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We perform a three-dimensional simulation of a breaking internal gravity wave in a stratified, compressible,
and sheared fluid to investigate the vorticity dynamics accompanying the transition from laminar to turbulent flow.
Baroclinic sources contribute preferentially to eddy vorticity generation during the initial convective instability of
the wave field, yielding counter-rotating vortices aligned with the external shear flow. These vortices enhance the
spanwise vorticity of the shear flow via stretching and distort the spanwise vorticity via advective tilting. The
resulting vortex sheets undergo a dynamical (Kelvin-Helmholtz) instability which rolls the vortex sheets into tubes
which link, in turn, with the original streamwise convective rolls to produce a collection of intertwined vortex
loops. Following the formation of discrete vortex loops, the most important interactions are the self-interactions of
single vortex tubes and the mutual interactions of adjacent vortex tubes in close proximity. The initial formation of
vortex tubes from the roll-up of localized vortex sheets imposes axial vorticity variations having both axisymmetric
and azimuthal wavenumber two components. Axisymmetric variations excite axisymmetric twist waves, or Kelvin
vortex waves, which propagate along the tubes, drive axial flows, and deplete and fragment the tubes. Azimuthal
wavenumber two variations excite m = 2 twist waves on the vortex tubes which amplify and unravel single vortex
tubes into pairs of intertwined helical tubes. Other interactions, judged less fundamental to the turbulence cascade,
include reconnection among tube fragments, mutual stretching of orthogonal tubes in close proximity, excitation of
azimuthal wavenumber one twist waves, and the continual roll-up of weaker vortex sheets throughout the evolution.
Collectively, these vortex interactions result in a rapid cascade of energy and enstrophy toward smaller scales of

motion.

1. Introduction

Transitions from laminar to turbulent flows and the dy-
namics of the turbulence cascade are longstanding problems
relevant to many fields of fluid dynamics. Until recently,
progress was confined to studies of the stability of various
flows to small perturbations, to observations of instability
and turbulence dynamics in the atmosphere and oceans, or to
laboratory analogs of these flows. However, the continuing
evolution of computational capabilities has now made possi-
ble fluid dynamics simulations at sufficiently high Reynolds
numbers to describe instability and turbulence processes oc-
curring in geophysical flows.

In the stably stratified atmosphere and oceans away from
boundaries, turbulence is believed to arise largely due to
wave-induced or shear-flow instabilities. Stability studies
and linear wave structure suggest that internal gravity waves
contribute to turbulence generation via both convective and
dynamical instabilities, with convective instabilities predom-
inant at high intrinsic frequencies and shear instabilities
likely more prevalent nearer inertial frequencies (Hodges,
1967; Fritts, 1984; Dunkerton, 1984; Fritts and Rastogi,
1985; Fritts and Yuan, 1989; Winters and Riley, 1992;
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Dunkerton, 1997; Sonmor and Klaassen, 1997). These infer-
ences are supported by more recent three-dimensional (3D)
modeling of wave breaking in atmospheric and oceanic con-
texts (Andreassen et al., 1994a; Fritts et al., 1994; Isler et al.,
1994; Winters and D’ Asaro, 1994). These studies found the
dominant instability to be a shear-aligned, counter-rotating
convective instability with both buoyant and shear sources
of eddy kinetic energy. Subsequent studies by Fritts et al.
(19964, 1997) found the same instability character to persist
in the presence of transverse mean shears and for waves at
lower intrinsic frequencies, respectively.

Shear, most commonly Kelvin-Helmbholtz (or KH), insta-
bilities may arise due to unstable mean or wave-induced
shears (Fritts and Yuan, 1989; Yuan and Fritts, 1989;
Dunkerton, 1997; LeLong and Dunkerton, 1998a,b). For
sufficiently inviscid flows, these motions undergo a transi-
tion to 3D structure similar to that found in breaking gravity
waves, with more recent numerical simulations again consis-
tent with the predictions of linear stability theory (Klaassen
and Peltier, 1985; Palmer et al., 1994, 1996; Caulfield and
Peltier, 1994; Scinocca, 1995; Fritts et al., 1996b; see also
Hill et al., 1999, in this issue). Thus, the initial transitions
from laminar, quasi-two-dimensional (2D) to 3D flows are
now reasonably understood in sheared and stratified fluids.
What has received less attention to date are the further tran-
sitions to and dynamics within fully turbulent flows.
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Significant progress has occurred, nevertheless, in describ-
ing the statistical properties and the character of vortex struc-
tures in numerical and observational studies of homoge-
neous turbulence in sheared and unsheared geophysical flu-
ids (Rogers and Moin, 1987; She et al., 1990; Vincent and
Meneguzzi, 1991, 1994; Sandham and Kleiser, 1992; Cadot
et al., 1995; Metais et al., 1995). Other studies have em-
ployed forcing at large scales or initial equilibrium distribu-
tions of variance in one or more fields to examine evolution-
ary flow characteristics at smaller scales of motion (Herring
and Kerr, 1993; Erlebacher and Sarkar, 1993; Jimenez et al.,
1993; Vincent and Meneguzzi, 1994; Gerz et al., 1994; and
references therein). The consequence of these dynamics is
often found to be a series of “horseshoe” or “hairpin” vortices
in boundary layer or sheared flows (Robinson, 1991; Gerz,
1991; Sandham and Kleiser, 1992; Metais et al., 1995).

The emerging vortices exhibit a range of interactions and
dynamics which are not well understood at present. For ex-
ample, oscillations of vortex tubes were studied in the labora-
tory (Hopfinger et al., 1982; Maxworthy et al., 1985) and in
numerical simulations (Melander and Hussain, 1994, 1995;
Schoppa et al., 1995), whereas the unraveling and fragmen-
tation of vortex tubes and vortex reconnection events were
noted by other authors (Pumir and Siggia, 1990; Boratav et
al., 1992; Shelley et al., 1993; Cadot et al., 1995). Based
on such observations, several authors sought a theoretical
understanding of vortex oscillations (Melander and Hussain,
1994, 1995; Schoppa et al., 1995; Arendt et al., 1997).

Our purposes in this paper are to describe both the vortic-
ity dynamics accompanying the transition from laminar to
turbulent flow and the subsequent vortex interactions which
appear to drive the turbulent cascade of energy and enstro-
phy to smaller scales of motion. We adopt this vorticity
dynamics perspective, as opposed to our previous studies
which examined instability energetics, as this is the approach
which provides the clearest understanding of the dynamical
interactions among adjacent vortices. To describe the vor-
ticity evolution over a wider range of scales and to provide
enhanced definition of the small-scale structures, we also in-
creased the model resolution and reduced dissipation relative
to our previous studies. The resulting vorticity evolution is
seen to comprise three stages. The first is the primary con-
vective instability described previously by Fritts ef al. (1994,
1996a). The resulting convective rolls stretch the vorticity
of the background shear flow, and so create intense localized
vortex sheets. This leads to the second stage of the evolution:
the dynamical (generalized KH) instability of these spanwise
vortex sheets!. The spanwise vortex sheets roll up into tubes
which link, through tilting, twisting, and stretching, with
the initial shear-aligned (streamwise) counter-rotating con-
vective vortices to form a collection of intertwined vortex
loops. The third stage of the evolution involves increasingly
rapid and complex interactions among the vortex loops which
drive the vorticity field toward a more isotropic state at small
scales.

