition (28). As explained in Section 3, in our case,
an in-phase acoustic oscillations between electrons and ions
is possible. Hence, the space charge carried by ion acoustic
oscillations can be canceled by electrons to maintain charge
neutrality. However, in the case of the pure electron plasma
examined by Ramani and Laval (1978), electrons have to
keep charge neutrality by themselves. Therefore, the ampli-
tude of acoustic oscillations for the electron plasma has to be
almost zero.

The characteristics of the instability are summarized as
follows. For mode (1), the imaginary part of the wave fre-
quency is positive, and the instability sets in when the direc-
tion of the wave vector is within the double cone spanned
by θ ∈ [−θcr, θcr] and θ ∈ [π − θcr, π + θcr], where θcr ≡
arccos(1/

√
3) (0 ≤ θcr ≤ π/2). For comparison, we re-

calculated the dispersion relations for pure electron plasma.
In the case of a pure electron plasma, a factor of 2 appears
in front of the sin2 θ term in the imaginary part (this result is
slightly different from the Ramani and Laval (1978) result).
Therefore, the unstable region in �k-space in the case of a pure
electron plasma is somewhat narrower than in our case. It
shows that acoustic oscillations of ions assist the instability.
For mode (2), the unstable mode exists for all direction of
the wave vector, although the growth rate decreases as θ in-
crease from 0 to π/2 for fixed k. Two modes get identical
when θ = 0. For both modes, the growth rate is maximum
when θ = 0. Since the imaginary part of the wave frequency
is a third order polynomial in k with negative coefficient for
k3, there exists a maximum growth rate ωi,max. For mode (1),
ωi,max is given as

ωi,max ∼ ε3δ3
T

12
√

3π

vth,e

c
ωpe

∣∣3 cos2 θ − 1
∣∣3/2

, (35)

when

k = kmax = εδT

2
√

3

ωpe

c

∣∣3 cos2 θ − 1
∣∣1/2

, (36)
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for θ ∈ [−θcr, θcr] or θ ∈ [π − θcr, π + θcr]. For mode (2),

ωi,max ∼ ε3δ3T

3
√
6π

vth,e

c
ωpe

∣∣cos3 θ
∣∣ (37)

when

k = kmax = εδT√
6

ωpe

c
|cos θ | , (38)

for arbitrary θ . For the wave vector which satisfies the above
conditions, the real part ωr of the wave frequency is obtained
as

ωr ∼ ε2δ2T

8
√
3

vth,e

c
ωpe

∣∣3 cos2 θ − 1
∣∣1/2 cos θ (39)

for mode (1), and

ωr ∼ 1

4
√
6
ε2δ2T

vth,e

c
ωpe cos

2 θ (40)

for mode (2).
The electric field strength can be related to the magnetic

field strength. For mode (1),

|Ek | ∼ εδT

4

vth,e

c
| �B�k || sin θ |. (41)

When k = kmax, the electric field perpendicular to the �k-
direction is related to the magnetic field as

|E⊥| ∼ εδT

4

vth,e

c
| �B�k || cos θ |. (42)

For mode (2),

|Ez| ∼ εδT

4

vth,e

c
| �B�k || cos θ |, (43)

when k = kmax.

The electric field strength is then the order of ε smaller
than the magnetic field strength. This nature combined with
the low-frequency nature of the mode shows that the mode
has similarity with a magneto-hydrodynamic mode. How-
ever, in the magneto-hydrodynamic treatment the mode and
the instability cannot be identified. The instability is micro-
scopic nature, in which case the resonance of particles with
waves is essential. Therefore, the instability creates and am-
plifies the magnetic field without any seed field. It provides
a new possibility for the origin of the cosmic magnetic field.
Clarifying the non-linear saturation level of the waves is

one of the important next steps. A magnetic reconnection
may play some role on determining the saturation level.
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