The stages noted in our study are similar to those described
by Vincent and Meneguzzi (1994) in the evolution of homo-

In our discussion, the horizontal directions x and y along and normal to
the direction of wave propagation will be referred to as streamwise and
spanwise, respectively.

geneous turbulence, with vortex sheet formation preceding
roll-up via dynamical instability and vortex interactions driv-
ing the evolution to smaller scales of motion. Our results thus
provide partial verification of earlier predictions of the fea-
tures of such an evolution by Betchov (1957) and Lundgren
(1982), such as the intensification of vorticity sheets preced-
ing the formation of vortex tubes. The vortex loops that we
find in our simulations are also very similar to those found
in other turbulent flows (e.g., Robinson, 1991; Sandham and
Kleiser, 1992; Gerz et al., 1994; Metais et al., 1995). Thus,
the interactions of the loops we observe are likely to be rep-
resentative of such turbulent transitions in many flows.

Our paper is organized as follows. The mathematical for-
mulation is described in Section 2. An overview of the en-
strophy and vorticity evolutions is provided in Section 3.
Section 4 identifies the dominant vortex interactions which
drive the cascade to smaller scales of motion. These include
vortex sheet intensification and roll-up, orthogonal vortex
stretching, and mode-zero and two twist waves on the vor-
tex tubes. Other interactions identified, but apparently less
significant in the cascade, include mode-one twist waves,
pairing events among aligned tubes, and viscous reconnec-
tion of vortex tubes or fragments in close proximity. These
interactions are described in Section 5. The evolutions of the
enstrophy spectra are displayed in Section 6, and our con-
clusions and a discussion of the relevance of these results to
general sheared turbulence studies are provided in Section 7.

2. Mathematical Formulation
2.1 Model description

Breaking and instability of an internal gravity wave is sim-
ulated using a nonlinear, compressible spectral collocation
code described in detail by Andreassen et al. (1994a) and
Fritts et al. (1996a) for studies of wave breaking and insta-
bility structures in parallel and skew shear flows. It solves the
equations describing nonlinear dynamics in a compressible,
stratified, and sheared fluid using a spectral representation of
viscous and diffusive effects. These equations are written as

ap
L 4v. =0,
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g, TPV ov=20
where v = (u, v, w) is velocity, p and p are density and
pressure, g is the gravitational acceleration, and y is the ratio
of specific heats. The density and pressure are related to
temperature through the equation of state, p = pRT, and
the potential temperature, defined as & = T(po/p)*/r, is
used as an approximate tracer of fluid motions.

For convenience, all variables are nondimensionalized us-
ing the density scale height H = (d In p/dz)~", sound speed
cs, with cf = ygH, a time scale H/cs, and reference tem-
perature Ty, density pg, and pressure py. We also assume the
atmosphere to be initially isothermal, yielding a nondimen-
sional buoyancy frequency squared N2 = (y — 1)/y?and a
corresponding nondimensional buoyancy period 7, =~ 14.

The additional terms on the right sides of the momen-
tum and energy equations include a body force F to excite
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the primary gravity wave and spectral representations of the
diffusion terms, P and Q, to describe the effects of viscos-
ity and thermal diffusivity. The forms of these diffusion
terms are described in detail by Andreassen et al. (1994a,b).
Here, it is important to note only that these terms represent
second-order dissipation at large wavenumbers, but have no
influence on wave and instability structures at larger scales
of motion. This form of dissipation provides an accurate
description of energy removal within the motion spectrum
at high wavenumbers and reduces the spectral scattering of
energy to larger scales often accompanying higher-order dis-
sipation schemes (Jimenez, 1994). The diffusion terms P and
O were chosen to yield a normalized kinematic viscosity of
v =~ 0.015 and a Prandtl number Pr = v/k = 0.7 at the
level of wave breaking.

Equations (1) are solved in Cartesian coordinates,
(x, y, z), using the spectral collocation method described by
Canuto et al. (1988). A Fourier/Chebyshev representation
of the solution using trigonometric functions and Chebyshev
polynomials is employed to describe the horizontal and ver-
tical structures, respectively. Additionally, a grid-stretching
procedure is employed to achieve a more uniform distribu-
tion of grid cells in the vertical (see Andreassen et al., 1994a,
and Fritts et al., 1996a, for additional details).

As in our previous studies, our simulation is performed in
a physical domain composed of two model domains to make
efficient use of computer resources and to provide high spa-
tial resolution only where needed to describe the evolution
of instability and smaller-scale structures. Wave excitation
is performed in a low-resolution lower domain, with wave
breaking and instability confined to a higher-resolution up-
per domain. Nondimensional domain sizes are specified to
be (x10, ¥10, z10) = (4, 2,4) and (x20, y20, 220) = (4,2, 1.5)
for the lower and upper domains, respectively, with z = 0 de-
fined at the lower boundary of the lower domain. Finally, we
used (Ny, Ny, N:) = (192, 96, 129) collocation points in the
upper domain to provide approximately isotropic resolution
of small-scale structures arising due to wave breaking and
instability and to insure accurate descriptions of the various
sources and sinks of small-scale vorticity.

Boundary and forcing conditions are likewise as described
earlier by Andreassen et al. (1994a) and Fritts et al. (1996a).
Solutions are assumed to be horizontally periodic, while
characteristics of the nonlinear equations are used both to
insure continuity of the field variables and their derivatives
at the interface between domains and to impose open bound-
ary conditions at the upper boundary of the upper domain and
the lower boundary of the lower domain. A gravity wave is
excited in the lower domain via a vertical body force having
a Gaussian distribution in the vertical, a wavelength equal
to the domain dimension in x, and an amplitude that ramps
up, remains uniform, then ramps down over a time span of
t = 60. The wave frequency is specified so as to lead to a
critical level for the wave in the upper domain where the mean
streamwise motion achieves an amplitude of Uy(z) = 0.2.
The mean flow is described by a cosine and increases from
Uy = 0to Uy = 0.3 across the upper domain. These choices
result in a gravity wave that achieves convective instability
at an intrinsic frequency w; ~ N/6 and extending over a
depth z; >~ 0.15 (corresponding to a dimensional size of ~1

km). Additional details on the initial conditions, evolving
mean structure, and numerical procedures can be found in
Andreassen ef al. (1994a) and Fritts et al. (1996a).
2.2 The vorticity equation

The equation describing the evolution of the components
of vorticity, w; = (V x v);, may be written

dw; Vp V
i=a’jSif+<_pX_p>
dt P p /i
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where summation over repeated indices is assumed. Here,
S;; = 1(3v; + 0;v;) is the strain tensor. The term w;S;;
contains the tilting and twisting of the vorticity vector (oft-
diagonal terms of S;;) and the stretching of the vorticity vec-
tor (diagonal terms of S;;) by a flow v. The term [(Vp/p) X
(Vp/p)]; is the baroclinic source/sink of vorticity, which is
non-zero if the surfaces of constant pressure and density are
not co-aligned; the baroclinic term describes the creation of
vorticity by the torque of buoyancy force on the fluid. The
strain and baroclinic terms are the most important for under-
standing the vortex dynamics in the present paper. The term
in square brackets on the right side of Eq. (2) includes contri-
butions due to compressibility and the spectral viscosity and
thermal diffusivity employed in our formulation. Both the
compressibility and the dissipation are of minor importance
for the instability structures discussed in this paper because
of the large scales and small velocities of the flow.

3. Definition of a Vortex

The vorticity in our simulation results is concentrated into
two main geometries: sheets and tubes. Sheets can be flat or
curved, but have one dimension much smaller than the other
two. Tubes are cylinders with roughly circular cross section.
These are not to be confused with vorticity fieldlines which
follow the vorticity field independent of magnitude.

To define tubes more quantitatively, it is useful to have a
more formal definition of a vortex tube. For this, we adopt the
mathematical framework introduced by Jeong and Hussain
(1995) and employ the tensor defined as

L=8+Q% (3)

Here, S;; = %(8,—1)]- + d;v;) as before, and Q;; = %(8,—1)]- —
d;v;) is the rotation tensor. S;; and €2;; are the symmet-
ric and antisymmetric components of the velocity gradient
tensor Vv. As L is symmetric, it has only real eigenvalues
(ordered A; > X; > A3). A vortex will be defined as a region
where the middle eigenvalue, A, is negative, and less than
an appropriate cutoff value. An important point is that, for
our flow regime, a vortex defined in this manner is based
on the local tendency for flow rotation rather than on vor-
ticity magnitude. As such, this definition provides greater
sensitivity to vortex structures that are weak, but coherent,
and an ability to identify such structures at early stages of
the flow evolution. We have found that this definition also
yields consistent vortex identification at later stages when the
structures are highly complex. Finally, because 1, is based
on flow rotation, vortex sheets are not prominently displayed
by A, even if their vorticity is large.
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4. Overview of Enstrophy and Vorticity Evolutions

In this section, we provide an overview of the evolution of
enstrophy and the emergence of coherent vortices within the
breaking wave. The evolution of the breaking wave is illus-
trated by an isosurface of potential temperature at four times
in the upper panels of Plate 1, with the wave propagating
to the right. This particular isosurface is shown because it
resides within the region of vigorous wave breaking. Noting
that a buoyancy period is 7, = 14 in our non-dimensional
units, we see that the entire interval displayed spans less than
abuoyancy period; this evolution is both more rapid and more
vigorous than was observed in our previous lower-resolution,
more viscous simulations.

In the first stage of evolution of the breaking wave, regions
of convective instability arise (see, e.g., the overturning iso-
surface at # = 65 in Plate 1) from both a compression of the
vertical wavelength and an increase of the wave amplitude
with height, due to a decrease of wave intrinsic frequency in
shear and of mean density with upward propagation. This
convective instability results in the formation of streamwise
counter-rotating vortex pairs which cause a transition from
2D to 3D flow. These vortex pairs are visible in the top two
panels of Plate 2, which show volumetric renderings of the
A, eigenvalue introduced in the previous section. Plate 2 dis-
plays the entire evolution of the vorticity field (viewed from
the bottom with streamwise right and spanwise down), from
the first stages of convective instability through the transition
to and the evolution within the turbulence spectrum. Strong
vortices are colored by opaque yellow and weaker vortices
are colored by less-opaque blue, with the opacity and color
scales displayed at the bottom of the plate.

The streamwise vortex pairs are visible beginning at t =
62.5 as the ghostly white streaks. Streamwise vorticity arises
from both direct baroclinic generation of streamwise vortic-
ity and from tilting spanwise shear vorticity into the stream-
wise direction. The former source dominates at early times,
while the latter dominates at later times. This supports the
observations by Fritts et al. (1994, 1996a) that the major
sources of instability kinetic energy are a conversion from
eddy (i.e., 3D) gravitational potential energy at early times
and a conversion from shear kinetic energy at later times.
The influences of the streamwise vortices on the isosurfaces
of potential temperature can be seen in Plate 1 in the panels
att = 62.5 and 65, where downward and upward displace-
ments of the potential temperature surface occur inside and
outside vortex pairs respectively.

In the next phase of the evolution, the streamwise vortices
stretch and tilt the spanwise vorticity of the shear (both the
background shear and the shear of the wave itself). The lower
panels of Plate 1 show the enstrophy of the full domain at
t = 65 and t = 70. Two views of each are shown: from
positive x and above on the left, and from below on the right.
High values of enstrophy are bright pink and opaque and low
values are blue and nearly transparent. Considering ¢t = 65
first, we see that there is significant enstrophy which is not
represented in A, (compare the upper right enstrophy panels
of Plate 1 with the upper right panel of Plate 2). This is
because most of the enstrophy in Plate 2 lies in sheets, and
does not have the rotational character required to appearin ;.
Indeed, the enstrophy shown in Plate 1 at# = 65 has vorticity

predominantly in the spanwise direction, and represents the
vorticity of the total shear. By # = 70, however, a comparison
of the enstrophy and X, images (lower right panel of Plate 1
and the second right panel of Plate 2) reveals that the majority
of the enstrophy is now associated with the vortex tubes.

Prior to the appearance of streamwise vortices, the span-
wise vorticity due to the shear has no spanwise structure.
It varies only in the streamwise and vertical directions. The
streamwise vortices created by the convective instability then
advect and stretch the spanwise vorticity in their flow. Note,
in particular, the shape of the enstrophy in the upper left panel
of the lower set in Plate 1 at t = 65. The areas of brightest
pink are strong regions of enstrophy with vorticity in the pos-
itive spanwise direction that have been advected downward
by the convective rolls. Asthey are advected downward, their
spanwise vorticity is stretched because the flow of the con-
vective rolls diverges in the spanwise direction and so con-
tributes to intensification via stretching. This amplifies the
enstrophy advected downward over the background enstro-
phy, and makes the amplified regions thinner since the flow
of the convective rolls is convergent in the vertical direction.
Interspersed with the regions of strong downward-advected
enstrophy are regions of enstrophy that have been advected
upward and have also been amplified by stretching. These
regions, which have negative spanwise vorticity, are weaker
than the downward-advected regions because the mean and
wave shears are of opposite sign at this phase of the wave.
The enstrophy at each wave phase is concentrated in sheets
of spanwise vorticity with streamwise extents of roughly 10—
20 sheet thicknesses, and spanwise widths of roughly 6 sheet
thicknesses.

The enstrophy sheets are unstable to a spanwise-localized
(3D) Kelvin-Helmholtz (KH) instability and roll up into a
series of vortex tubes. The beginning of one of these roll-ups
is visible in the upper right enstrophy panel of Plate 1 in the
topmost vortex sheet on the left side of that panel. That sheet
is rolling up into four vortex tubes, all of which are curved
in the same manner. This curvature is easily explained by
noting that the edges of the original sheet are curved upward,
and so the ends of the rolled-up tubes lie above their centers.
The mean shear flow advects the tube ends downstream and
rotates the curvature of the tubes. At the later time ¢ = 70,
all the sheets have rolled up into tubes. Noting that the dy-
namical timescale of a shear layer is t ~ (dU/dz)™! = w™!
which is roughly # >~ 0.2 for a typical vortex sheet, we see
that the roll-up of the sheet takes about 10 shear timescales.
The resulting vortex tubes are clearly visible in Plate 2 show-
ing the A, eigenvalue. This KH instability (which we call the
secondary instability as it follows and is triggered by the
primary convective instability), then, is a distinct and robust
feature of the flow; it rolls all the vortex sheets into vortex
tubes which then form intertwined horseshoe-shaped vortex
loops. In Plates 1 and 2, note that the enstrophy and vortex
fields are advected toward larger x (to the right) by the mean
streamwise motion so that the fields are translated by ~1/3
of the domain length from # = 65 to 70. Because of the
streamwise shear flow, however, the advection is weaker at
lower levels, with the lower structures moving more slowly
toward larger x. Additional discussion of this evolution and
of the KH structures that arise is provided by Andreassen et



D. C. FRITTS et al.: VORTICITY DYNAMICS OF INSTABILITY AND TURBULENCE 461

(©)

Plate 1. (a) Isosurface of potential temperature with & = 2.97 within the region of internal gravity wave breaking at ¢t = 62.5, 65, 67.5, and 70. (b) Volume
renderings of enstrophy viewed from below with positive x (streamwise) to the right in the right panels, and viewed from positive x and above in the left
panels. Top panels show # = 65 and bottom panels show ¢+ = 70. Enstrophy is shown with large values opaque and pink and weak values transparent
and gray.



462 D. C. FRITTS et al.: VORTICITY DYNAMICS OF INSTABILITY AND TURBULENCE

Plate 2. Volume renderings of 1, from below with positive x to the right at = 62.5, 65, 67.5, 70, 72.5, 75, 77.5, and 80 left to right and top to bottom.
Color and opacity scales are shown at the bottom. The opacity scale extends from transparent (bottom) to opaque (top); both scales show negative A,

with zero at the right.

al. (1998). These dynamics are also similar in important re-
spects to the evolution of a sheared boundary layer in which
streamwise vortex structures have been observed to elevate
and stretch the spanwise vorticity, leading to an inflectional
velocity profile and secondary roll-up of the intensified vortex

sheets (Kline ef al., 1967; Landahl and Mollo-Christensen,
1992).

The net result of the primary convective and secondary
dynamical (KH) instabilities is a collection of intertwined
vortex loops having counter-rotating streamwise “legs” in-
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clined along the phase of the wave motion and having centers
with positive spanwise vorticity. Successive loops (toward
negative x or upstream) have their streamwise legs above and
within the adjacent downstream (toward positive x) loops.
The result is a complex vorticity field having many sites
where vortices having approximately parallel, antiparallel,
or orthogonal alignments occur in close proximity and inter-
act strongly. The vortex loops bear a close resemblance to
the “horseshoe” and “hairpin” vortices that arise in turbulent
boundary layer flows (Acarlar and Smith, 1987; Robinson,
1991; Sandham and Kleiser, 1992), in stratified and sheared
turbulence (Gerz et al., 1994), and in rotating shear flows
(Metais et al., 1995). The dynamics of these structures, then,
may have implications for the evolution of a broad class of
flows.

The series of intertwined vortex loops arising from initial
convective and secondary dynamical instabilities condition
the flow for a rapid subsequent evolution because of the close
proximity of adjacent vortices. The further evolution of this
vortex field is displayed in the lower four panels of Plate 2 at
t =72.5,75,77.5, and 80. Though the time required for this
further evolution of the flow spans only ~0.7 Ty, the increase
in flow complexity is dramatic. The vortex loops present at
t = 70 are fragmented into pieces, and new smaller vortex
tubes continue to be formed (small blue and gray wisps in
Plate 2). At later times, apart from a large-scale correlation
with the phase of the original gravity wave, the small-scale
flow is almost isotropic, and has little evidence of its initial
state. The vortices lose their initial streamwise and span-
wise orientation and structures appear at significantly higher
wavenumbers (by a factor of 2 to 3). Additionally, the max-
imum vorticity and enstrophy at small scales of motion in-
crease throughout the simulation, both because of the initial
cascade from larger to smaller scales and because enstrophy
is larger at the smaller scales within an inertial range of tur-
bulence. The dynamics accounting for this further evolution
toward a more chaotic and isotropic vortex field and smaller
scales of motion are the subject of the remainder of this paper.

5. Primary Vortex Dynamics

We have identified several processes that appear to be im-
portant in the evolution toward smaller scales and increasing
isotropy. This section addresses the vortex dynamics that we
judge to be key to the transition to and the cascade within a
turbulent flow. Other vortex interactions that participate in
the evolution, but are believed to be less important, are de-
scribed in the following section. Several of these processes
can be seen to occur in the series of closeup images of the
vortex field extending from ¢ = 70 to 75 in Plate 3.
5.1 Orthogonal vortex stretching

The key element in vortex intensification on short time
scales is vortex stretching, either of the ambient shear field
by localized vortices (or vice versa) or of localized vortices
by other localized and closely spaced vortex structures. For
this process to be effective, the local component of vorticity,
w;, and the diagonal component of the strain tensor, S;;, must
contribute a source, w;S;;, which exceeds other baroclinic,
compressional, and viscous contributions. This stretching
source is particularly strong when the vorticity lines of two
neighboring vortex structures are nearly orthogonal. Phys-

ically, the stretching is due to a flow divergence along the
vorticity. Because of the geometry of the flow, vorticity is
stretched on the upstream side (relative to the point of clos-
est approach) of an orthogonal vortex, and scrunched (neg-
ative stretching via a convergent flow) on the downstream
side. This mutual stretching (and scrunching) is illustrated
schematically, with vortex thickness indicating strengthen-
ing and dashed lines denoting weakening, in the first series
of diagrams in Fig. 1.

Noting that the vorticity lines of the vortex sheets are pre-
dominantly spanwise (vertical in Plate 2) and that the vor-
ticity lines of a vortex tube are roughly along the tube, we
see that there are indeed numerous sites where vortex struc-
tures in Plate 2 have approximately orthogonal alignments
and undergo local intensification. When the stretching in-
volves a vortex sheet, roll-up and tube formation can result,
as discussed above. A good example of such orthogonal
vortex stretching can be seen in the upper central part of
the images at the first three times (left three panels, top to
bottom) displayed in Plate 3. Here (as seen from below), a
vortex having positive spanwise vorticity (directed down to-
ward positive y) overlies a streamwise vortex having negative
streamwise vorticity (toward the left, or negative x). Based
on the arguments above, we should expect that the stream-
wise vortex causes divergent/convergent motions (stretch-
ing/scrunching) along the overlying (at smaller z, seen from
below) spanwise vortex, leading to an intensification with
time of the portion of the spanwise vortex toward positive
v (below) and depletion of the vortex at negative y (above)
relative to the streamwise vortex. In the same manner, the
spanwise vortex stretches/scrunches the streamwise vortex
toward negative/positive x where it underlies the spanwise
vortex. The same effect can also be seen in the upper left
panel of Plate 4, which focuses on only this single vortex at
an intermediate time.

An important consequence of this mutual stretching is the
preferential amplification of the orthogonal vortex structures,
causing these structures to become most prevalent as the vor-
tex field evolves. Indeed, these “x-patterns” appear as fre-
quent and persistent features in the vortex evolution and can
be seen surviving to late times relative to other features of the
flow in Plate 2. Such “x-patterns” were observed by Boratav
et al. (1992) and Pumir and Siggia (1990) to lead ultimately
to anti-parallel vortex alignments at late times in an unstrati-
fied flow. However, late-time anti-parallel alignments are not
observed in our flow, perhaps as a result of the more viscous
nature of the vortex dynamics in our simulation.

5.2 Vortex sheet and tube formation

Formation and intensification of vortex sheets and their
subsequent roll-up into vortex tubes were identified as initial
steps in the transition to and within turbulent flow by Betchov
(1957) and Lundgren (1982). Our results and the previous
discussion of Plate 2 show that these processes also occur in a
stratified fluid and play a continuing role throughout the flow
evolution. Sheet roll-up occurs on sheets which have been
intensified by vortex stretching from the flow of a neighbor-
ing orthogonal vortex. The roll-up proceeds by analogy with
the 2D KH instability of an infinite vortex sheet studied by
many authors or the 3D KH sheet instability described in the
previous section.
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Plate 3. As in Plate 2 for a subdomain at the upper left of the full domain including ~1/3 of the domain in x and 1/2 of the domain in y. Times are t = 70,
71,72, 73, 74, and 75 from top to bottom and left to right. Color and opacity scales are shown at the bottom.

Examples of vortex sheet formation and roll-up can be seen
in the temporal evolution displayed in Plate 3, where small
vortex segments can be observed to form and intensify with
time in close proximity to the stronger vortex tubes. Specific
examples occur 1) at the lower left end of the spanwise vortex
tube just discussed at early times, 2) in an identical fashion
at the lower left end of the vortex tube at the left of the

images at early times, and 3) at smaller scales adjacent to the
stronger vortices at later times. The first of these examples
is again displayed clearly in the three upper images showing
the temporal evolution of the spanwise vortex tube in Plate 4.
In each case, vorticity vectors of the tube and adjacent sheet
are approximately orthogonal. As the evolution progresses,
the vortex sheet intensifies due to stretching by the overlying
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Plate 4. As in Plates 2 and 3 for the spanwise vortex at the center of the images in Plate 3 at = 71.5, 72.5, and 73.5 (top), the curved vortex at the lower
left of the images in Plate 3 at 1 = 69, 71, and 73 (middle), and the streamwise vortex just above the left center of the last two images in Plate 2 at 1 = 76,
78, and 80 (bottom). Color and opacity scales are shown at the bottom.
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Fig. 1. Schematics of three of the primary vortex interactions which account
for the dominant vortex structures and drive the cascade of enstrophy to-
ward smaller scales. The upper series illustrates the differential stretch-
ing and scrunching of orthogonal, mutually interacting vortices leading
to intensification and long-lived “x-pattern” structures. The central se-
ries illustrates the intensification of a weak vortex sheet, its attachment
to a stronger vortex tube, and the subsequent twist wave amplification,
propagation, and fraying under unstable conditions (see text for details).
The lower series illustrates the impact of mode-two twist waves initiated
at different sites on a vortex tube that propagate toward each other and
result in the unraveling and breakup of the vortex tube.

(at smaller z) vortex tube. Continued stretching by the vortex
tube intensifies the vortex sheet locally, until it rolls up via a
local KH instability and forms a tube of comparable intensity
with that accounting for the stretching.
5.3 Mode-zero twist waves

We noted earlier that the vortex loops arising from the
secondary KH instability tend to fragment into pieces. One
of the causes of this fragmentation is the presence of mode-
zero (azimuthal wavenumber m = 0) twist waves of large
amplitude. Examples of mode-zero twist waves can be seen
on many of the spanwise-aligned vortices in Plate 2, more
clearly in the two left-most spanwise vortex tubes in the first
several images in Plate 3, and in the sequence of three images
at the top of Plate 4. In each case, the mode-zero twist waves
are initiated through the stretching/scrunching of a vortex by
a near-orthogonal neighbor via the “x-pattern” interaction.
In the case of many of the spanwise vortices, mode-zero
twist waves appear to be excited at both ends of the vortex
simultaneously, to propagate inward from the sites of exci-
tation, and to jointly cause a very strong axial convergence
which weakens the vortex to such an extent that its center is

obliterated. This process is responsible for the inward mo-
tion of the depleted (weaker) vorticity from either end of the
spanwise tube seen to occur in the top left and center panels
of Plate 4. The third panel in this sequence reveals the con-
sequence of the collision of two large-amplitude mode-zero
twist waves which, with superposed axial divergence fields,
destroy the vortex core. Given the prevalence of mode-zero
twist waves in our simulation and the consequences for vor-
tex breakup, we conclude that this is a key mechanism in
driving the evolution toward smaller scales of motion.

The propagation and characteristics of twist waves were
first described by Kelvin (1880). Similar dynamics of a vor-
tex tube were recently discussed by Melander and Hussain
(1995) and Schoppa et al. (1995) in association with vortex
core dynamics, while Arendt ef al. (1997) recognized the
applicability of twist waves in the interpretation of our wave
breaking vortex dynamics. In general, twist waves are dis-
persive traveling waves on vortex tubes. The axisymmetric
(mode-zero) modes propagate by twisting the vortex lines
of the tube, thereby creating an axial flow. The axial flow
changes the enstrophy of the tube by stretching/scrunching.
This, in turn, changes the rotation rate of the tube which then
changes the twist. From this point of view, the event shown
in the top panels of Plate 4 is a standing axisymmetric twist
wave on a vortex tube excited by the initial state of the tube,
including its proximity to the streamwise tubes underlying
it (Arendt ef al., 1997). The wave is of such large ampli-
tude that it irreversibly depletes the middle of the vortex tube
during its minimum.

5.4 Mode-two twist waves

Another type of twist wave that plays a major role in
the fragmentation of vortex loops is a mode-two (azimuthal
wavenumber m = 2) wave. These waves are generally ex-
cited where a vortex tube is perturbed near its end by another
vortex structure (either a tube or sheet). The clearest and
most long-lived examples of mode-two twist waves in our
numerical solution arise due to upstream perturbations of the
more axially-uniform streamwise vortex tubes. Two of these
waves are seen in the upper left portions of the lower right
images shown in Plate 2; other examples are seen to arise
on the spanwise vortices seen in Plate 3 at later times. The
evolution of the mode-two twist wave seen in the lower right
panel of Plate 2 is shown magnified in the lower panels of
Plate 4, again viewed from below, where now the x and y
directions are down and to the left.

In each case, a streamwise-propagating m = 2 twist wave
with a small amplitude is excited on the vortex tube; the
propagation of the wave is not seen since the domain dis-
played is adjusted to track it. The waves grow until they
are sufficiently large to unravel the vortex tube into a pair of
intertwined helices; a schematic of this is shown in Fig. 1(b).

It is useful to examine how a mode-two twist wave propa-
gates. Essentially, such a wave is propelled by self-advection,
i.e., the vortex tube induces a velocity field, and is then ad-
vected by it. This is a common effect in vortex dynamics.
A simple example is that of a vortex ring which is propelled
in a direction perpendicular to its plane by its own veloc-
ity field. In the case of an m = 2 wave, each helix of the
pair induces a velocity field with both an azimuthal rotating
component and an axial component. The axial component



D. C. FRITTS et al.: VORTICITY DYNAMICS OF INSTABILITY AND TURBULENCE 467

Plate 5. Analytic mode-two twist waves excited by a small-amplitude, axially-Gaussian m = 2 perturbation at # = 0. Times are in units of the circulation
time, the upper two images focus on the source region, and the latter three images display more of the vortex tube to exhibit the wave packet structure.
The vorticity is to the left in the left panels, the right panels show the views from the left end of the tube, and the wave amplitude has been exaggerated

for ease of visualization.

propels the wave by advecting the helices. For example, the
tube shown in the bottom panels of Plate 4 has vorticity vec-
tors pointing downward. Given the sense of the helices of the
wave, it is easy to show (using the Biot-Savart law or sim-
ply the right-hand rule) that the axial velocity is downward,
and so the wave propagates downward. At the head of the
wave packet, where the tube is unsplit, the axial flow of the

approaching double helices precedes the helices themselves.
The axial flow decays with distance from the helices, and
so it is convergent along the axis in front of the wave. If
the flow converges axially, it must diverge radially; this ra-
dial divergence splits the vortex tube into the two component
helices.

An important consequence of the self-advected propaga-



468 D. C. FRITTS et al.: VORTICITY DYNAMICS OF INSTABILITY AND TURBULENCE

tion of an m = 2 wave is that the direction of propagation is
determined by the direction of the vorticity in the tube and
the sense of the helices of the wave packet. These two com-
ponents determine the direction of the axial flow, and hence
the direction of propagation. The mode-two twist wave seen
at the upper left at # = 75 in Plate 2 has the opposite sense
of helicity and vorticity and therefore also propagates in the
positive-x direction.

Another example of a mode-two twist wave is seen at
the left edge of the latter images (right panels) in Plate 3.
Consider the XA, evolution. After the dominant spanwise
vortex loop forms, structures which underlie it and which
are initially weak intensify (see the lower end of the tube at
the left edge of the lower left panel) and appear to attach to
the spanwise vortex loop. This process initiates a mode-two
twist wave which propagates along and unravels the spanwise
vortex tube. Equivalent dynamics are also initiated at the
opposite end of this same vortex tube, but here the helicity and
direction of propagation are reversed. The consequence in
this case is a spanwise vortex tube that decays via unraveling
from both ends rather than bursting due to mode-zero twist
wave propagation. These influences on the spanwise vortex
tube are displayed schematically in Fig. 1(c). Such events are
very common throughout our simulation. Similar unraveling
events are also observed in the laboratory (Cadot e al., 1995)
and are likely also a consequence of large-amplitude, mode-
two (or higher m) twist waves. These dynamics are also
discussed in greater detail by Fritts e al. (1998).

Though the twist waves discussed above are of large am-
plitude and have clearly nonlinear effects (i.e., they destroy
the vortices on which they propagate), their propagation can
be understood in terms of linear theory. To exhibit this be-
havior, we describe analytically the mode-two twist wave
structure on a vortex of constant vorticity and finite radius
(see also Arendt et al., 1997) which arises from a small-
amplitude, axially-Gaussian, mode-two perturbation. The
resulting wave propagation is displayed in Plate 5 (with am-
plitude exaggerated), where now the times are in units of the
circulation time of the vortex. The vorticity of the tube is
to the left; hence two wave packets are excited having op-
posite helicity and direction of propagation, just as observed
in our simulation results and discussed above. This can be
understood by noting that right-handed helicity implies an
induced axial motion and self-advection in the direction of
positive vorticity, with the opposite sense of propagation for
the opposite helicity. This accounts for the correlation be-
tween the vorticity and helicity seen in the latter panels of
Plate 2, where both mode-two waves are seen to propagate
toward positive x. Finally, we note that the mode-two twist
waves exhibit dispersion, with the smaller-scale waves ap-
parently propagating with larger group velocities. These and
other details, including the radial structure of such waves,
are discussed further by Arendt ez al. (1997).

6. Secondary Vortex Dynamics

In this section we discuss several processes which play
clear roles in the evolution of the vortex field due to wave
breaking, but which appear to be of minor importance to
the cascade of energy and enstrophy to smaller scales of
motion. These include vortex reconnection, mode-one twist

waves, and vortex pairing. Of the three, reconnection is
easily the most pervasive, but perhaps the most difficult to
quantify. Mode-one twist waves, in contrast, are easily seen
in the numerical solution, arise from perturbations to vortex
tubes, and can be described simply in terms of linear theory.
Finally, vortex pairing arises when two spanwise loops are
close to each other and proceeds in a manner analogous to
such pairing events in 2D flows.

6.1 Vortex reconnection

Reconnection events fall into two broad classes. The first
are those described by Kida and Takaoka (1994) in which
vortex tubes undergo attachment without requiring viscous
reconnection of vortex fieldlines. An example of this sort of
event occurs at the lower left portion of the domain displayed
in the top sequence of images in Plate 4, where the initially
weak tube amplifying through the “x-pattern” interaction in-
tensifies and attaches to the spanwise vortex. Examples of
this sort are common in our simulation and are easy to spot
through a close examination of Plate 2.

The second, and more interesting, class of reconnection
events, those in which vortex fieldlines reconnect, has been
a topic of detailed study (Pumir and Siggia, 1990; Boratav
et al., 1992; Shelley ef al., 1993). An example of such an
event occurs at the upper right in the first three A, images
in Plate 3 (left panels). Here, a vortex loop originating on
one vortex sheet (see the strongest vortex at the upper left in
the second left panel of Plate 2) begins to be distorted by a
vortex arising on an adjacent sheet (below and to the left).
Byt = 70 (top left image in Plate 3), the initial vortex loop is
strongly kinked, but still intact. Thereafter, its close proxim-
ity to the underlying vortex causes stretching and scrunching
due to their approximately orthogonal orientation. This en-
hances the leftmost part of the loop and weakens the portion
to the right just where the vortex loop itself is undergoing a
breakup, enabling viscous alignment and attachment of the
fieldlines among formerly discrete vortices. The result is the
new sinuous vortex seen entering the domain at the top near
the right edge (lower left panel of Plate 3) and exiting below
the midpoint on the right edge.

6.2 Mode-one twist waves

A final type of twist wave present in our numerical solu-
tion is the mode-one (azimuthal wavenumber m = 1) twist
wave. This wave perturbs a vortex tube into a single helix and
propagates through self-advection, as in the mode-two case.
A clear example of a mode-one twist wave is on the vortex
slanted at ~45° at the lower right of the expanded images
in Plate 3. At the earliest time shown, ¢t = 70, the tube is
largely unperturbed, but is frayed near its lower end. At later
times, the tube is bent into an increasingly wiggly pattern.
A further expanded view of the evolution of this tube span-
ning ¢ = 70 is shown in the central three panels of Plate 4.
These images show a vortex exhibiting left-handed helicity
and having positive spanwise (or downward) vorticity.

The mode-one twist wave is apparently excited by the close
orthogonal neighboring vortex underlying it at its lower end.
The flow of this orthogonal neighbor bends the tube initially
into a single wiggle, and the self-dynamics of the tube trans-
forms the single wiggle into a full helix thereafter. Curiously,
the wave does not seem to propagate. Rather, it appears to
be a standing wave made stationary by the stationary forcing
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Plate 6. As in Plate 5, but for a mode-one twist wave.

due to the neighboring orthogonal vortex. Alternatively, the
mode-one twist wave may be a true stationary wave, as such
waves do occur (Saffman, 1992).

Other mode-one twist waves are also observed to be ex-
cited in our simulation, including two (apart from that dis-
cussed above) in the third image on the left in Plate 2, at
the lower edge of the domain about 1/3 of the distance from

left to right and at the top center, both of which have largely
spanwise alignment. Expanded images at later times reveal
other examples. Thus, the mode-one twist waves comprise a
significant feature of the turbulent dynamics in our simula-
tion. They are not judged central to the vortex and turbulence
evolution, however, because they appear not to contribute
strongly to the breakup of larger vortices or the cascade to
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smaller scales of motion.

As for the mode-two twist waves discussed above, we
provide here an analytic example of a mode-one twist wave
on an idealized vortex in order to display the propagation
and dispersion of such waves. We again assume a small-
amplitude, axially-Gaussian perturbation, which in this case
represents a deflection of the tube. This perturbation in-
duces self-advection of the tube displacement which excites
mode-one twist waves propagating in each direction along
the tube, with the direction determined by the self-advection
due to the axial component of the induced velocity field (see
Plate 6). The vorticity of the tube is to the left, resulting in
the twist wave having right-handed helicity propagating to
the left (in the direction of positive vorticity) and the twist
wave having left-handed helicity propagating in the oppo-
site direction. Also seen clearly in the panels at later times
(again expressed in units of the circulation time of the vor-
tex) is the dispersive character of the mode-one waves, with
larger scales having larger group velocities along the tube.
Note that this is opposite to the dispersion noted with the
mode-two twist waves above. Further discussion of mode-
one twist wave structure and behavior is provided by Arendt
et al. (1997).

6.3 Vortex pairing

Vortex pairing, the mutual interaction of two parallel vor-
tex tubes, is generally understood on the basis of 2D labora-
tory and numerical studies. This process is often observed
at a sheared interface in fluids that are homogeneous or have
a density gradient confined to the shear layer (Scotti and
Corcos, 1972; Patnaik et al., 1976; Koop and Browand, 1979;
Fritts, 1984; Thorpe, 1985; Metcalfe ef al., 1987), and can be
viewed as a degenerate resonant triad interaction between the
primary KH billow and its subharmonic (Davis and Peltier,
1979). Pairing is less pronounced in a fluid that is stratified
away from the shear layer, however, for two reasons. First,
the mean state Richardson number required for linear sub-
harmonic instability, and hence for efficient subharmonic ex-
citation, is much less than for the primary instability (Drazin,
1958). Second, subharmonic excitation at larger Richardson
numbers is suppressed because the subharmonic has propa-
gating rather than evanescent character away from the shear
layer and therefore radiates away as it is excited (Fritts, 1984).
As a result, such pairing events appear not to be observed in
the stratified atmosphere and oceans.

We observe several cases of vortex pairing in our results.
Generally they resemble their 2D analogs, with the vor-
tices approaching closely, mutually advecting, and wrapping
around each other. Pairing is different in 3D in two respects.
First, the vortex sheets are localized in the spanwise direc-
tion, and the resulting tubes are as well. At later times, the
tubes are curved into loops with the streamwise extensions
of the loop legs coming close together. So, the pairing pro-
ceeds between adjacent loops, with one loop (typically the
upstream loop in our simulations) being advected over and
within the other loop, and at the same time being weakened
due to scrunching. The pairing then resembles leap-frogging
vortex rings.

The second difference in 3D is that other processes of-
ten occur on faster timescales within the loops and disrupt
them before the pairing can proceed very far. For example,

on some occasions we observe twist waves (both mode-zero
and two) fragmenting and unraveling the vortices while they
are pairing. Pairing is less disrupted if it takes place at small
scales; presumably, twist waves are heavily influenced by
viscosity at these scales (as is the pairing) and are unable to
compete with the pairing. Furthermore, in a previous simula-
tion employing lower resolution and 25% greater dissipation,
the twist waves at this stage of the simulation were some-
what suppressed and the vortex pairing proceeded with less
competition. Finally, it is possible that the pairing events fa-
cilitate other vortex interactions (i.e., twist waves) by driving
the more intense vortex structures closer together. Pairing of
adjacent vortices is seen at several sites in our simulation, no-
tably between the strong vortex and the weaker and smaller
vortex within it and at smaller x (to its left) at the upper left
in the second left panel of Plate 2. A second example oc-
curs at the lower left of the third left panel of Plate 2, but
is not well resolved in time and has largely decayed by the
next image. These dynamics are not displayed separately
because of our judgement that they are of less importance
in the evolution of the vortex field; however, these and other
twist wave dynamics are discussed at greater length by Fritts
et al. (1998).

7. Enstrophy Spectra and Cascade

To illustrate the enstrophy evolution accompanying wave
field instability and the subsequent cascade toward smaller
scales of motion more quantitatively, we now examine the
temporal development of the total enstrophy spectra with
streamwise and spanwise wavenumbers k. and k,. These
are shown in Fig. 2 at r = 60, 65, 70, 75, and 80. Note
that the k, spectra are corrected for the difference in the x
and y domain size to permit comparison of spectral ampli-
tudes at the same scales in each direction. These spectra
exhibit clear differences at early times (¢ = 60 and 65). The
k, spectra (dash-dotted and dashed lines) exhibit a series of
discrete peaks corresponding to the scales at which the dom-
inant spanwise instabilities (i.e., the streamwise convective
rolls) arise (wavenumbers 4, 10, and 16 in Fig. 2 or 2, 5,
and 8 relative to the spanwise domain). The k, enstrophy
spectra, in contrast, have their major contributions at some-
what lower wavenumbers, since the convective rolls are much
longer than they are wide (but inclined along the phase of the
wave).

By t = 70, the dominant enstrophy has shifted to wave-
numbers k, ~ 2to20and k, ~ 2to 30 (in a variance-content
form, the peaks would occur at a &, for which the slope in
Fig. 2 is —1). At later times (+ = 75 and 80), the earlier
peaks in the k, spectra corresponding to the streamwise con-
vective rolls are no longer present, as the vortex loops have
interacted and driven the flow toward a more chaotic and
isotropic structure.

Also shown in each panel of Fig. 2 are lines having spec-
tral slopes of +1/3 and —5, corresponding to the slopes one
would expect for enstrophy in the inertial and viscous ranges
of turbulence given energy spectral slopes of —5/3 and —7,
the —7 being from the Heisenberg model (Heisenberg, 1948).
In the viscous range, the agreement with the —5 slope is rea-
sonably good, except very near the Nyquist scales where the
slope is steeper. In the inertial range, the spectra are flat in-
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Fig. 2. Streamwise (left) and spanwise (right) wavenumber spectra at times of # = 60 (dash-dotted), 65 (short-dashed), 70 (dotted), 75 (long-dashed), and
80 (solid) showing the approach toward isotropy at intermediate and smaller scales of motion. Also shown in each panel are lines having slopes of +1/3

and —5.

stead of positively sloped; an exception is at lower wavenum-
bers and early times in the spanwise spectra where the spectra
are positively sloped. The limited extent and slope of the ap-
parent inertial range are likely consequences of a turbulent
Reynolds number of 10 or less based on either integral scale
or turbulence arguments (Fritts ef al., 1996a). Nevertheless,
the clear change in slope in the spectra at k& ~ 30 is sugges-
tive of the transition from an inertial range to a dissipative
range.

8. Summary and Conclusions

We have presented an analysis of the vorticity dynamics ac-
companying initial convective instability, secondary dynam-
ical instability, and the subsequent transition to and cascade
within turbulence due to a breaking internal gravity wave
simulated with a three-dimensional, high-resolution numer-
ical model. The gravity wave was excited in a lower model
domain and propagated into a higher-resolution upper do-
main having a streamwise wind shear designed to confine
wave instability to the domain interior. Open boundary con-
ditions permitting outward propagation of wave energy were
used at the lower and upper boundaries of the lower and up-
per domains, respectively, and periodic boundary conditions
were used at the lateral boundaries. Model parameters were
chosen to be representative of wave propagation and instabil-
ity in the middle atmosphere. Our simulation thus describes
a common means by which turbulence arises in geophysical
flows.

Initial convective instability within the wave field proceeds
through the development of streamwise counter-rotating vor-
tices arising due to baroclinic vorticity generation within the
convectively unstable phase of the wave. These streamwise
vortices evolve immediately above the large spanwise vor-

ticity due to the superposition of wave and mean velocity
shears. Strain due to these streamwise vortices contributes
in several ways to the subsequent evolution of the spanwise
vorticity layer. Stretching of the spanwise vorticity in re-
gions of spanwise-divergent flow below adjacent streamwise
vortices leads to thinning and intensification of this vorticity
locally. The streamwise vortices also contribute to the gen-
eration of vertical vorticity through tilting the edges of each
evolving spanwise vortex sheet.

Secondary dynamical (Kelvin-Helmholtz) instabilities de-
velop on each of the intensified spanwise vortex sheets, serv-
ing to concentrate the spanwise vorticity into vortex tubes.
At the edges of each spanwise vortex sheet, tilting of verti-
cal vorticity into the streamwise direction by the developing
vortex tubes acts to connect each tube with the two counter-
rotating streamwise vortices accounting for intensification of
that vortex sheet. The net result of the initial convective and
secondary dynamical instabilities is a series of intertwined
vortex loops having increasingly complex geometries and
interactions with time.

We have also examined the primary and secondary vortex
interactions and perturbations accounting for the transition to
and the enstrophy cascade within a turbulent flow following
initial convective and secondary dynamical instability. Vor-
tex interactions judged to be of primary importance in this
context include the stretching of vortex structures (sheets
and tubes) by nearly orthogonal neighboring vortex struc-
tures, the roll-up of vortex sheets into tubes, and mode-zero
and mode-two twist waves which are excited on the vortex
tubes. Other interactions also identified in our simulation,
but judged to be of lesser importance in the evolution of the
vorticity field, include reconnection, mode-one twist waves,
and vortex pairing.
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A typical sequence of events begins with orthogonal vor-
tex structures stretching each other. If one of the structures
is a vortex sheet, the intensification due to the stretching
eventually causes it to roll up into one or more vortex tubes.
However, the vortex sheet is finite in extent, and so the re-
sulting vortex tubes have variations in their structure along
their axes. These axial variations excite twist waves along
the tubes, particularly mode-zero and mode-two waves, and
these twist waves have such large amplitudes that they frag-
ment, unravel, or burst the tubes on which they propagate.
Twist waves can also be excited by interactions of vortex
tubes with their neighbors, leading to the same disastrous
consequences for the tubes. In this way, the flow evolves
from sheets to tubes to tube fragments, each on smaller scales.
The process is somewhat self-sustaining as we find that the
tube fragments themselves stretch sheets which in turn roll
up into new tubes; such processes occur until late in the evo-
lution when the flow is primarily viscously diffusing. Mutual
stretching events termed “x-patterns” were found to be rela-
tively stable structures and to persist for long times.

Secondary vortex interactions are evident throughout the
flow evolution, but appear to play a less significant role in
the cascade of enstrophy toward smaller scales of motion.
Reconnection events occur at many sites, although on some
occasions apparent reconnection events proved to be nothing
more than the intensification of separate portions of a vor-
tex tube which already shared common vorticity fieldlines.
Mode-one twist waves are occasionally excited, usually by
the effect of an orthogonal neighboring vortex. These waves
were found to be relatively stable and steady, probably be-
cause of the steady forcing from the neighboring tube. Fi-
nally, vortex pairing events were observed at several sites
in our numerical results and were found to contribute to vor-
tex perturbations leading to their fragmentation and bursting.
But the pairing events themselves appeared to play a lesser
role than other processes in a less viscous environment.

Perhaps the most significant result of this study is the iden-
tification of vortex processes which we believe to be respon-
sible for dynamics within a broad class of turbulent flows.
Turbulence has, of course, been studied in many contexts,
and the details of the transition to turbulence vary accord-
ing to which flow instabilities contribute to the transition.
However, a common feature shared by many, if not all, tur-
bulent flows is the formation of either vortex tubes or vortex
loops, termed “horseshoe” or “hairpin” vortices (Rogers and
Moin, 1987; Robinson, 1991; Sandham and Kleiser, 1992;
Gerz et al., 1994; Metais et al., 1995). Similar structures
also occur in the general 3D KH instability (Palmer et al.,
1996) and in many other flows of sufficiently high Reynolds
numbers. The dynamics of the vortex loops that arise in our
current simulation, then, are likely representative of similar
dynamics of vortex loops in many flows. For example, the
twist waves we observe on vortex loops are caused by axial
variations of the vortex loops (see Arendt et al., 1997, for a
full discussion) and by interactions with neighbors. As such
variations inevitably occur on finite-length vortex tubes or
loops, twist waves and the consequent fragmentation and/or
unraveling of the vortex loops should be common in turbu-
lent flows. In fact, double helix unraveling of vortex tubes
has been observed by Cadot et al. (1995) in laboratory stud-

ies of turbulent shear flow. In our flows, we find that twist
waves are ubiquitous, and the fragmentation and unraveling
of vortex loops that they cause is the predominant fate of the
loops; few, if any, vortex loops decay by viscous diffusion.
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